L10: The 2 and 3 body problems

Lecture 10: two and three body problem

- Two body problem

Relative motion, Integrals of motion, orbit solution, anomalies, guiding center approximation, the orbit in space, orbital elements

- Three body problem
- Circular, restricted three body problem, Jacobi energy, zero velocity curves, Tisserand relation, Hill's equations

Blackboard

- Angular momentum, energy conservation, eccentricity vector, true anomaly, mean anomaly
- Guiding center approximation
- Circular, restricted three body problem: Jacobi integral

Guiding center approximation

Historical epicycles

Ptolemaic model

This matches observations very precisely! (but is wrong)

Kepler orbit

Kepler orbit

longitude of periapsis:

$$
\varpi=\omega+\Omega_{\text {node }}
$$

mean longitude:

$$
\lambda=\varpi+M
$$

$\mathbf{e}_{\mathrm{x}} \quad$ unit vector (coordinate frame)
$\Omega_{\text {node }} \quad$ longitude ascending node
ω
\checkmark true anomaly
M mean anomaly
i inclination

(c) Wikipedia by Tfr000-Own work, CC BY-SA 4.0,

Distributions

Swarms of bodies (planetesimals)

Provided that there are many mutual dynamical interactions, they follow distributions:
Rayleigh distributions inclination, eccentricity

Uniform distribution

 mean anomaly, argument of periapsis, longitude of ascending node, etc.

Rayleigh distribution
By Krishnavedala - Own work, C
C0, https://commons.wikimedia.
org/w/index.php?curid=25067844

CR3BP

CR3BP

Circular, restricted three-body problem:

- secondary on circular orbit
- tertiary a test particle (massless)

One constant of motion
J. Jacobi energy

properties/applications Jacobi energy

rotating frame:

$$
J=\frac{1}{2} \dot{\boldsymbol{r}}^{2}+\Phi-\frac{1}{2}(\boldsymbol{\omega} \times \boldsymbol{r})^{2}
$$

inertial frame (Exc. 2.2a):

$$
J=E-\omega \cdot \boldsymbol{l}=E-n_{p} l_{z}
$$

interpretation: energy E and A.M. I_{z} are exchanged, while J is conserved!

properties/applications Jacobi energy

rotating frame:

$$
J=\frac{1}{2} \dot{\boldsymbol{r}}^{2}+\Phi-\frac{1}{2}(\boldsymbol{\omega} \times \boldsymbol{r})^{2}
$$

inertial frame (Exc. 2.2a):

$$
J=E-\boldsymbol{\omega} \cdot \boldsymbol{l}=E-n_{p} l_{z}
$$

interpretation: energy E and A.M. I_{z} are exchanged, while J is conserved!

In orbital elements (Exc 2.2b):

$$
J=-\frac{G m_{\star}}{2 a}-n_{p} \sqrt{G m_{\star}\left(1-e^{2}\right) a} \cos i
$$

a.k.a. Tisserand relation; written $a=a_{p}+b$ we can approximate (Exc. 2.2c)

$$
J \approx \frac{G m_{\star}}{a_{p}}\left(-\frac{3}{8} \frac{b^{2}}{a_{p}^{2}}+\frac{e^{2}+i^{2}}{2}\right)
$$

A change in e (or i) results in a change in b and vice-versa!

Zero velocity curves

CR3BP concepts

J: Jacobi energy (integral of motion)
$\Phi_{\text {eff: }}$ effective potential (includes centrifugal term)
zero-velocity curves: constant $\Phi_{\text {eff }}$
Hill approximation: local frame (x, y) centered around planet

- neglects curvature
- approximates $\Phi_{\text {eff }}$
zero-velocity curves
These are not orbits!

$$
\begin{aligned}
& J=\frac{1}{2} \dot{r}^{2}+\Phi_{\mathrm{eff}} \\
& \Phi_{\mathrm{eff}}=-\frac{3}{2} n_{2}^{2} x^{2}+\frac{1}{2} n_{2}^{2} z^{2}-\frac{G m_{2}}{r}
\end{aligned}
$$

Hill's approximation (Exc. 2.3)

EOM in Hill's approximation

$$
\begin{aligned}
& \ddot{x}=-\frac{G m_{p}}{r^{3}} x+2 n_{p} v_{y}+3 n_{p}^{2} x \\
& \ddot{y}=-\frac{G m_{p}}{r^{3}} y-2 n_{p} v_{x}
\end{aligned}
$$

Equilibrium point at $(x, y)=\left(R_{\text {Hill }}, 0\right)$ Hill radius $R_{\text {Hill }}$:

$$
R_{\text {Hill }}=a_{p}\left(\frac{m_{p}}{3 m_{\star}}\right)^{1 / 3}
$$

EOM in Hill units:

$$
\ddot{x}=-\frac{3 x}{r^{3}}+2 v_{\mathrm{y}}+3 x \quad \ddot{y}=-\frac{3 y}{r^{3}}+2 v_{\mathrm{x}}
$$

The unperturbed solution
(for 0-eccentricy \& far from the planet)

$$
v_{x}=0 \quad v_{y}=-\frac{3}{2} x n_{p}
$$

which is known as the shearing sheet

Encounters

close, distant encounters

There are 3 types of interactions:

1. Horseshoe orbits
2. Close (Hill-penetrating) encounters
3. Distant encounters
\rightarrow encounters for $e=0$:
approach velocity is $v_{\text {rel }}=3 n_{p} x / 2$
dispersion- and shear-dominated regimes:
4. d.d.: $v_{\text {rel }}$ is set by eccentricity: $v_{\text {rel }} \sim e v_{K}$
5. s.d.: $v_{\text {rel }}$ is set by shear: $v_{\text {rel }} \sim n_{p} R_{\text {Hill }}$
or:

$$
\begin{aligned}
& \mathrm{e}>\sim R_{\text {Hill }} / a \text { a: d.d.-regime } \\
& \mathrm{e}<\sim R_{\text {Hill }} / \text { a: s.d.-regime }
\end{aligned}
$$

Horseshoe orbits (global frame)

Reading material

Astrophysics of

 Planet FormationPHILIP J. ARMITAGE

Cambumge

Best overall guide to planet formation
See also
http://arxiv.org/abs/1509.06382

Reading material

Gas \& stellar dynamics
Gravitational interactions, ToomreQ, epicycle approx, etc.

2-body, 3-body problem (Ch. 2, 3)

Exercise 2.1

Exercise 2.1 Guiding center:

(a) Consider two bodies in Kepler orbits separated by Δa in semimajor axis where $\Delta a \ll a$ and a is the semimajor axis of one of the bodies. Show that the synodical period, which is the time between successive conjunctions (close encounters), is

$$
\begin{equation*}
P_{\mathrm{syn}}=\frac{2 P}{3}\left(\frac{a}{\Delta a}\right) \tag{2.3}
\end{equation*}
$$

where P is the orbital period corresponding to a.
(b) Show that for $e \ll 1$ the equations of motions (Eq. [2.1]) can be approximated:

$$
\begin{align*}
r-a & \simeq-a e \cos (M) \tag{2.4}\\
v-M & \simeq 2 a e \sin (M) \tag{2.4b}
\end{align*}
$$

which is the guiding center approximation. The Keplerian motion is approximated by a superposition of a circle and an ellipse.

Bonus HW

Synodical period

Exercise 2.2

Exercise 2.2 Jacobi integral:

(a) Converting Equation (2.6) back to the inertial frame, show that:

$$
\begin{equation*}
J=E-\boldsymbol{\omega} \cdot \boldsymbol{l}=E-n_{p} l_{z} \tag{2.7}
\end{equation*}
$$

where E and l are the energy and angular momentum measured in the inertial frame. Hence, in the $\mathrm{CR}_{3} \mathrm{BP}$ interactions will exchange E and l, while J stays constant.
(b) Express J in orbital elements:

$$
\begin{equation*}
J=-\frac{G m_{\star}}{2 a}-n_{p} \sqrt{G m_{\star}\left(1-e^{2}\right) a} \cos i \tag{2.8}
\end{equation*}
$$

where n_{p} is the mean motion of the secondary and the other symbols refer to the test particle. Written in the form of Equation (2.8) (or analogous) the Jacobi integral is called the Tisserand relation.
(c) Let $a=a_{p}+b$ with a_{p} the semimajor axis corresponding to n_{p} and consider the limits where $b / a_{0} \ll 1, i \ll 1$ and $e \ll 1$. Show that in that case:

$$
\begin{equation*}
J \approx \frac{G m_{\star}}{a_{p}}\left(-\frac{3}{8} \frac{b^{2}}{a_{p}^{2}}+\frac{e^{2}+i^{2}}{2}\right) \tag{2.9}
\end{equation*}
$$

where we have discarded a constant term from J.

$$
J=\frac{1}{2} \dot{\boldsymbol{r}}^{2}+\Phi-\frac{1}{2}(\boldsymbol{\omega} \times \boldsymbol{r})^{2}
$$

(a) Find relation for velocity in local frame and inertial frame
(b) Insert orbital elements
(c) Taylor-expands in terms of $b / a_{p} \ll 1$

Exercise 2.3 (HW)

Exercise 2.3 Hill's equations:

(a) Show that the equations of motion in Hill's approximation are:

$$
\begin{align*}
\ddot{x} & =-\frac{G m_{p}}{r^{3}} x+2 n_{p} v_{y}+3 n_{p}^{2} x \tag{2.13a}\\
\ddot{y} & =-\frac{G m_{p}}{r^{3}} y-2 n_{p} v_{x} \tag{2.13b}
\end{align*}
$$

where $r^{2}=x^{2}+y^{2}$ if we restrict the motion to the orbital plane.
(b) Show that zero eccentricity particles at distances far from the secondary obey $v_{y}=-\frac{3}{2} n_{p} x$ and $v_{x}=0$. This (local) approximation of the Keplerian flow is known as the shearing sheet.
(c) Equilibrium points are points where $\ddot{\boldsymbol{r}}=\dot{\boldsymbol{r}}=0$. Show that these Lagrange points are located at $(x, y)=\left(\pm R_{\text {Hill }}, 0\right)$ where $R_{\text {Hill }}$ is the Hill radius:

$$
\begin{equation*}
R_{\text {Hill }}=a_{p}\left(\frac{m_{p}}{3 m_{\star}}\right)^{1 / 3} \tag{2.14}
\end{equation*}
$$

(d) Are these stable or unstable equilibrium points?
(e) What is the Jacobi constant at the Lagrange point $\left(J_{L}\right)$? And what is the Jacobi constant far from the perturber (J_{∞}), assuming $e=0$. What
(e) You can assume dr/dt = 0 at the Lagrange point is the half-width x_{hs} of the corresponding horseshoe orbit?

