
Logic in Action

Jan van Eijck

CKI, 8 November 2010

Abstract

This talk will provide a tour of lightning visits of applications of logic:

• Logic Programming and Functional Programming

• Logic in Linguistics

• Knowledge Bases

• Propositional Logic Theorem Proving

• Formal Specification, Software Testing

• Puzzle Solving (logical puzzles, sudokus)

http://www.logicinaction.org

http://www.cambridge.org/vaneijck-unger

http://www.logicinaction.org
http://www.cambridge.org/vaneijck-unger

But First . . .

http://www.youtube.com/watch?v=OksHblHDij0

http://www.youtube.com/watch?v=OksHblHDij0

Heroes of Logic Programming

Heroes of Functional Programming

A Brief History of Logic Programming

1930 Jacques Herbrand provides the proof-theoretical basis for
automated theorem proving

1965 John Alan Robinson proposes resolution with unification [11]

± 1970 Robert Kowalski proposes a procedural interpretation of
Horn clauses.

1972 Alain Colmerauer creates Prolog (with Philippe Roussel)

A Brief History of Functional Programming

1932 Alonzo Church presents the lambda calculus

1937 Alan Turing proves that lambda calculus and Turing machines
have the same computational power.

1958 John McCarthy starts to implement LISP.

1978-9 Robin Milner cs develop ML.

1987 Agreement on a common standard for lazy purely functional
programming: Haskell.

http://www.haskell.org

http://www.haskell.org

A Brief History of Formal Linguistics

1916 Ferdinand de Saussure, Cours de linguistique générale pub-
lished posthumously. Natural language may be analyzed as a
formal system.

1957 Noam Chomsky, Syntactic Structures, proposes to define
natural languages as sets of grammatical sentences, and to
study their structure with formal (mathematical) means. Presents
a formal grammar for a fragment of English.

1970 Richard Montague, English as a Formal Language, proposes
to extend the Chomskyan program to semantics and pragmat-
ics. Presents a formal grammar for a fragment of English, in-
cluding semantics (rules for computing meanings). Links the
study of natural language to the study of formal languages
(languages from logic and computer science).

Richard Montague (1930-1971)

Developed higher-order typed intensional logic with a possible-
worlds semantics and a formal pragmatics incorporating indexical
pronouns and tenses.

Program in semantics (around 1970): universal grammar.

Towards a philosophically satisfactory and logically precise account
of syntax, semantics, and pragmatics, covering both formal and
natural languages.

“The Proper Treatment of Quantification was as profound for se-
mantics as Chomsky’s Syntactic Structures was for syntax.” (Bar-
bara Partee on Montague, in the Encyclopedia of Language and
Linguistics.)

• Chomsky: English can be described as a formal system.

• Montague: English can be described as a formal system with
a formal semantics, and with a formal pragmatics.

Montague’s program can be viewed as an extension of Chomsky’s
program.

The Program of Montague Grammar

• Montague’s thesis: there is no essential difference between
the semantics of natural languages and that of formal lan-
guages (such as that of predicate logic, or programming lan-
guages).

• The method of fragments: UG [9], EFL [8], PTQ [7]

• The misleading form thesis (Russell, Quine)

• Proposed solution to the misleading form thesis

• Key challenges: quantification, anaphoric linking, tense, inten-
sionality.

Misleading Form

Aristotle’s theory of quantification has two logical defects:

1. Quantifier combinations are not treated; only one quantifier per
sentence is allowed.

2. ‘Non-standard quantifiers’ such as most, half of, at least five,
. . . are not covered.

Frege’s theory of quantification removed the first defect.

The Fregean view of quantifiers in natural language: quantified
Noun Phrases are systematically misleading expressions.

Their natural language syntax does not correspond to their logic:

“Nobody is on the road”{ ¬∃x(Person(x) ∧ OnTheRoad(x))

Solution to the Misleading Form Thesis

expression translation type
every every (e→ t)→ ((e→ t)→ t)
princess P (e→ t)
every princess every P (e→ t)→ t
laughed S (e→ t)
every princess laughed (every P) S t

where every is a name for the constant λPλQ.∀x(Px→ Qx).

NL analysis, logic programming, functional programming

• Usefulness of typed lambda calculus for NL analysis.

• Linguist Barbara Partee: “Lambda’s have changed my life.”

• Computational linguistics: From Prolog to Haskell?

• Appeal of Prolog: Prolog-style unification [12], ‘Parsing as De-
duction’ [10], useful didactic tool [1].

• But a new trend is emerging [3, 4]

• NLP Resources in Haskell: see

http://www.haskell.org/haskellwiki/Applications_and_

libraries/Linguistics

http://www.haskell.org/haskellwiki/Applications_and_libraries/Linguistics
http://www.haskell.org/haskellwiki/Applications_and_libraries/Linguistics

The Simplest Natural Language Engine You Can Get

All A are B No A are B

Some A are B Not all A are B

Aristotle interprets his quantifiers with existential import: All A are
B and No A are B are taken to imply that there are A.

What can we ask or state with the Aristetelian quantifiers?

Questions and Statements (PN for plural nouns):

Q ::= Are all PN PN?
| Are no PN PN?
| Are any PN PN?
| Are any PN not PN?
| What about PN?

S ::= All PN are PN.
| No PN are PN.
| Some PN are PN.
| Some PN are not PN.

Example Interaction

jve@vuur:~/courses/lot2009$./Main

Welcome to the Knowledge Base.

Update or query the KB:

How about women?

All women are humans.

No women are men.

Update or query the KB:

All mammals are animals.

I knew that already.

Update or query the KB:

No mammals are birds.

OK.

Update or query the KB:

How about women?

All women are humans.

No women are men.

Update or query the KB:

All humans are mammals.

OK.

Update or query the KB:

How about women?

All women are animals.

All women are humans.

All women are mammals.

No women are birds.

No women are men.

No women are owls.

Update or query the KB:

Example Knowledge Base

nonmen beautiesnonbullies

mortals

men

humansnonwomen

women

The Simplest Knowledge Base You Can Get

The two relations we are going to model in the knowledge base
are that of inclusion ⊆ and that of non-inclusion *.

‘all A are B’{ A ⊆ B

‘no A are B’{ A ⊆ B

‘some A are not B’{ A * B

‘some A are B’{ A * B (equivalently: A ∩ B , ∅).

A knowledge base is a list of triples

(Class1,Class2,Boolean)

where (A, B,>) expresses that A ⊆ B,

and (A, B,⊥) expresses that A * B.

Rules of the Inference Engine

Let Ã be given by: if A is of the form C then Ã = C, otherwise
Ã = A.

Computing the subset relation from the knowledge base:

A ⊆ B

B̃ ⊆ Ã

A ⊆ B B ⊆ C
A ⊆ C

Computing the non-subset relation from the knowledge base:

A * B

B̃ * Ã

A ⊇ B B * C
A * C

B * C C ⊇ D
B * D

Reflexivity and existential import:

A ⊆ A
A not of the form C

A * Ã

Consistency of a Knowledge Base

A Knowledge Base K is inconsistent if for some A ⊆ B:

K
A ⊆ B

K
A * B

Otherwise K is consistent.

Soundness and Completeness of Inference System

Exercise 1 An inference system is called sound if all conclusions
that can be derived are valid, i.e. if all axioms are true and all
inference rules preserve truth. Show that the inference system for
Aristotelian syllogistics is sound.

Exercise 2 An inference system is called complete if it can derive
all valid conclusions from a set of premisses. In other words: if
A ⊆ B does not follow from a knowledge base, then there is a class
model for the knowledge base where A * B, and if A * B does not
follow from a knowledge base, then there is a class model for the
knowledge base where A ⊆ B. Show that the inference system for
Aristotelian syllogistics is complete.

Implementation (in Haskell)

We will need list and character processing, and we want to read
natural language sentences from a file, so we import the I/O-module
System.IO.

import List

import Char

import System.IO

In our Haskell implementation we can use [(a,a)] for relations.

type Rel a = [(a,a)]

If R ⊆ A2 and x ∈ A, then xR := {y | (x, y) ∈ R}.

rSection :: Eq a => a -> Rel a -> [a]

rSection x r = [y | (z,y) <- r, x == z]

Eq a indicates that a is in the equality class.

The composition of two relations R and S on A.

(@@) :: Eq a => Rel a -> Rel a -> Rel a

r @@ s = nub [(x,z) | (x,y) <- r, (w,z) <- s, y == w]

Computation of transitive closure using a function for least fixpoint.
TC(R) = lfp (λS .S ∪ S · S) R.

tc :: Ord a => Rel a -> Rel a

tc = lfp (\ s -> (sort.nub) (s ++ (s@@s)))

lfp :: Eq a => (a -> a) -> a -> a

lfp f x | x == f x = x

| otherwise = lfp f (f x)

Assume that each class has an opposite class. The opposite of an
opposite class is the class itself.

data Class = Class String | OppClass String

deriving (Eq,Ord)

instance Show Class where

show (Class xs) = xs

show (OppClass xs) = "non-" ++ xs

opp :: Class -> Class

opp (Class name) = OppClass name

opp (OppClass name) = Class name

Declaration of the knowledge base:

type KB = [(Class, Class, Bool)]

A data types for statements and queries:

data Statement =

All Class Class | No Class Class

| Some Class Class | SomeNot Class Class

| AreAll Class Class | AreNo Class Class

| AreAny Class Class | AnyNot Class Class

| What Class

deriving Eq

Show function for statements:

instance Show Statement where

show (All as bs) =

"All " ++ show as ++ " are " ++ show bs ++ "."

show (No as bs) =

"No " ++ show as ++ " are " ++ show bs ++ "."

show (Some as bs) =

"Some " ++ show as ++ " are " ++ show bs ++ "."

show (SomeNot as bs) =

"Some " ++ show as ++ " are not " ++ show bs ++ "."

and for queries:

show (AreAll as bs) =

"Are all " ++ show as ++ show bs ++ "?"

show (AreNo as bs) =

"Are no " ++ show as ++ show bs ++ "?"

show (AreAny as bs) =

"Are any " ++ show as ++ show bs ++ "?"

show (AnyNot as bs) =

"Are any " ++ show as ++ " not " ++ show bs ++ "?"

show (What as) =

"What about " ++ show as ++ "?"

Classification of statements:

isQuery :: Statement -> Bool

isQuery (AreAll _ _) = True

isQuery (AreNo _ _) = True

isQuery (AreAny _ _) = True

isQuery (AnyNot _ _) = True

isQuery (What _) = True

isQuery _ = False

Negations of queries:

neg :: Statement -> Statement

neg (AreAll as bs) = AnyNot as bs

neg (AreNo as bs) = AreAny as bs

neg (AreAny as bs) = AreNo as bs

neg (AnyNot as bs) = AreAll as bs

Use the transitive closure operation to compute the subset relation
from the knowledge base.

subsetRel :: KB -> [(Class,Class)]

subsetRel kb =

tc ([(x,y) | (x,y,True) <- kb]

++ [(opp y,opp x) | (x,y,True) <- kb]

++ [(x,x) | (x,_,_) <- kb]

++ [(opp x,opp x) | (x,_,_) <- kb]

++ [(y,y) | (_,y,_) <- kb]

++ [(opp y,opp y) | (_,y,_) <- kb])

The supersets of a particular class are given by a right section of
the subset relation. I.e. the supersets of a class are all classes of
which it is a subset.
supersets :: Class -> KB -> [Class]
supersets cl kb = rSection cl (subsetRel kb)

Computing the non-subset relation from the knowledge base:

nsubsetRel :: KB -> [(Class,Class)]

nsubsetRel kb =

let

r = nub ([(x,y) | (x,y,False) <- kb]

++ [(opp y,opp x) | (x,y,False) <- kb]

++ [(Class xs,OppClass xs) |

(Class xs,_,_) <- kb]

++ [(Class ys,OppClass ys) |

(_,Class ys,_) <- kb]

++ [(Class ys,OppClass ys) |

(_,OppClass ys,_) <- kb])

s = [(y,x) | (x,y) <- subsetRel kb]

in s @@ r @@ s

The non-supersets of a class:

nsupersets :: Class -> KB -> [Class]

nsupersets cl kb = rSection cl (nsubsetRel kb)

Query of a knowledge base by means of yes/no questions is sim-
ple:
deriv :: KB -> Statement -> Bool

deriv kb (AreAll as bs) = elem bs (supersets as kb)

deriv kb (AreNo as bs) = elem (opp bs) (supersets as kb)

deriv kb (AreAny as bs) = elem (opp bs) (nsupersets as kb)

deriv kb (AnyNot as bs) = elem bs (nsupersets as kb)

Caution: there are three possibilities:

• deriv kb stmt holds. So the statement is derivable, hence
true.

• deriv kb (neg stmt) holds. So the negation of stmt is
derivable, hence true. So stmt is false.

• neither deriv kb stmt nor deriv kb (neg stmt) holds. So
the knowledge base has no information about stmt.

Open queries (“How about A?”) are slightly more complicated.

We should take care to select the most natural statements to report
on a class:

A ⊆ B is expressed with ‘all’,

A ⊆ B is expressed with ‘no’,

A * B is expressed with ‘some not’,

A * B is expressed with ‘some’.

f2s :: (Class, Class, Bool) -> Statement

f2s (as, Class bs, True) = All as (Class bs)

f2s (as, OppClass bs, True) = No as (Class bs)

f2s (as, OppClass bs, False) = Some as (Class bs)

f2s (as, Class bs, False) = SomeNot as (Class bs)

Giving an explicit account of a class:

tellAbout :: KB -> Class -> [Statement]

tellAbout kb as =

[All as (Class bs) |

(Class bs) <- supersets as kb,

as /= (Class bs)]

++

[No as (Class bs) |

(OppClass bs) <- supersets as kb,

as /= (OppClass bs)]

A bit of pragmatics: do not tell ‘Some A are B’ if ‘All A are B’ also
holds.

++

[Some as (Class bs) |

(OppClass bs) <- nsupersets as kb,

as /= (OppClass bs),

notElem (as,Class bs) (subsetRel kb)]

Do not tell ‘Some A are not B’ if ‘No A are B’ also holds.

++

[SomeNot as (Class bs) |

(Class bs) <- nsupersets as kb,

as /= (Class bs),

notElem (as,OppClass bs) (subsetRel kb)]

To build a knowledge base we need a function for updating an
existing knowledge base with a statement.

If the update is successful, we want an updated knowledge base. If
it is not, we want to get an indication of failure. The Haskell Maybe
data type gives us just this.

data Maybe a = Nothing | Just a

The update function checks for possible inconsistencies. E.g., a
request to add an A ⊆ B fact to the knowledge base leads to an
inconsistency if A * B is already derivable.

update :: Statement -> KB -> Maybe (KB,Bool)

update (All as bs) kb

| elem bs (nsupersets as kb) = Nothing

| elem bs (supersets as kb) = Just (kb,False)

| otherwise =

Just (((as,bs,True): kb),True)

A request to add A ⊆ B leads to an inconsistency if A * B is
already derivable.

update (No as bs) kb

| elem bs’ (nsupersets as kb) = Nothing

| elem bs’ (supersets as kb) = Just (kb,False)

| otherwise =

Just (((as,bs’,True):kb),True)

where bs’ = opp bs

Similarly for the requests to update with A * B and with A * B:

update (Some as bs) kb

| elem bs’ (supersets as kb) = Nothing

| elem bs’ (nsupersets as kb) = Just (kb,False)

| otherwise =

Just (((as,bs’,False):kb),True)

where bs’ = opp bs

update (SomeNot as bs) kb

| elem bs (supersets as kb) = Nothing

| elem bs (nsupersets as kb) = Just (kb,False)

| otherwise =

Just (((as,bs,False):kb),True)

Use this to build a knowledge base from a list of statements. Again,
this process can fail, so we use the Maybe datatype.

makeKB :: [Statement] -> Maybe KB

makeKB = makeKB’ []

where

makeKB’ kb [] = Just kb

makeKB’ kb (s:ss) =

case update s kb of

Just (kb’,_) -> makeKB’ kb’ ss

Nothing -> Nothing

Preprocessing of strings, to prepare them for parsing:

preprocess :: String -> [String]

preprocess = words . (map toLower) .

(takeWhile (\ x -> isAlpha x || isSpace x))

This will map a string to a list of words:

Main> preprocess "Are any women sailors?"

["are","any","women","sailors"]

A simple parser for statements:

parse :: String -> Maybe Statement

parse = parse’ . preprocess

where

parse’ ["all",as,"are",bs] =

Just (All (Class as) (Class bs))

parse’ ["no",as,"are",bs] =

Just (No (Class as) (Class bs))

parse’ ["some",as,"are",bs] =

Just (Some (Class as) (Class bs))

parse’ ["some",as,"are","not",bs] =

Just (SomeNot (Class as) (Class bs))

and for queries:

parse’ ["are","all",as,bs] =

Just (AreAll (Class as) (Class bs))

parse’ ["are","no",as,bs] =

Just (AreNo (Class as) (Class bs))

parse’ ["are","any",as,bs] =

Just (AreAny (Class as) (Class bs))

parse’ ["are","any",as,"not",bs] =

Just (AnyNot (Class as) (Class bs))

parse’ ["what", "about", as] = Just (What (Class as))

parse’ ["how", "about", as] = Just (What (Class as))

parse’ _ = Nothing

Parsing a text to construct a knowledge base:

process :: String -> KB

process txt = maybe [] id

(mapM parse (lines txt) >>= makeKB)

This uses the maybe function, for getting out of the Maybe type.
Instead of returning Nothing, this returns an empty knowledge
base.

maybe :: b -> (a -> b) -> Maybe a -> b

maybe _ f (Just x) = f x

maybe z _ Nothing = z

mytxt = "all bears are mammals\n"

++ "no owls are mammals\n"

++ "some bears are stupids\n"

++ "all men are humans\n"

++ "no men are women\n"

++ "all women are humans\n"

++ "all humans are mammals\n"

++ "some men are stupids\n"

++ "some men are not stupids"

Main> process mytxt

[(men,stupids,False),(men,non-stupids,False),

(humans,mammals,True),(women,humans,True),

(men,non-women,True),(men,humans,True),

(bears,non-stupids,False),(owls,non-mammals,True),

(bears,mammals,True)]

Now suppose we have a text file of declarative natural language
sentences about classes. Here is how to turn that into a knowledge
base.

getKB :: FilePath -> IO KB

getKB p = do

txt <- readFile p

return (process txt)

And here is how to write a knowledge base to file:

writeKB :: FilePath -> KB -> IO ()

writeKB p kb = writeFile p

(unlines (map (show.f2s) kb))

The inference engine in action:

chat :: IO ()

chat = do

kb <- getKB "kb.txt"

putStrLn "Update or query the KB:"

str <- getLine

if str == "" then return ()

else do

case parse str of

Just (What as) -> let info = tellAbout kb as in

if info == [] then putStrLn "No info.\n"

else putStrLn (unlines (map show info))

Just stmt ->

if isQuery stmt then

if deriv kb stmt then putStrLn "Yes.\n"

else if deriv kb (neg stmt)
then putStrLn "No.\n"

else putStrLn "I don’t know.\n"

else case update stmt kb of

Just (kb’,True) -> do

writeKB "kb.txt" kb’

putStrLn "OK.\n"

Just (_,False) -> putStrLn

"I knew that already.\n"

Nothing -> putStrLn

"Inconsistent with my info.\n"

Nothing -> putStrLn "Wrong input.\n"

chat

main = do

putStrLn "Welcome to the Knowledge Base."

chat

Use of This

• Cognitive research focusses on this kind of quantifier reason-
ing. Links with cognition by refinement of this calculus . . . The
“natural logic for natural language” enterprise: special work-
shop during Amsterdam Colloquium 2009 (see http://www.
illc.uva.nl/AC2009/)

• “Our ultimate goal is to form an adequate model of parts of our
language competence. Adequate means that the model has
to be realistic in terms of complexity and learnability. We will
not be so ambitious as to claim that our account mirrors real
cognitive processes, but what we do claim is that our account
imposes constraints on what the real cognitive processes can
look like.” [2]

http://www.illc.uva.nl/AC2009/
http://www.illc.uva.nl/AC2009/

Alternative Set-up: Clausal Form for Propositional Logic

literals a literal is a proposition letter or its negation.

clause a clause is a set of literals.

clause sets a clause set is a set of clauses.

example The clause form of

(p→ q) ∧ (q→ r)

is
{{¬p, q}, {¬q, r}}.

Unit Propagation

If one member of a clause set is a singleton {l} (a ‘unit’), then:

1. remove every other clause containing l from the clause set;

2. remove l from every clause in which it occurs.

The result of applying this rule is an equivalent clause set.

Example:
{{p}, {¬p, q}, {¬q, r}, {p, s}}.

yields:
{{p}, {q}, {¬q, r}},

which in turn yields
{{p}, {q}, {r}}.

Unit Propagation is Complete for Horn Clauses

The Horn fragment of propositional logic consists of all clause sets
where every clause has at most one positive literal.

HORNSAT is the problem of checking Horn clause sets for satisfi-
ability. This check can be performed in polynomial time (linear in
the size of the formula, in fact).

If unit propagation yields a clause set in which units {l}, {l} occur,
the original clause set is unsatisfiable, otherwise the units in the
result determine a satisfying valuation.

Recipe: if {l} occurs is the final clause set, then map its proposition
letter to the truth value that makes l true; map all other proposition
letters to false.

Syllogistic Logic is in the Horn Fragment of Propositional Logic

Translation:

All A are B 7→ {{¬a, b}}.

No A are B 7→ {{¬a,¬b}}.

Some A are B 7→ {{a}, {b}}.

Not all A are B 7→ {{a}, {¬b}}.

Unit Propagation Implemented

data Lit = Pos String | Neg String deriving Eq

instance Show Lit where

show (Pos x) = x

show (Neg x) = ’-’: x

ng :: Lit -> Lit

ng (Pos x) = Neg x

ng (Neg x) = Pos x

type Clause = [Lit]

unitProp :: Lit -> [Clause] -> [Clause]

unitProp x cs = concat (map (unitP x) cs) where

unitP :: Lit -> Clause -> [Clause]

unitP x ys = if elem x ys

then []

else

if elem (ng x) ys

then [delete (ng x) ys]

else [ys]

unit :: Clause -> Bool

unit [x] = True

unit _ = False

propagate :: [Clause] -> Maybe ([Lit],[Clause])

propagate clauses =

prop [] (concat $ filter unit clauses)

(filter (not.unit) clauses)

where

prop :: [Lit] -> [Lit] -> [Clause]

-> Maybe ([Lit],[Clause])

prop xs [] clauses = Just (xs,clauses)

prop xs (y:ys) clauses =

if elem (ng y) xs

then Nothing

else prop (y:xs)(ys++newlits) clauses’ where

newclauses = unitProp y clauses

zs = filter unit newclauses

clauses’ = newclauses \\ zs
newlits = concat zs

Example

a,b,c,d :: Lit

a = Pos "a"; b = Pos "b" ; c = Pos "c"; d = Pos "d"

example :: [Clause]

example = [[ng a,b],[ng b,c],[ng c,d],[a],[ng d]]

example1 :: [Clause]

example1 = [[ng a,b],[ng b,c],[ng c,d],[a],[d]]

Exercise 3 Give an implementation of a syllogistic knowledge base
using unit propagation for propositional logic as your inference en-
gine.

Automating First Order Logic: Alloy

Alloy (http://alloy.mit.edu) is a software specification tool based
on first order logic plus some relational operators. Alloy automates
predicate logic by using bounded exhaustive search for counterex-
amples in small domains [5].

Alloy does allow for automated checking of specifications, but only
for small domains. The assumption that most software design er-
rors show up in small domains is known as the small domain hy-
pothesis [6].

http://alloy.mit.edu

Example Question

Here is a question about operations on relations.

Given a relation R, do the following two procedures boil down to
the same thing?

First take the symmetric closure, next the transitive closure

First take the transitive closure, next the symmetric closure

If we use R+ for the transitive closure of R and R ∪ Rˇ for the sym-
metric closure, then the question becomes:

(R ∪ Rˇ)+ ?
= R+ ∪ R+ˇ

Here is an Alloy version of this question:

sig Object { r : set Object }

assert claim { *(r + ~r) = *r + ~*r }

check claim

If you run this in Alloy, the system will try to find counterexamples.
Here is a counterexample that it finds:

Object1

Object0

r

Object2

r

How to draw logical conclusions from a list of givens

Here is a story. Someone invites six people A, B,C,D, E, F to at-
tend a conference. The email exchanges that follow yield the fol-
lowing information:

1. At least one of A, B will attend.

2. From the set {A, E, F} exactly two will attend.

3. Either both B and C will attend or neither of them will.

4. One of A and D will attend, the other will not.

5. Same for C and D.

6. If D does not attend, then neither will E.

Use an Alloy specification to figure out who will attend the confer-
ence.

Solution

abstract sig Person {}

one sig A,B,C,D,E,F extends Person {}

sig Congress in Person {}

fact{

some (A + B) & Congress

#((A+E+F) & Congress) = 2

B in Congress iff C in Congress

A in Congress iff not D in Congress

C in Congress iff not D in Congress

not D in Congress => not E in Congress

}

run {}

Result

A
(Congress)

B
(Congress)

C
(Congress) D E F

(Congress)

Software Specification With Alloy

module myexamples/invar

open util/ordering[State] as so

open util/integer as integer

sig State {

x: Int,

n: Int

}

fun inc [n : Int]: Int { add [n,Int[1]] }

pred init {

let fs = so/first |

{ fs.x = Int[0] and fs.n = Int[0] }
}

pred extend [pre, post: State] {

some X,N: Int | pre.x = X

and pre.n = N

and post.x = inc[add[X,add[N,N]]]

and post.n = inc[N]

}

fact createStates {

init

all s: State - so/last |

let s’ = so/next[s] | extend[s,s’]

}

run {} for exactly 5 State, 6 int

so/Ord

State0

first

State4

lastnext [State3]

State1

next [State0]

State2

next [State1]

State3

next [State2]

0

x n

4

n

16

x

1

x n

2

nx

3

n

9

x

If there is time . . .

Sudoku solving with Alloy and Haskell . . .

Prolog

No time left. See the Computation Chapter of the ‘Logic in Action’
textbook.

Any Questions?

References

[1] P. Blackburn and J. Bos. Representation and Inference for
Natural Language; A First Course in Computational Seman-
tics. CSLI Lecture Notes, 2005.

[2] Jan van Eijck and Christina Unger. Computational Semantics
with Functional Programming. Cambridge University Press,
2010.

[3] R. Frost and J. Launchbury. Constructing natural language in-
terpreters in a lazy functional language. The Computer Jour-
nal, 32(2):108–121, 1989.

[4] Richard A. Frost. Realization of natural language interfaces
using lazy functional programming. ACM Comput. Surv.,
38(4), 2006.

[5] Daniel Jackson. Automating first-order relational logic. ACM
SIGSOFT Software Engineering Notes, 25(6):130–139, 2000.

[6] Daniel Jackson. Software Abstractions; Logic, Language and
Analysis. MIT Press, 2006.

[7] R. Montague. The proper treatment of quantification in or-
dinary English. In J. Hintikka, editor, Approaches to Natural
Language, pages 221–242. Reidel, 1973.

[8] R. Montague. English as a formal language. In R.H. Thoma-
son, editor, Formal Philosophy; Selected Papers of Richard
Montague, pages 188–221. Yale University Press, New Haven
and London, 1974.

[9] R. Montague. Universal grammar. In R.H. Thomason, editor,
Formal Philosophy; Selected Papers of Richard Montague,

pages 222–246. Yale University Press, New Haven and Lon-
don, 1974.

[10] F.C.N. Pereira and H.D. Warren. Parsing as deduction. In
Proceedings of the 21st Annual Meeting of the ACL, pages
137–111. MIT, Cambridge, Mass., 1983.

[11] J.A. Robinson. A machine-oriented logic based on the reso-
lution principle. Journal of the ACM, 12(1):23–41, 1965.

[12] S.M. Shieber. An Introduction to Unification Based Ap-
proaches to Grammar, volume 4 of CSLI Lecture Notes. CSLI,
Stanford, 1986. Distributed by University of Chicago Press.

