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Summary

• Functional Expressions and Types

• Type Theory, Type Polymorphism [Hin97]

• Functional Programming

• Representing Semantic Knowledge in Type Theory

• Building a Montague Fragment [Mon73]

• Datastructures for Syntax

• Semantic Interpretation



Functional Expressions and Types

According to Frege, the meaning of John arrived can be represented by

a function argument expression Aj where A denotes a function and j

an argument to that function.

The expression A does not reveal that it is supposed to combine with

an individual term to form a formula (an expression denoting a truth

value). One way to make this explicit is by means of lambda notation.

The function expression of this example is then written as (λx.Ax).

It is also possible to be even more explicit, and write

λx.(Ax) :: e → t

to indicate the type of the expression, or even:

(λxe.Ae→tx)e→t.



Definition of Types

The set of types over e, t is given by the following BNF rule:

T ::= e | t | (T → T ).

The basic type e is the type of expressions denoting individual objects

(or entities). The basic type t is the type of formulas (of expressions

which denote truth values). Complex types are the types of functions.

For example, (e → t) or e → t is the type of functions from entities to

truth values.

In general: T1 → T2 is the type of expressions denoting functions from

denotations of T1 expressions to denotations of T2 expressions.



Picturing a Type Hierarchy

The types e and t are given. Individual objects or entities are objects

taken from some domain of discussion D, so e type expressions denote

objects in D. The truth values are {0, 1}, so type t expression denotes

values in {0, 1}.
For complex types we use recursion. This gives:

De = D, Dt = {0, 1}, DA→B = DB
DA.

Here DB
DA denotes the set of all functions from DA to DB.



A function with range {0, 1} is called a characteristic function, because

it characterizes a set (namely, the set of those things which get mapped

to 1).

If T is some arbitrary type, then any member of DT→t is a characteristic

function. The members of De→t, for instance, characterize subsets of

the domain of individuals De.

As another example, consider D(e→t)→t. According to the type def-

inition this is the domain of functions Dt
De→t, i.e., the functions in

{0, 1}De→t. These functions characterize sets of subsets of the domain

of individuals De.



Types of Relations

As a next example, consider the domain De→(e→t). Assume for simplic-

ity that De is the set {a, b, c}. Then we have:

De→(e→t) = De→t
De = (DDe

t )D
e

= ({0, 1}{a,b,c}){a,b,c}.

Example element of De→(e→t):

a 7→

 a 7→ 1

b 7→ 0

c 7→ 0


b 7→

 a 7→ 0

b 7→ 1

c 7→ 1


c 7→

 a 7→ 0

b 7→ 0

c 7→ 1





The elements of De→(e→t) can in fact be regarded as functional en-

codings of two-placed relations R on De, for a function in De→(e→t)

maps every element d of De to (the characteristic function of) the set

of those elements of De that are R-related to d.



Types for Propositional Functions

Note that Dt→t has precisely four members, namely:

identity negation constant 1 constant 0

1 7→ 1 1 7→ 0 1 7→ 1 0 7→ 0

0 7→ 0 0 7→ 1 0 7→ 1 0 7→ 0

The elements of Dt→(t→t) are functions from the set of truth values to

the functions in Dt→t, i.e., to the set of four functions pictured above.

As an example, here is the function which maps 1 to the constant 1

function, and 0 to the identity:

1 7→
(

1 7→ 1

0 7→ 1

)
0 7→

(
1 7→ 1

0 7→ 0

)



We can view this as a ‘two step’ version of the semantic operation of

taking a disjunction.

If the truth value of its first argument is 1, then the disjunction becomes

true, and the truth value of the second argument does not matter (hence

the constant 1 function).

1 7→
(

1 7→ 1

0 7→ 1

)
If the truth value of the first argument is 0, then the truth value of the

disjunction as a whole is determined by the truth value of the second

argument (hence the identity function).

0 7→
(

1 7→ 1

0 7→ 0

)



Types in Haskell

In this section we take a brief look at how types appear in the functional

programming language Haskell [HFP96, JH+99, Bir98, DvE02].

For Haskell, see: www.haskell.org

The text inside the boxes is literal Haskell code. For convenience we

collect the code of this tuturial in a module. The present module is

called LOLA1.

module LOLA1 where

import Domain

import Model



In Haskell, the type for truthvalues is called Bool. Thus, the type

for the constant function that maps all truth values to 1 is Bool ->

Bool. The truth value 1 appears in Haskell as True, the truth value

0 as False. The definitions of the constant True and the constant

False function in Haskell run as follows:

c1 :: Bool -> Bool

c1 _ = True

c0 :: Bool -> Bool

c0 _ = False

The definitions consist of a type declaration and a value specification.

Whatever argument you feed c1, the result will be True. Whatever

argument you give c0, the result will be False. The underscore is

used for any value whatsoever.



An equivalent specification of these functions runs as follows:

c1 :: Bool -> Bool

c1 = \ p -> True

c0 :: Bool -> Bool

c0 = \ p -> False

The function in Bool -> Bool that swaps the two truth values is

predefined in Haskell as not.

The identity function is predefined in Haskell as id. This function has

the peculiarity that it has polymorphic type: it can be used as the

identity for any type for which individuation makes sense.



In Haskell, the disjunction function will have type

Bool -> Bool -> Bool

This type is read as Bool -> (Bool -> Bool).

Implementation of disj, in terms of c1 and id:

disj :: Bool -> Bool -> Bool

disj True = c1

disj False = id

Alternative:

disj :: Bool -> Bool -> Bool

disj = \ p -> if p then c1 else id



Type Polymorphism

The id function:

id :: a -> a

id x = x

A function for arity reduction:

self :: (a -> a -> b) -> a -> b

self f x = f x x

This gives:

LOLA1> self (<=) 3

True



Properties, Relations

The polymorphic type of a property is a -> Bool.

Examples: (>= 0), (<> x), even.

The polymorphic type of a relation is a -> b -> Bool.

The polymorphic type of a relation over a single type is a -> a -> Bool.

Examples: (<), (<=), (==).



List Types

Examples of list types:

• [Int] is the type of lists of integers,

• [Char] is the type of lists of characters, or strings,

• [Bool] is the type of lists of Booleans,

• and so on.

If a is a type, [a] is the type of lists over a.

Note that [a] is a polymorphic type.

[] is the empty list (of any type).

(x:xs) is the prototypical non-empty list.

The head of (x:xs) is x, the tail is xs.



List Comprehension

List comprehension is the list counterpart of set comprehension:

{x | x ∈ A, P (x)}

LOLA1> [ n |n <- [0..20], n ‘mod‘ 7 == 1 ]

[1,8,15]

LOLA1> [ 2^n | n <- [0..10] ]

[1,2,4,8,16,32,64,128,256,512,1024]

LOLA1> [ w ++ w | w <- ["ab","cd","eef"] ]

["abab","cdcd","eefeef"]



The map Function

The function map takes a function and a list and returns a list containing

the results of applying the function to the individual list members.

If f is a function of type a -> b and xs is a list of type [a], then

map f xs will return a list of type [b].

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = (f x) : map f xs

E.g., map (^2) [1..9] will produce the list of squares:

[1, 4, 9, 16, 25, 36, 49, 64, 81]



The filter Function

The filter function takes a property and a list, and returns the sublist

of all list elements satisfying the property.

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs

LOLA1> filter even [1..10]

[2,4,6,8,10]



Function Composition

For the composition f . g to make sense, the result type of g should

equal the argument type of f, i.e., if f :: a -> b then g :: c -> a.

Under this typing, the type of f . g is c -> b.

Thus, the operator (.) that composes two functions has the following

type and definition:

(.) :: (a -> b) -> (c -> a) -> c -> b

(f . g) x = f (g x)



A Domain of Entities

To illustrate the type e, we construct a small example domain of entities

consisting of individuals A, . . . , M , by declaring a datatype Entity.

module Domain where

data Entity = A | B | C | D | E | F | G

| H | I | J | K | L | M

deriving (Eq,Bounded,Enum,Show)

The stuff about deriving (Eq,Bounded,Enum,Show) is there to

enable us to do equality tests on entities (Eq), to refer to A as the

minimum element and M as the maximum element (Bounded), to

enumerate the elements (Enum), and to display the elements on the

screen (Show).



Because Entity is a bounded and enumerable type, we can put all of

its elements in a finite list:

entities :: [Entity]

entities = [minBound..maxBound]

This gives:

CompSem1> entities

[A,B,C,D,E,F,G,H,I,J,K,L,M]



r :: Entity -> Entity -> Bool

r A A = True

r A _ = False

r B B = True

r B C = True

r B _ = False

r C C = True

r _ _ = False



This gives:

LOLA1> r A B

False

LOLA1> r A A

True



Using lambda abstraction, we can select sublists of a list that satisfy

some property we are interested in. Suppose we are interested in the

property of being related by r to the element B. This property can

be expressed using λ abstraction as λx.(Rb)x. In Haskell, this same

property is expressed as (\ x -> r B x).

Using a property to create a sublist is done by means of the filter op-

eration. Here is how we use filter to find the list of entities satisfying

the property:

LOLA1> filter (\ x -> r B x) entities

[B,C]

With negation, we can express the complement of this property. This

gives:

LOLA1> filter (\ x -> not (r B x)) entities

[A,D,E,F,G,H,I,J,K,L,M]



Here is how disj is used to express the property of being either related

to a or to b:

LOLA1> filter (\ x -> disj (r A x) (r B x)) entities

[A,B,C]

Haskell has a predefined infix operator || that serves the same purpose

as disj. Instead of the above, we could have used the following:

LOLA1> filter (\ x -> (r A x) || (r B x)) entities

[A,B,C]

Similarly, Haskell has a predefined infix operator && for conjunction.



The Language of Typed Logic and Its Semantics

Assume that we have constants and variables available for all types

in the type hierarchy. Then the language of typed logic over these is

defined as follows.

type ::= e | t | (type → type)

expression ::= constanttype | variabletype

| (λ variabletype1
.expressiontype2

)type1→type2

| (expressiontype1→type2
expressiontype1

)type2

For an expression of the form (E1E2) to be welltyped the types have to

match. The type of the resulting expression is fully determined by the

types of the components. Similarly, the type of a lambda expression

(λv.E) is fully determined by the types of v and E.



Often we leave out the type information. The definition of the language

then looks like this:

expression ::= constant

| variable

| (λ variable.expression)

| (expression expression)



Models for Typed Logic

A model M for a typed logic over e, t consists of a domain dom (M) =

De together with an interpretation function int (M) = I which maps

every constant of the language to a function of the appropriate type in

the domain hierarchy based on De.

A variable assignment s for typed logic maps every variable of the

language to a function of the appropriate type in the domain hierarchy.

The semantics for the language is given by defining a function [[.]]Ms
which maps every expression of the language to a function of the ap-

propriate type.



[[constant]]Ms = I(constant).

[[variable]]Ms = s(variable).

[[(λvT1.ET2)]]
M
s = h

where h is the function given by h : d ∈ DT1 7→ [[E]]Ms(v|d) ∈ DT2.

[[(E1E2)]]
M
s = [[E1]]

M
s ([[E2]]

M
s ).



Assume that (((Gc)b)a) expresses that a gives b to c.

What do the following expressions say:

1. (λx.(((Gc)b)x)).

giving b to c

2. (λx.(((Gc)x)a)).

being a present of a to c

3. (λx.(((Gx)b)a)).

receiving b from a

4. (λx.(((Gx)b)x)).

giving b to oneself.



Assume that (((Gc)b)a) expresses that a gives b to c. What do the

following expressions say:

1. (λx.(λy.(((Gx)b)y))).

giving b

2. (λx.(λy.(((Gy)b)x))).

receiving b.



Logical Constants of Predicate Logic

The logical constants of predicate logic can be viewed as constants of

typed logic, as follows. ¬ is a constant of type t → t with the following

interpretation.

• [[¬]] = h, where h is the function in {0, 1}{0,1} which maps 0 to 1

and vice versa.

∧ and ∨ are constants of type t → t → t with the following interpre-

tations.

• [[∧]] = h, where h is the function in ({0, 1}{0,1}){0,1} which maps 1

to {(1, 1), (0, 0)} and 0 to {(1, 0), (0, 0)}.

• [[∨]] = h, where h is the function in ({0, 1}{0,1}){0,1} which maps 1

to {(1, 1), (0, 1)} and 0 to {(1, 1), (0, 0)}.



not :: Bool -> Bool

not True = False

not False = True

(&&) :: Bool -> Bool -> Bool

False && x = False

True && x = x

(||) :: Bool -> Bool -> Bool

False || x = x

True || x = True



Quantifiers of Predicate Logic

The quantifiers ∃ and ∀ are constants of type (e → t) → t, with the

following interpretations.

• [[∀]] = h, where h is the function in {0, 1}De→t which maps the

function that characterizes De to 1 and every other characteristic

function to 0.

• [[∃]] = h, where h is the function in {0, 1}De→t which maps the

function that characterizes ∅ to 0 and every other characteristic

function to 1.



Second Order and Polymorphic Quantification

It is possible to add constants for quantification over different types.

E.g., to express second order quantification (i.e., quantification over

properties of things), one would need quantifier constants of type

((e → t) → t) → t.

The general (polymorphic) type of quantification is

(T → t) → t.



Haskell implementation of quantification:

any, all :: (a -> Bool) -> [a] -> Bool

any p = or . map p

all p = and . map p

Definition of forall and exists for bounded enumerable domains, in

terms of these:

forall, exists ::

(Enum a, Bounded a) => (a -> Bool) -> Bool

forall = \ p -> all p [minBound..maxBound]

exists = \ p -> any p [minBound..maxBound]



What is the type of binary generalized quantifiers such as

Q∀(λx.Px)(λx.Qx) (‘all P are Q’)

Q∃(λx.Px)(λx.Qx) (‘some P are Q’)

QM(λx.Px)(λx.Qx) (‘most P are Q’)

(e → t) → (e → t) → t.



Implementation of binary generalized quantifiers:

every, some, no ::

(Entity -> Bool) -> (Entity -> Bool) -> Bool

every = \ p q -> all q (filter p entities)

some = \ p q -> any q (filter p entities)

no = \ p q -> not (some p q)



most ::

(Entity -> Bool) -> (Entity -> Bool) -> Bool

most = \ p q ->

length (filter (\ x -> p x && q x) entities)

>

length (filter (\ x -> p x && not (q x)) entities)



‘The P is Q’ is true just in case

1. there is exactly one P,

2. that P is Q.



singleton :: [a] -> Bool

singleton [x] = True

singleton _ = False

the ::

(Entity -> Bool) -> (Entity -> Bool) -> Bool

the = \ p q ->

singleton (filter p entities)

&&

q (head (filter p entities))



Typed Logic and Predicate Logic

With the constants ¬,∧,∨,∀,∃ added, the language of typed logic

contains ordinary predicate logic as a proper fragment.

Here are some example expressions of typed logic, with their predicate

logical counterparts:

(¬(Px)) ¬Px

((∧(Px))(Qy)) Px ∧Qy

(∀(λx.Px)) ∀xPx

(∀(λx.(∃(λy.((Ry)x))))) ∀x∃yRxy

Note the order of the arguments in ((Ry)x) versus Rxy.



Curry and Uncurry

The conversion of a function of type (a,b) -> c to one of type a ->

b -> c is called currying (named after Haskell Curry).

curry is predefined in Haskell:

curry :: ((a,b) -> c) -> (a -> b -> c)

curry f x y = f (x,y)

The conversion of a function of type a -> b -> c to one of type

(a,b) -> c is called uncurrying,

uncurry :: (a -> b -> c) -> ((a,b) -> c)

uncurry f p = f (fst p) (snd p)



LOLA1> r B C

True

LOLA1> (uncurry r) (B,C)

True

As we also want the arguments in the other order, what we need is:

1. first flip the arguments,

2. next uncurry the function.

inv2 :: (a -> b -> c) -> ((b,a) -> c)

inv2 = uncurry . flip

LOLA1> inv2 r (C,B)

True



For the converse operation, we combine curry with flip, as follows:

flip . curry.

LOLA1> (flip . curry . inv2) r B C

True



Conversion for Three Placed Relations

For three-placed relations, we need to convert from and too triples, and

for that appropriate definitions are needed for selecting the first, second

or third element from a triple.

e1 :: (a,b,c) -> a

e1 (x,y,z) = x

e2 :: (a,b,c) -> b

e2 (x,y,z) = y

e3 :: (a,b,c) -> c

e3 (x,y,z) = z

inv3 :: (a -> b -> c -> d) -> ((c,b,a) -> d)

inv3 f t = f (e3 t) (e2 t) (e1 t)



Here is a definition of a three-placed relation in Haskell:

g :: Entity -> Entity -> Entity -> Bool

g D x y = r x y

g E x y = not (r x y)

g _ _ _ = False

This gives:

LOLA1> g E B C

False

LOLA1> g E C B

True

LOLA1> inv3 g (B,C,E)

True

LOLA1>



Assume R is a typed logical constant of type e → (e → t) which

is interpreted as the two-placed relation of respect between individu-

als. Then ((Rb)a) expresses that a respects b. In abbreviated notation

this becomes R(a, b). Now λx.∃yR(x, y) is abbreviated notation for

‘respecting someone’, and λx.∃yR(x, y) for ‘being respected by some-

one’.

If G(a, b, c) is shorthand for ‘a gives b to c’, then λx.∃y∃zG(x, y, z)

expresses ‘giving something to someone’, and λx.∃yG(x, b, y) expresses

‘giving b to someone’. Finally, λx.∃yG(y, b, x) expresses ‘receiving b

from someone’.

Assume G(x, y, z), which is short for (((Gz)y)x), means that x gives y

to z. Use this to find a typed logic expression for ‘receiving something

from someone’.

λx.∃y∃zG(y, z, x).



Suppose we want to translate ‘Anne gave Claire the book’, which has

syntactic structure

[S[NPAnne ][V P [TV [DTV gave][NPClaire ]][NP the book ]]]

in a compositional way, using λzyx.G(x, y, z) as translation for ‘give’.

Translating all the combinations of phrases as function argument com-

bination, we arrive at the following translation of the sentence.

1 (((λzyx.G(x, y, z)c)b)a).

This does indeed express what we want, but in a rather roundabout

way. We would like to reduce this expression to G(a, b, c).



Reducing Expressions of Typed Logic

To reduce expression (1) to its simplest form, three steps of so-called β

conversion are needed. During β conversion of an expression consisting

of a functor expression λv.E followed by an argument expression A,

basically the following happens:

The prefix λv. is removed, the argument expression A is removed,

and finally the argument expression A is substituted in E for all free

occurrences of v. The free occurrences of v in E are precisely the

occurrences which were bound by λv in λv.E.

Here is the proviso. In some cases, the substitution process described

above cannot be applied without further ado, because it will result in

unintended capturing of variables within the argument expression A.



Consider expression (2):

2 ((λx.(λy.((Ry)x)))y).

In this expression, y is bound in the functional part (λx.(λy.((Ry)x)))

but free in the argument part y. Reducing (2) by β conversion according

to the recipe given above would result in (λy.((Ry)y)), with capture

of the argument y at the place where it is substituted for x.

This problem can be avoided by performing β conversion on an alpha-

betic variant of the original expression, say on (3).

3 ((λx.(λz.((Rz)x)))y).



Another example where α conversion (i.e., switching to an alphabetic

variant) is necessary before β conversion to prevent unintended capture

of free variables is the expression (4).

4 ((λp.∀x((Ax) ↔ p))(Bx)).

In (4), p is a variable of type t, and x one of type e. Variable x is bound

inside the functional part (λp.∀x((Ax) ↔ p)) but free in the argument

part (Bx). Substituting (Bx) for p in the function expression would

cause x to be captured, with failure to preserve the original meaning.

Again, the problem is avoided if β conversion is performed on an al-

phabetic variant of the original expression, say on (5).

5 ((λp.∀z((Az) ↔ p))(Bx)).

Performing β reduction on (5) yields ∀z.((Ax) ↔ (Bx)), with the

argument of B still free, as it should be.



Freedom, Bondage, Substitution

Variable v is free in expression E if the following holds (we use ≈
for the relation of being syntactically identical, i.e. for being the same

expression):

• v ≈ E,

• E ≈ (E1E2), and v is free in E1 or v is free in E2,

• E ≈ (λx.E1), and v 6≈ x, and v is free in E1.

Examples of free occurrences of x:

(λx.(Px)), ((λx.(Px))x), (λx.((Rx)x)), ((λx.((Rx)x))x), ((λy.((Rx)y))x).



Which occurrences of x are free in ((λy.∃x((Rx)y))x)?

Bear in mind that ∃x((Rx)y) is shorthand for (∃(λx.((Rx)y))).

((λy.∃x((Rx)y))x).



Substitution of y for x in (λy.(Px)):

(λy.(Px))[x := y].

The function (λy.(Px)) is the function yielding (Px) for any argument,

i.e., the constant (Px) function.

It is easy to get this substitution wrong:

(λy.(Px))[x := y] ≈ (λy.(Px)[x := y]) ≈ (λy.(Py)).

This is a completely different function, namely the function that assigns

to argument a the result of applying P to a.

By doing an appropriate renaming, we get the correct result:

(λy.(Px))[x := y] ≈ (λz.(Px)[y := z][x := y])

≈ (λz.(Px)[x := y]) ≈ (λz.(Py)).



Substitution of s for free occurrences of v in E, with notation E[v := s].

• If E ≈ v then E[v := s] ≈ s,

if E ≈ x 6≈ v (i.e., E is a variable different from v), then E[x :=

s] ≈ x,

if E ≈ c (i.e., E is a constant), then E[x := s] ≈ c,

• if E ≈ (E1E2) then E[v := s] ≈ (E1[v := s] E2[v := s]),

• if E ≈ (λx.E1), then

– if v ≈ x then E[v := s] ≈ E,

– if v 6≈ x then there are two cases:

1. if x is not free in s or v is not free in E then E[v := s] ≈
(λx.E1[v := s]),

2. if x is free in s and v is free in E then E[v := s] ≈
(λy.E1[x := y][v := s]), for some y which is not free in s

and not free in E1.



Reduction

Reduction comes in three flavours: β reduction, α reduction and η

reduction, with corresponding arrows
β−→,

α−→ and
η−→.

Beta reduction: ((λv.E)s)
β−→ E[v := s].

Condition: v and s are of the same type (otherwise the expression to

be reduced is not welltyped).

Alpha reduction: (λv.E)
α−→ (λx.E[v := x]).

Conditions: v and x are of the same type, and x is not free in E.

Eta reduction: ((λv.E)v)
η−→ E.



The ‘real work’ takes place during β reduction. The α reduction rule

serves only to state in an explicit fashion that λ calculations are insen-

sitive to switches to alphabetic variants. Whether one uses λx to bind

occurrences of x or λy to bind occurrences of y is immaterial, just like

it is immaterial in the case of predicate logic whether one writes ∀xPx

or ∀yPy.

The η reduction rule makes a principle explicit that we have used im-

plicitly all the time: if (Pj) expresses that John is present, then both

P and (λx.(Px)) express the property of being present. This is so

because ((λx.(Px))x)
η−→ (Px), so P and (λx.(Px)) give the same

result when applied to argument x, i.e., they express the same function.



Applying β reduction to

(((λzyx.G(x, y, z)c)b)a),

or in unabbreviated notation

((((λz.(λy.(λx.(((Gz)y)x))))c)b)a),

gives:

((((λz.(λy.(λx.(((Gz)y)x))))c)b)a)
β−→ (((λy.(λx.(((Gc)y)x)))b)a)
β−→ ((λx.(((Gc)b)x))a)
β−→ (((Gc)b)a).



To be fully precise we have to state explicitly that expressions can be

reduced ‘in context’. The following principles express this:

E
β−→ E ′

(FE)
β−→ (FE ′)

E
β−→ E ′

(EF )
β−→ (E ′F )

E
β−→ E ′

(λv.E)
β−→ (λv.E ′)

Here F is assumed to have the appropriate type.

These principles allow β reductions at arbitrary depth within expres-

sions.



Reduce the following expressions to their simplest forms:

1. ((λY.(λx.(Y x)))P ).

λx.(Px).

2. (((λY.(λx.(Y x)))P )y).

(Py).

3. ((λP.(λQ.∃x(Px ∧Qx)))A).

(λQ.∃x(Ax ∧Qx)).

4. (((λP.(λQ.∃x(Px ∧Qx)))A)B).

∃x(Ax ∧Bx).

5. ((λP.(λQ.∀x(Px ⇒ Qx)))(λy.((λx.((Ry)x))j))).

(λQ.∀x((λz.((Rj)z)x) ⇒ Qx))

(λQ.∀x(((Rj)x) ⇒ Qx)).



Confluence Property

In the statement of the following property, we write E→→E ′ for E

reduces in a number of α, β, η steps to E’.

Confluence property (or: Church-Rosser property): For all ex-

pressions E, E1, E2 of typed logic: if E→→E1 and E→→E2 then

there is an expression F with E1→→F and E2→→F .



Normal Form Property

An expression of the form ((λv.E)s) is called a β-redex (for: β re-

ducible expression). E[v := s] is called the contractum of ((λv.E)s).

An expression that does not contain any redexes is called a normal form.

Normal form property: Every expression of typed logic can be re-

duced to a normal form.

Combining the confluence property and the normal form property we

get that the normal forms of an expression E are identical modulo α

conversion. That is to say, all normal forms of E are alphabetic variants

of one another.



The normal form property holds thanks to the restrictions imposed by

the typing discipline. Untyped lambda calculus lacks this property. In

untyped lambda calculus it is allowed to apply expressions to themselves.

In typed lambda calculus this is forbidden, because (xx) cannot be

consistently typed.

In untyped lambda calculus, expressions like (λx.(xx)) are wellformed.

It is easy to see that

((λx.(xx))(λx.(xx)))

does not have a normal form.



Misleading Form and Logical Form

The metamorphosis of β conversion is relevant for an enlightened view

on the historical ‘misleading form thesis’ for natural language.

The predicate logical translations of natural language sentences with

quantified expressions did not seem to follow the linguistic structure.

In the logical translations, the quantified expressions seemed to have

disappeared.

Using expressions of typed logic it is quite simple to analyse John smiled

and No-one smiled along the same lines: The subject NPs get the

translations:

λP.Pj

and

λP.¬∃x.((person x) ∧ (Px)).



Representing a Model for Predicate Logic in Haskell

All we need to specify a first order model in Haskell is a domain of

entities and suitable interpretations of proper names and predicates.

The domain of entities was given above as Entity.

module Model where

import Domain



Interpretation for proper names:

ann, mary, bill, johnny :: Entity

ann = A

mary = M

bill = B

johnny = J



man,boy,woman,person,thing,house :: Entity -> Bool

man x = x == B || x == D || x == J

woman x = x == A || x == C || x == M

boy x = x == J

person x = man x || woman x

thing x = not (person x)

house x = x == H

cat x = x == K

mouse x = x == I



laugh,cry,curse,smile,old,young :: Entity -> Bool

laugh x = x == M || x == C || x == B

|| x == D || x == J

cry x = x == B || x == D

curse x = x == J || x == A

smile x = x == M || x == B || x == I || x == K

young x = x == J

old x = x == B || x == D



Meanings for two-placed predicates, represented as

(Entity,Entity) -> Bool.

love,respect,hate,own :: (Entity,Entity) -> Bool

love (x,y) = (x == B && (y == M || y == A))

|| (woman x && (y == J || y == B))

respect (x,y) = person x && person y

|| x == F || x == I

hate (x,y) = ((x == B || x == J) && thing y)

|| (x == I && y == K)

own (x,y) = (x ==A && y == E)

|| (x == M && (y == K || y == H))



Montague Grammar: Datastructures for Syntax

data S = S NP VP
deriving (Eq,Show)

data NP = Ann | Mary | Bill | Johnny

| NP1 DET CN | NP2 DET RCN

deriving (Eq,Show)

data DET = Every | Some | No | The | Most

deriving (Eq,Show)

data CN = Man | Woman | Boy | Person

| Thing | House | Cat | Mouse

deriving (Eq,Show)



data RCN = CN1 CN VP | CN2 CN NP TV
deriving (Eq,Show)

data VP = Laughed | Smiled | VP1 TV NP

deriving (Eq,Show)

data TV = Loved | Respected | Hated | Owned

deriving (Eq,Show)



Semantic Interpretation

We define for every syntactic category an interpretation function of the

appropriate type.

Sentences:

intS :: S -> Bool

intS (S np vp) = (intNP np) (intVP vp)



Noun Phrases:

intNP :: NP -> (Entity -> Bool) -> Bool

intNP Ann = \ p -> p ann

intNP Mary = \ p -> p mary

intNP Bill = \ p -> p bill

intNP Johnny = \ p -> p johnny

intNP (NP1 det cn) = (intDET det) (intCN cn)

intNP (NP2 det rcn) = (intDET det) (intRCN rcn)



For the interpretation of verb phrases we invoke the information encoded

in our first order model.

intVP :: VP -> Entity -> Bool

intVP Laughed = laugh

intVP Smiled = smile

For the interpretation of complex VPs, we have to find a way to make

reference to the property of ‘standing into the TV relation to the subject

of the sentence’.

intVP (VP1 tv np) =

\ subj -> intNP np (\ obj -> intTV tv obj subj)



TVs: link up with model information.

intTV :: TV -> Entity -> Entity -> Bool

intTV Loved = (flip . curry) love

intTV Respected = (flip . curry) respect

intTV Hated = (flip . curry) hate

intTV Owned = (flip . curry) own



The interpreation of CNs is similar to that of VPs.

intCN :: CN -> Entity -> Bool

intCN Man = man

intCN Boy = boy

intCN Woman = woman

intCN Person = person

intCN Thing = thing

intCN House = house



Determiners: use the logical constants defined above.

intDET :: DET ->

(Entity -> Bool) -> (Entity -> Bool) -> Bool

intDET Every = every

intDET Some = some

intDET No = no

intDET The = the



Interpretation of relativised common nouns of the form That CN VP :

check whether an entity has both the CN and the VP property:

intRCN :: RCN -> Entity -> Bool

intRCN (CN1 cn vp) =

\ e -> ((intCN cn e) && (intVP vp e))

Interpretation of relativised common nouns of the form That CN NP

TV : check whether an entity has both the CN property as the property

of being the object of NP TV.

intRCN (CN2 cn np tv) =

\e -> ((intCN cn e) && (intNP np (intTV tv e)))



Testing it Out

LOLA1> intS (S (NP1 The Boy) Smiled)

False

LOLA1> intS (S (NP1 The Boy) Laughed)

True

LOLA1> intS (S (NP1 Some Man) Laughed)

True

LOLA1> intS (S (NP1 No Man) Laughed)

False

LOLA1> intS (S (NP1 Some Man) (VP1 Loved (NP1 Some Woman)))

True



Further Issues

• Syntax: if there is time.

• Quantifying-in: application of NP denotations to ‘PRO-abstractions’.

• Intensionality: add a type w for worlds, and build the type hierarchy

over t, e, w.

• Flexible typing

• Anaphoric linking: classical variable binding is not enough . . .

Next Lecture: The Dynamic Turn
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