
An Inference Engine with a Natural Language Interface

Jan van Eijck, CWI

GLLC-16 Workshop on Generalized Quantifiers, 6 March 2009

Overview

• We present a natural language engine for talking about classes.

• The example is taken from Jan van Eijck and Christina Unger, Com-

putational Semantics with Functional Programming, Cambridge

University Press 2009 (to appear).

• http://www.cwi.nl/~jve/cs/

• Demo

• A tentative connection with cognitive realities.

http://www.cwi.nl/~jve/cs/

The Simplest Natural Language Engine You Can Get

Questions and Statements (PN for plural nouns):

Q ::= Are all PN PN?

| Are no PN PN?

| Are any PN PN?

| Are any PN not PN?

| What about PN?

S ::= All PN are PN.

| No PN are PN.

| Some PN are PN.

| Some PN are not PN.

The Simplest Knowledge Base You Can Get

The two relations we are going to model in the knowledge base are that

of inclusion ⊆ and that of non-inclusion 6⊆.

‘all A are B’ ; A ⊆ B

‘no A are B’ ; A ⊆ B

‘some A are not B’ ; A 6⊆ B

‘some A are B’ ; A 6⊆ B (equivalently: A ∩B 6= ∅).

A knowledge base is a list of triples

(Class1,Class2,Boolean)

where (A,B,>) expresses that A ⊆ B,

and (A,B,⊥) expresses that A 6⊆ B.

Rules of the Inference Engine

Let Ã be given by: if A is of the form C then Ã = C, otherwise

Ã = A. Let A =⇒ B express A ⊆ B. Let A 6=⇒ B express A 6⊆ B.

Computing the subset relation from the knowledge base:

A =⇒ B

B̃ =⇒ Ã

A =⇒ B B =⇒ C
A =⇒ C

Computing the non-subset relation from the knowledge base:

A 6=⇒ B

B̃ 6=⇒ Ã

A⇐= B B 6=⇒ C C ⇐= D

A 6=⇒ D

Reflexivity and existential import:

A =⇒ A
A not of the form C

A 6=⇒ Ã

Implementation (in Haskell)

We will need list and character processing, and we want to read nat-

ural language sentences from a file, so we import the I/O-module

System.IO.

import List

import Char

import System.IO

In our Haskell implementation we can use [(a,a)] for relations.

type Rel a = [(a,a)]

If R ⊆ A2 and x ∈ A, then xR := {y | (x, y) ∈ R}.

rSection :: Eq a => a -> Rel a -> [a]

rSection x r = [y | (z,y) <- r, x == z]

Eq a indicates that a is in the equality class.

The composition of two relations R and S on A.

(@@) :: Eq a => Rel a -> Rel a -> Rel a

r @@ s = nub [(x,z) | (x,y) <- r, (w,z) <- s, y == w]

Computation of reflexive transitive closure using a function for least

fixpoint. RTC(R) = lfp(λS.S ∪R · S)I .

rtc :: Ord a => [a] -> Rel a -> Rel a

rtc xs r = lfp (\ s -> (sort.nub) (s ++ (r@@s))) i

where i = [(x,x) | x <- xs]

lfp :: Eq a => (a -> a) -> a -> a

lfp f x | x == f x = x

| otherwise = lfp f (f x)

Assume that each class has an opposite class. The opposite of an

opposite class is the class itself.

data Class = Class String | OppClass String

deriving (Eq,Ord)

instance Show Class where

show (Class xs) = xs

show (OppClass xs) = "non-" ++ xs

opp :: Class -> Class

opp (Class name) = OppClass name

opp (OppClass name) = Class name

Declaration of the knowledge base:

type KB = [(Class, Class, Bool)]

A data types for statements and queries:

data Statement =

All Class Class | No Class Class

| Some Class Class | SomeNot Class Class

| AreAll Class Class | AreNo Class Class

| AreAny Class Class | AnyNot Class Class

| What Class

deriving Eq

Show function for statements:

instance Show Statement where

show (All as bs) =

"All " ++ show as ++ " are " ++ show bs ++ "."

show (No as bs) =

"No " ++ show as ++ " are " ++ show bs ++ "."

show (Some as bs) =

"Some " ++ show as ++ " are " ++ show bs ++ "."

show (SomeNot as bs) =

"Some " ++ show as ++ " are not " ++ show bs ++ "."

and for queries:

show (AreAll as bs) =

"Are all " ++ show as ++ show bs ++ "?"

show (AreNo as bs) =

"Are no " ++ show as ++ show bs ++ "?"

show (AreAny as bs) =

"Are any " ++ show as ++ show bs ++ "?"

show (AnyNot as bs) =

"Are any " ++ show as ++ " not " ++ show bs ++ "?"

show (What as) =

"What about " ++ show as ++ "?"

Classification of statements:

isQuery :: Statement -> Bool

isQuery (AreAll _ _) = True

isQuery (AreNo _ _) = True

isQuery (AreAny _ _) = True

isQuery (AnyNot _ _) = True

isQuery (What _) = True

isQuery _ = False

Negations of queries:

neg :: Statement -> Statement

neg (AreAll as bs) = AnyNot as bs

neg (AreNo as bs) = AreAny as bs

neg (AreAny as bs) = AreNo as bs

neg (AnyNot as bs) = AreAll as bs

Use the transitive closure operation to compute the subset relation from

the knowledge base.

subsetRel :: KB -> [(Class,Class)]

subsetRel kb = rtc

(domain kb) ([(x,y) | (x,y,True) <- kb]

++ [(opp y,opp x) | (x,y,True) <- kb])

The supersets of a particular class are given by a right section of the

subset relation. I.e. the supersets of a class are all classes of which it

is a subset.

supersets :: Class -> KB -> [Class]

supersets cl kb = rSection cl (subsetRel kb)

Computing the non-subset relation from the knowledge base:

nsubsetRel :: KB -> [(Class,Class)]

nsubsetRel kb =

let

r = nub ([(x,y) | (x,y,False) <- kb]

++ [(opp y,opp x) | (x,y,False) <- kb]

++ [(Class xs,OppClass xs) |

(Class xs,_,_) <- kb]

++ [(Class ys,OppClass ys) |

(_,Class ys,_) <- kb]

++ [(Class ys,OppClass ys) |

(_,OppClass ys,_) <- kb])

s = [(y,x) | (x,y) <- subsetRel kb]

in s @@ r @@ s

The non-supersets of a class:
nsupersets :: Class -> KB -> [Class]

nsupersets cl kb = rSection cl (nsubsetRel kb)

Query of a knowledge base by means of yes/no questions is simple:

deriv :: KB -> Statement -> Bool

deriv kb (AreAll as bs) = elem bs (supersets as kb)

deriv kb (AreNo as bs) = elem (opp bs) (supersets as kb)

deriv kb (AreAny as bs) = elem (opp bs) (nsupersets as kb)

deriv kb (AnyNot as bs) = elem bs (nsupersets as kb)

Caution: there are three possibilities:

• deriv kb stmt is true. This means that the statement is deriv-

able, hence true.

• deriv kb (neg stmt) is true. This means that the negation of

stmt is derivable, hence true. So stmt is false.

• neither deriv kb stmt nor deriv kb (neg stmt) is true. This

means that the knowledge base has no information about stmt.

Open queries (“How about A?”) are slightly more complicated.

We should take care to select the most natural statements to report on

a class:

A ⊆ B is expressed with ‘all’,

A ⊆ B is expressed with ‘no’,

A 6⊆ B is expressed with ‘some not’,

A 6⊆ B is expressed with ‘some’.

f2s :: (Class, Class, Bool) -> Statement

f2s (as, Class bs, True) = All as (Class bs)

f2s (as, OppClass bs, True) = No as (Class bs)

f2s (as, OppClass bs, False) = Some as (Class bs)

f2s (as, Class bs, False) = SomeNot as (Class bs)

Get the domain of a knowledge base:

domain :: [(Class,Class,Bool)] -> [Class]

domain = nub . dom where

dom [] = []

dom ((xs, ys, _):facts) =

xs : opp xs : ys : opp ys : dom facts

Check whether a class A is mentioned in the knowledge base:

mention :: Class -> (Class, Class, Bool) -> Bool

mention xs (ys, zs, _) =

elem xs [ys,zs] || elem (opp xs) [ys,zs]

Filter the facts from the knowledge base that mention a class A:

filterKB :: Class -> KB -> KB

filterKB xs = filter (mention xs)

Tell about a class A by listing what the knowledge base says about A:
tellAbout1 :: KB -> Class -> [Statement]

tellAbout1 kb as = map f2s (filterKB as kb)

Giving an explicit account of a class:

tellAbout :: KB -> Class -> [Statement]

tellAbout kb as =

[All as (Class bs) |

(Class bs) <- supersets as kb,

as /= (Class bs)]

++

[No as (Class bs) |

(OppClass bs) <- supersets as kb,

as /= (OppClass bs)]

A bit of pragmatics: do not tell ‘Some A are B’ if ‘All A are B’ also

holds.

++

[Some as (Class bs) |

(OppClass bs) <- nsupersets as kb,

as /= (OppClass bs),

notElem (as,Class bs) (subsetRel kb)]

Do not tell ‘Some A are not B’ if ‘No A are B’ also holds.

++

[SomeNot as (Class bs) |

(Class bs) <- nsupersets as kb,

as /= (Class bs),

notElem (as,OppClass bs) (subsetRel kb)]

To build a knowledge base we need a function for updating an existing

knowledge base with a statement.

If the update is successful, we want an updated knowledge base. If it is

not, we want to get an indication of failure. The Haskell Maybe data

type gives us just this.

data Maybe a = Nothing | Just a

The update function checks for possible inconsistencies. E.g., a request

to add an A ⊆ B fact to the knowledge base leads to an inconsistency

if A 6⊆ B is already derivable.

update :: Statement -> KB -> Maybe (KB,Bool)

update (All as bs) kb

| elem bs (nsupersets as kb) = Nothing

| elem bs (supersets as kb) = Just (kb,False)

| otherwise =

Just (((as,bs,True): kb),True)

A request to add A ⊆ B leads to an inconsistency if A 6⊆ B is already

derivable.

update (No as bs) kb

| elem bs’ (nsupersets as kb) = Nothing

| elem bs’ (supersets as kb) = Just (kb,False)

| otherwise =

Just (((as,bs’,True):kb),True)

where bs’ = opp bs

Similarly for the requests to update with A 6⊆ B and with A 6⊆ B:

update (Some as bs) kb

| elem bs’ (supersets as kb) = Nothing

| elem bs’ (nsupersets as kb) = Just (kb,False)

| otherwise =

Just (((as,bs’,False):kb),True)

where bs’ = opp bs

update (SomeNot as bs) kb

| elem bs (supersets as kb) = Nothing

| elem bs (nsupersets as kb) = Just (kb,False)

| otherwise =

Just (((as,bs,False):kb),True)

Use this to build a knowledge base from a list of statements. Again,

this process can fail, so we use the Maybe datatype.

makeKB :: [Statement] -> Maybe KB

makeKB = makeKB’ []

where

makeKB’ kb [] = Just kb

makeKB’ kb (s:ss) =

case update s kb of

Just (kb’,_) -> makeKB’ kb’ ss

Nothing -> Nothing

Preprocessing of strings, to prepare them for parsing:

preprocess :: String -> [String]

preprocess = words . (map toLower) .

(takeWhile (\ x -> isAlpha x || isSpace x))

This will map a string to a list of words:

Main> preprocess "Are any women sailors?"

["are","any","women","sailors"]

A simple parser for statements:

parse :: String -> Maybe Statement

parse = parse’ . preprocess

where

parse’ ["all",as,"are",bs] =

Just (All (Class as) (Class bs))

parse’ ["no",as,"are",bs] =

Just (No (Class as) (Class bs))

parse’ ["some",as,"are",bs] =

Just (Some (Class as) (Class bs))

parse’ ["some",as,"are","not",bs] =

Just (SomeNot (Class as) (Class bs))

and for queries:

parse’ ["are","all",as,bs] =

Just (AreAll (Class as) (Class bs))

parse’ ["are","no",as,bs] =

Just (AreNo (Class as) (Class bs))

parse’ ["are","any",as,bs] =

Just (AreAny (Class as) (Class bs))

parse’ ["are","any",as,"not",bs] =

Just (AnyNot (Class as) (Class bs))

parse’ ["what", "about", as] = Just (What (Class as))

parse’ ["how", "about", as] = Just (What (Class as))

parse’ _ = Nothing

Parsing a text to construct a knowledge base:

process :: String -> KB

process txt = maybe [] id

(mapM parse (lines txt) >>= makeKB)

This uses the maybe function, for getting out of the Maybe type. In-

stead of returning Nothing, this returns an empty knowledge base.

maybe :: b -> (a -> b) -> Maybe a -> b

maybe _ f (Just x) = f x

maybe z _ Nothing = z

mytxt = "all bears are mammals\n"

++ "no owls are mammals\n"

++ "some bears are stupids\n"

++ "all men are humans\n"

++ "no men are women\n"

++ "all women are humans\n"

++ "all humans are mammals\n"

++ "some men are stupids\n"

++ "some men are not stupids"

Main> process mytxt

[(men,stupids,False),(men,non-stupids,False),

(humans,mammals,True),(women,humans,True),

(men,non-women,True),(men,humans,True),

(bears,non-stupids,False),(owls,non-mammals,True),

(bears,mammals,True)]

Now suppose we have a text file of declarative natural language sen-

tences about classes. Here is how to turn that into a knowledge base.

getKB :: FilePath -> IO KB

getKB p = do

txt <- readFile p

return (process txt)

And here is how to write a knowledge base to file:

writeKB :: FilePath -> KB -> IO ()

writeKB p kb = writeFile p

(unlines (map (show.f2s) kb))

The inference engine in action:

chat :: IO ()

chat = do

kb <- getKB "kb.txt"

putStrLn "Update or query the KB:"

str <- getLine

if str == "" then return ()

else do

case parse str of

Just (What as) -> let info = tellAbout kb as in

if info == [] then putStrLn "No info.\n"

else putStrLn (unlines (map show info))

Just stmt ->

if isQuery stmt then

if deriv kb stmt then putStrLn "Yes.\n"

else if deriv kb (neg stmt)
then putStrLn "No.\n"

else putStrLn "I don’t know.\n"

else case update stmt kb of

Just (kb’,True) -> do

writeKB "kb.txt" kb’

putStrLn "OK.\n"

Just (_,False) -> putStrLn

"I knew that already.\n"

Nothing -> putStrLn

"Inconsistent with my info.\n"

Nothing -> putStrLn "Wrong input.\n"

chat

main = do

putStrLn "Welcome to the Knowledge Base."

chat

Demo

. . .

Conclusions

• What is the use of this?

• Cognitive research focusses on this kind of quantifier reasoning . . .

• Can this be used to meet cognitive realities?

• Links with cognition by refinement of this calculus: the ‘Battaglini’

calculus∗

• Towards Rational Reconstruction of Cognitive Processing

∗ Fabian Battaglini, Inference and Interpretation, PhD Thesis under

construction.

