
The Language of Social Software

Jan van Eijck
CWI, Amsterdam

Workshop on Logic and Social Interaction, Chennai, January 8, 2009

Abstract

Computer software is written in languages like C, Java or Haskell. In many cases social
software is written in natural language. The talk will explore connections between the areas
of natural language analysis and social software.

References:
Jan van Eijck/Rineke Verbrugge (eds)
Discourses on Games, Action and Social Software:
http://www.cwi.nl/~jve/nias/discourses/discourses.pdf
Jan van Eijck/Christina Unger
Computational semantics with Functional Programming
http://www.cwi.nl/~jve/cs/ http://www.cwi.nl/~jve/cs/cs.pdf
Jan van Eijck/Albert Visser
Dynamic Semantics
To appear in Stanford Encyclopedia of Philosophy http://plato.stanford.edu/

http://www.cwi.nl/~jve/nias/discourses/discourses.pdf
http://www.cwi.nl/~jve/cs/
http://www.cwi.nl/~jve/cs/cs.pdf
http://plato.stanford.edu/

The Solomon Verdict: Rational Reconstruction [8]

Suppose the child is worth A to the real mother and B to the pretender.

We can assume that A is much larger than B. The women make their

bids in sealed envelopes.

Solomon makes the following announcement: “I will ask one of you if

you are willing to give the child to the other. If the answer is yes, the

case is settled. If not, I will ask the other. Again, if the answer is yes,

the case is settled. If both of you refuse to give up the child, then I will

have to sell it for what it is worth. I will toss a coin, and the one who

gets the child will have to pay A+B
2 , and the other pays a fine.”

If the women act rationally, one of them will give up the child, which

settles the case.

The fact that Solomon’s announcement creates common knowledge is

crucial.

Indian Version: an Akbar and Birbal story

Here is a story where Birbal acts exactly like Solomon.

In the Hindu version, Ramu and Shamu claimed ownership of the same

mango tree, and decided to ask Birbal to settle the dispute.

Birbal’s verdict: “Pick all the fruits from the tree and divide them

equally. Then cut down the tree and divide the wood.”

Ramu thought this was fair but Shamu was horrified, and Birbal declared

Shamu the true owner.

Overview of Rest of Talk

• Analyzing the Discourse Situation in Natural Language Communi-

cation

• PDL as a logic of Knowledge and Common Knowledge

• Action Model Update

• Public Announcement, Message Passing and Common Knowledge

• Presupposition and Common Knowledge

• Changing the World

• Analysis of Yes/No Questions

• Analyzing Social Software Protocols

• Model Checking for Social Software Protocols

Social Software and Natural Language

Analysis of social software calls for natural language discourse analysis

with a practical goal.

Solomon case: the verdict is given in natural language.

What does the discourse convey to the two mothers?

Natural language is:

• a tool for creating (common) knowledge and changing (common)

beliefs,

• a tool that employs common knowledge and common belief to

establish communication.

Discourse Situation

First person: I, We. The speaker (or group represented by the speaker)

Second person: You. The audience

Third person: He, She, They. The outside world

I, We

You

He, She, They

Aim of discourse: create common knowledge between Me and You.

Knowledge and Common Knowledge

Fix a PDL style language for talking about epistemic plausibility. As-

sume p ranges over a set of basic propositions Prop and a over a set

of agents Ag.

φ ::= > | p | ¬φ | φ1 ∧ φ2 | [π]φ

π ::= a | aˇ |?φ | π1; π2 | π1 ∪ π2 | π∗

Interpretation in the usual PDL manner, with [[[π]]]M giving the relation

that interprets relational expression π in M = (W,P, V). P is the set

of epistemic plausibilities
a→.

[π]φ is true in world w of M if for all v with (w, v) ∈ [[[π]]]M it holds

that φ is true in v.

knowledge ∼a abbreviates (a ∪ a)̌∗.

common knowledge ∼a,b abbreviates (∼a ∪ ∼b)∗.

This logic is axiomatised by the standard PDL rules and axioms ([9, 7])

plus axioms that define the meanings of the relation names a .̌ The

PDL rules and axioms are:

Modus ponens and axioms for propositional logic

Modal generalisation From ` φ infer ` [π]φ

Normality ` [π](φ→ ψ)→ ([π]φ→ [π]ψ)

Test ` [?φ]ψ ↔ (φ→ ψ)

Sequence ` [π1; π2]φ↔ [π1][π2]φ

Choice ` [π1 ∪ π2]φ↔ ([π1]φ ∧ [π2]φ)

Mix ` [π∗]φ↔ (φ ∧ [π][π∗]φ)

Induction ` (φ ∧ [π∗](φ→ [π]φ))→ [π∗]φ

The relation between the basic programs a and aˇ is expressed by the

standard modal axioms for converse:

` φ→ [a]〈a 〉̌φ ` φ→ [a]̌〈a〉φ

Action Model Update

Definition of update models A and of the update product operation ⊗
from Baltag, Moss, Solecki [1]. An action model is like an preference

model, but with the valuation replaced by a precondition map pre.

Updating a static model M = (W,P, V) with an action model A =

(E,P,pre) results in new static model M⊗A = (W ′, P ′, V ′), where

the new worlds are pairs (w, e) with w ∈ W and e ∈ E.

If the static model has a set of distinguished states W0 and the action

model a set of distinguished events E0, then the distinguished worlds

of M⊗ A are the (w, e) with w ∈ W0 and e ∈ E0.

0 : h 1 : h

abc

0 : h 1 : >
abc

Figure 1: Static model and update model

Figure 1 gives an example pair of a static model with an update action.

The static model, on the left, pictures the result of a hidden coin toss,

with three onlookers, Alice, Bob and Carol.

The update model represents a secret test to the effect that the toss is

h. The result of the update is that the distinction mark on the h world

has disappeared, without any of a, b, c being aware of the change.

(0, 0) : h (0, 1) : h (1, 1) : h

abc abc

abc

Figure 2: Result of the update in Figure 1.

0 : h 1 : h

abc

Figure 3: Bisimulation-minimal version of result of the update in Figure 1.

Adding Factual Change (and Belief Change)

Factual change was added to update models in LCC [2], by means of

propositional substitutions.

A propositional binding is a map from proposition letters to formulas,

represented by

{p1 7→ φ1, . . . , pn 7→ φn}
where the pk are all different, and where no φk is equal to pk. It is

assumed that each p that does not occur in a lefthand side of a binding

is mapped to itself.

Belief change can be added in a similar manner, by means of relational

substitutions.

A relational binding is a map from agents to program expressions, rep-

resented by

{a1 7→ π1, . . . , an 7→ πn}

Public Announcement Creates Common Knowledge

a knows whether p is true, b does not know:

w0 : p w1 : p
b

Update action for public announcement of p.

e0 : p

Update result:

(w0, e0) : p

Message Exchange Cannot Create Common Knowledge

Two generals a, b. a will attack (p), but b does not know this:

w0 : p w1 : p
b

Update action for general a: send a message p.

e0 : p e1 : >
a

Update action for general b: send an acknowledgement of p:

e0 : p e1 : >
b

Situation after first message from general a:

p p p

a b

Situation after update by a followed by update by b:

p p p p
b a b

And so on . . .

Co-presence Creates Common Knowledge

Example: cash withdrawal from a bank.

You withdraw a large amount of money from your bank account and

have it paid out to you in cash by the cashier.

The cashier looks at you earnestly to make sure she has your full at-

tention, and then she slowly counts out the banknotes for you: one

thousand (counting ten notes), two thousand (counting another ten

notes), three thousand (ten notes again), and four thousand (another

ten notes).

This ritual creates common knowledge that forty banknotes of a hun-

dred dollars were paid out to you.

Philosophical question: when money is paid out to you by an ATM,

does this create common knowledge between you and the machine?

Presupposition

A presupposition of an utterance is an implicit assumption about the

world or a background belief shared by speaker and hearer in a discourse.

“Shall we do it again?”

Presupposition: we have done it before.

“Jan is a bachelor.”

Presupposition: ‘Jan’ refers to a male person. (True in the Netherlands

and Poland, false in the United Kingdom.)

Second presupposition: ‘Jan’ refers to an adult.

So: ‘bachelor’ presupposes ‘male’ and ‘adult’, and conveys ‘unmarried’.

Presupposition and Common Knowledge [4]

Extend the language with public announcements:

[!φ]ψ expresses that after public announcement of φ, ψ holds.

Formally:

M |=w [!φ]ψ iff (M |=w φ implies M | φ |=w ψ).

Now consider the special case of an update of the form “it is common

knowledge between i and j that φ”.

Formally: ![∼i,j]φ.

• In case φ is already common knowledge, this update does not

change the model.

• In case φ is not yet common knowledge, the update leads to a

model without actual worlds.

Example
m, a, u m, a, u

m, a, u m, a, u

i

i

i

i, j i

m for ‘male’, a for ‘adult’, u for ‘unmarried’.

j does not know about u

i does not know about a, u.

[∼ij]m holds, [∼ij]a and [∼ij]u do not hold.

Analysis of Presupposition in terms of Common Knowledge

m, a, u m, a, u

i, j

A presupposition is a piece of common knowledge between speaker and

hearer in a discourse.

‘bachelor’ has presupposition ‘male’ and ‘adult’, and conveys informa-

tion ‘unmarried’.

[∼ij](m ∧ a) ∧ u

Update result:

m, a, u

Facts About Public Announcement of Common Knowledge

M |=w [![∼ij]φ]ψ iff M |=w [∼ij]φ→ ψ.

Public announcement of common knowledge has the force of an impli-

cation.

M |=w [!([∼ij]φ ∧ φ′)]ψ iff M |=w [![∼ij]φ][!φ′]ψ.

Putting a presupposition before an assertion has the same effect as

lumping them together.

Presupposition Projection

Example: update without presupposition !m (the statement male) fol-

lowed by the update for bachelor).

[!m][!(C(m ∧ a) ∧ u)]χ↔ [!(m ∧ [!m](C(m ∧ a) ∧ u))]χ

↔ [!(m ∧ [!m]Cm ∧ [!m]Ca ∧ [!m]u)]χ

↔ [!(m ∧ [!m]Ca ∧ [!m]u)]χ

↔ [!(m ∧ C(m, a) ∧m→ u)]χ

↔ [!(C(m, a) ∧m ∧ u)]χ

C for [∼ij]; C(φ, ψ) for [!φ][∼ij]ψ.

So the presuppositional part of the combined statement is C(m, a).

The assertional part is m ∧ u.

Presupposition Accommodation

Suppose p is common knowledge.

Then updating with statement !(Cp∧q) has the same effect as updating

with !q.

Suppose p is true in the actual world but not yet common knowledge.

Updating with !(Cp ∧ q) wil lead to an inconsistent state

Updating with !p followed by an update with !(Cp ∧ q) will not.

Accommodation of the presupposition would consist of replacement of

!(Cp ∧ q) by [!p][!(Cp ∧ q)].
By invoking the Gricean maxim ‘be informative’ one can explain why

[!p][!(Cp∧ q)] is not appropriate in contexts where p is common knowl-

edge.

Public Change

Extend the language with public change.

[p := φ]ψ.

True in world w of M if ψ is true in world wp:=[[φ]]w of M p:=[[φ]].

p := φ changes the model M to M p:=[[φ]].

Performative speech acts are examples:

• ‘I call you Adam’

• ‘I declare you man and wife’

Marriage m, a, u m, a, u

m, a, u m, a, u

i

i

i

i, j i

Public change:
u := ⊥

Result:

m, a, u m, a, u
i

DEL Analysis of Yes/No Questions [5]

Let f be a propositional variable for question focus.

Analyse a Yes/No Question φ? as:

f := φ

Analyze the answer ‘yes’ as:

f

Analyze the answer ‘no’ as:

¬f

Questions and Appropriate Answers

Question: ‘Is Johnny married?’

Answer: ‘Johnny is not an adult.’

This answer is appropriate: updating with this answer makes ‘John is

not married’ common knowledge. The update entails the answer ‘no’.

Question:
f := φ

Answer:
ψ

This is appropriate if either updating with ψ has the effect that f

becomes common knowledge, or updating with ψ has the effect that

¬f becomes common knowledge.

Social Software Protocol Analysis with DEL

A group of 100 prisoners, all together in the prison dining area, are told

that they will be all put in isolation cells and then will be interrogated

one by one in a room containing a light with an on/off switch. The pris-

oners may communicate with one another by toggling the light-switch

(and in no other way). The light is initially switched off. There is

no fixed order of interrogation. Every day one prisoner will get interro-

gated. At any stage every prisoner will be interrogated again sometime.

When interrogated, a prisoner can either do nothing, or toggle the light-

switch, or announce that all prisoners have been interrogated. If that

announcement is true, the prisoners will (all) be set free, but if it is

false, they will all be executed. Can the prisoners agree on a protocol

that will set them free?

Protocol

Assume there are n > 2 prisoners.

The n prisoners appoint one among them as the counter.

All prisoners except the counter act as follows: the first time they enter

the room when the light is off, they switch it on; on all next occasions,

they do nothing.

The counter acts as follows: The first n− 2 times that the light is on

when he enters the interrogation room, he turns it off. Then the next

time he enters the room when the light is on, he (truthfully) announces

that everybody has been interrogated.

Analysis

For simplicity, assume there are three prisoners 0, 1, 2, with 0 acting as

counter.

Let e0, e1, e2 be the interrogation events of the three prisoners.

Let p express that the light is on.

For example: if the light is on and if event e0 (interrogation of the

counter) takes place, then afterwards the light is off, and the counter

knows that it is off:

p→ [e0]K0¬p.

Let qi, for i = 1, 2, express that prisoner i has been interrogated at

least once. Then the following is true:

[e1]q1.

The Update Events: Counter Event

e0:

(p, p := ⊥)

(¬p, ε)

(>, p := q1 → p, q1 := >)

(>, p := q2 → p, q2 := >)

1, 2

2

1

0

1

2

The Update Events: Event for Prisoner 1

e1:

(p, p := ⊥)

(¬p, ε)

(>, p := q1 → p, q1 := >)

(>, p := q2 → p, q2 := >)

1, 2

2

1

0

1

2

The Update Events: Event for Prisoner 2

e2:

(p, p := ⊥)

(¬p, ε)

(>, p := q1 → p, q1 := >)

(>, p := q2 → p, q2 := >)

1, 2

2

1

0

1

2

Agreeing on the Protocol

Why should the prisoners agree on this protocol? After all, it is a matter

of life and death.

Because it is common knowledge that at some point in the future the

counter will know that all have been interrogated.

Can we express this in DEL? No.

DEL + LTL

φ ::= > | p | ¬φ | φ1 ∧ φ2 | [π]φ | [e]φ |
Ne | Fφ | Gφ | Pφ | Hφ

π ::= a | aˇ |?φ | π1; π2 | π1 ∪ π2 | π∗

a ::= 0 | 1 | 2
e ::= e0 | e1 | e2

The intended semantics of [e]φ is the DEL semantics: either update

with event e fails, or in the updated model φ holds.

The intended semantics of Ne is that the next event is e.

The meanings of F, P,G,H are the usual ones from linear time logic

(LTL).

Interpretation

With respect to infinite sequences of events.

If σ is such a sequence and if n is a positive natural number, then we

use σn is the n-th event of the sequence.

σ looks like σ1, σ2, . . .

Then Mσ,n is the model which results from doing updates σ1, . . . , σn
on the initial model (where the light is off and everyone knows that).

Since all updates are functional, this is well-defined.

Example:

e0, e1, e2, e0, e1, e2, e0, e1, e2, e0, e1, e2, . . .

Truth Definition (σ, n) |= φ

(σ, n) |= p if p is true in Mσ,n.

Booleans, epistemic operations as usual, using Mσ,n for (σ, n).

(σ, n) |= Ne if σn+1 = e (the next event in the sequence σ equals e),

(σ, n) |= Fφ if for some m > n, (σ,m) |= φ.

(σ, n) |= Gφ if for all m > n, (σ,m) |= φ.

(σ, n) |= Pφ if for some m < n, (σ,m) |= φ.

(σ, n) |= Hφ if for all m < n, (σ,m) |= φ.

This should be all familiar from LTL.

Protocol Properties

Fairness of an interrogation sequence:

G(FNe0 ∧ FNe1 ∧ FNe2).

Knowledge of 0 that prisoners 1 and 2 have been interrogated:

[∼0](PNe1 ∧ PNe2).

Correctness of the protocol:

G(FNe0 ∧ FNe1 ∧ FNe2)→ F [∼0](PNe1 ∧ PNe2).

Common knowledge of correctness of the protocol:

[∼012](G(FNe0 ∧ FNe1 ∧ FNe2)→ F [∼0](PNe1 ∧ PNe2)).

If there is time . . .

Epistemic Model Checking with DEMO [3].

Conclusions

• Common Knowledge and Common Belief Central Notions in Dis-

course Analysis and in Social Software

• Program: Analyzing Discourse as sequences of public announce-

ments

• Program: Analyzing Presupposition Projection and Accommoda-

tion in terms of common knowledge

• Analyzing yes/no questions as public change of focus, Analyzing

appropriate answers in terms of ‘same update effect’

Program: extend this to a full semantic/pragmatic theory of ques-

tions and answers.

• Program: Analyzing social software protocols in DEL + LTL, and

develop model checking tools for this.

Texts in Logic and Games | 5

New Perspectives on Games and Interaction is a collection
of papers presented at the 2007 colloquium on new per-
spectives on games and interaction at the Royal Dutch
Academy of Sciences in Amsterdam. The purpose of the
colloquium was to clarify the uses of the concepts of game
theory, and to identify promising new directions. This
important collection testifies to the growing relevance of
game theory as a tool to capture the concepts of strategy,
interaction, argumentation, communication, coopera-
tion and competition. Also, it provides evidence for the
richness of game theory and for its impressive and grow-
ing applications.

9 7 8 9 0 8 9 6 4 0 5 7 4

isbn 978 90 8964

amsterdam university press
www.aup.nl

Discourses on
Social Software

EditEd by
JAN VAN EiJCK ANd RiNEKE VERbRUGGE

AmstERdAm UNiVERsity pREss

T∙L∙G
Texts in Logic and Games
Volume 5

T ∙L ∙G
 5

N
e

w
 P

e
r

sP
e

c
t

iv
e

s o
N

G

a
m

e
s a

N
d

 iN
t

e
r

a
c

t
io

N
A

pt | Van R
ooij (eds.)

References

[1] A. Baltag, L.S. Moss, and S. Solecki. The logic of public announce-

ments, common knowledge, and private suspicions. In I. Bilboa,

editor, Proceedings of TARK’98, pages 43–56, 1998.

[2] J. van Benthem, J. van Eijck, and B. Kooi. Logics of communication

and change. Information and Computation, 204(11):1620–1662,

2006.

[3] Jan van Eijck. DEMO — a demo of epistemic modelling. In Jo-

han van Benthem, Dov Gabbay, and Benedikt Löwe, editors, Interac-

tive Logic — Proceedings of the 7th Augustus de Morgan Workshop,

number 1 in Texts in Logic and Games, pages 305–363. Amsterdam

University Press, 2007.

[4] Jan van Eijck and Christina Unger. The epistemics of presupposi-

tion projection. In Maria Aloni, Paul Dekker, and Floris Roelofsen,

editors, Proceedings of the Sixteenth Amsterdam Colloquium, De-

cember 17–19, 2007, pages 235–240, Amsterdam, December 2007.

ILLC.

[5] J. Groenendijk and M. Stokhof. Studies on the Semantics of Ques-

tions and the Pragmatics of Answers. PhD thesis, University of

Amsterdam, 1984.

[6] John Maynard Keynes. The General Theory of Employment, Inter-

est and Money. Macmillan and Cambridge University Press, 1936.

Full text available on the internet at http://www.marxists.org/

reference/subject/economics/keynes/general-theory/.

[7] D. Kozen and R. Parikh. An elementary proof of the completeness

of PDL. Theoretical Computer Science, 14:113–118, 1981.

[8] J. Moore. Implementation, contracts, and renegotiation in environ-

ments with complete information. In J.-J. Laffont, editor, Advances

http://www.marxists.org/reference/subject/economics/keynes/general-theory/
http://www.marxists.org/reference/subject/economics/keynes/general-theory/

in Economic Theory — 6th World Congress, volume I, Cambridge,

1992. Cambridge University Press.

[9] K. Segerberg. A completeness theorem in the modal logic of pro-

grams. In T. Traczyck, editor, Universal Algebra and Applications,

pages 36–46. Polish Science Publications, 1982.

