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Features oligarchic growth

Towards oligarchy
– diverging (runaway) growth w/i

 same zone
– converging (normal) growth for

 different zones

2 components
– planetesimals (dominate Σ initially) 
– embryos (dominate dynamics)

During oligarchy
embryos feast on planetesimals, but 
also merge; feeding zone stays 
several RHill.

Slower than R.G.
but can still feature large Θ especially 
when planetesimals are damped (by 
gas).
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Velocity regimes

Dispersion-
dominated regime
Relative velocity (v∞) 
determined by 
eccentric motion of 
planetesimal

v∞ = evK

Shear-dominated 
regime
v∞determined by 
Keplerian shear

v∞ = (3/2)bΩK

Headwind regime
v∞determined by sub-
Keplerian headwind 
gas

v∞ = ηvK

Pebble Accretion
gas drag acts during 
encounter (tstop small)

Planetesimal Accretion
gas drag damps eccentricity on 
long timescales (τp >> 1)
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Shear-dominated interactions
 w/o gas drag

Hill accretion (shear-dominated; planetesimals)
– relevant when evK < RΗill ΩΚ  
– Only a small fraction of particles that enter the 

Hill sphere are accreted

Gas drag (small particles) changes this picture! 
→Pebble accretion

[Hill radii]

v∞ ~ RHillΩK
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Isolation mass

disk radius
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Isolation mass
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disk radius
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Isolation mass

Δ a=~b RHill
disk radius

Isolation mass
mass at which embryos have 
swept up all planetesimals

M iso (RHill)=2π aΣΔa
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Giant Planet formation
Disk instability model
gravitational instab. gas
– Toomre-Q < 1
– efficient cooling
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Giant Planet formation
Disk instability model
gravitational instab. gas
– Toomre-Q < 1
– efficient cooling
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Disk instability

Price (2014)
https://www.youtube.com/watch?v=hngA5CKIs58

https://www.youtube.com/watch?v=hngA5CKIs58
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Efficient cooling

Price (2014)
https://www.youtube.com/watch?v=_JgwlWDL3aw

https://www.youtube.com/watch?v=_JgwlWDL3aw
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Core accretion model
Disk instability model
(Lecture 9)
– Toomre-Q < 1
– efficient cooling

Giant planets
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Core accretion model

Planetesimals
– sticking (L8)
– GI instability (L9)
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– Pebble accretion

– Isothermal atmospheres around protoplanet

– Critical core mass

Blackboard
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Structure equations

Realistic atmosphere models
solve the stellar-structure equations:

Energy transport:  = min(∇ ∇rad, ∇ad)
– ∇rad :transport by radiation
– ∇ad  :transport by convection

Differences with stars
– boundary conditions
– Luminosity source

Continuity

Hydrostatic 
balance

Energy
transport

Luminosity 
conservation

E.O.S.

–

∇rad=
3κ L P

64 π σsbGM <r T
4 ∇ad=(d log T

d log P )
ad

P=P(T ,ρ)
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Realistic models

Mordasini, Alibert, Klahr & Henning (2012)

Time [yr] Time [yr]

Mcore

Matm

Mtot
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Realistic models

Mordasini, Alibert, Klahr & Henning (2012)

Time [yr]

Mcore

Matm

Mtot

Phase I
Mtot increases steeply

Phase II
Mtot slowly increases

Phase III
Mtot rapidly increases

Phase IV
growth Mtot stops
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Exercise 1.20
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Assessment: oligarchic growth 
model

Key advantage oligarchic growth 
model/planetesimal accretion
Tailored to solar system

Drawbacks...
– growth limited to isolation mass
– planetesimals prone to fragmentation
– all growth is local
– planetesimal accr. slow in outer disk
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Architecture solar system



  

Chris Ormel (2016) [Star & Planet Formation || Lecture 12: Protoplanet growth, planet atmospheres, & giant planet formation] 44/46

Kepler-56
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Gliese 581
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Kepler 11
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