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Gravitational instability and 
planetesimal formation

● Dispersion relation
– for thin disks, Toomre-Q 
– giant planet formation
– planetesimal formation: Goldreich-Ward (GW) 

mechanism

● Collective effects
– Collective particle velocities, Kelvin-Helmholtz instability, 

Streaming instability
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From last week...

Sticking of micron-size grains ✓
– low Δv
– large vstick

Sticking of mm/cm-size pebbles ?
– Δv increases (turbulence, drift)
– vstick decrease

Meter-size boulders unlikely to stick
– “meter size” (τp~1) barrier
– caveat: fractal growth (?)

Perhaps growth by sticking stalls
(bouncing, fragmentation)

However: (even small) particles 
can settle into a very thin midplane

The dust-dominated midplane may 
become gravitationally-unstable 
and collapses (fragments) into 
planetesimals!

hgas
midplane
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– dispersion relation for thin disks:

ω2 = κ2 -2πGΣk +k2cs
2

– giant planet formation

– planetesimal formation

Blackboard



  

Chris Ormel (2016) [Star & Planet Formation || Lecture 9: Gravitational instability and planetesimal formation] 5/25

Dispersion relation results

Gas Solids

Name Disk instability Goldreich-Ward
mechanism

Important scales λc = 2cs
2/GΣgas

(most unstable λ)
λc= 4π2Σp/Ω

2

(λ>λc unstable)

Condition instability QT < 1
Also: cooling gas

hp < λc

Outcome Gas giants Planetesimals

Problem: – Need massive disk
– rapid cooling
– too massive planets?

Kelvin-Helmholtz (KH) 
turbulence
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Kelvin-Helmholtz turbulence

Kevin Schaal/youtube
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Dust-dominant layer

midplane (dust dominated)

z

r

gas dominant

Settling
Particles end up near z~0.

Collectively their density 
exceeds that of the gas: 
ρp>ρgas (in midplane)

dust dominate the 
dynamics → 

midplane tends to Keplerian 
rotation and drags gas 
along

Difference of ~ηvK triggers 
KH-instability

midplane

layer above midplane 
(dust-free)

rotates:
vK – ηvK

vK

z

φ
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Driving equations
(Sometimes referred to as NSH-solutions, after Nagakawa et al. 1986)

Back reaction
(Newton's 3rd law)

Pressure gradient
(involves ηvK)

net acceleration
in rotating frame
(approximate 0)

solids:

gas:

4 equations, 4 unknown
→ solve ur, uφ, vr vφ

as function of ρp, tstop

For the KH-instability
we are interested in uφ at midplane

Q: Instability when: A) uφ = 0
B) uφ = -ηvK
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Solution

Z :dust-to-gas ratio “metallicity”
τp :dimensionless tstop
η :pressure gradient parameter

HW 1.10
interpret limits

Z → 0
τp→ 0, ∞

For the KHI uφ is the most relevant

uφ→ 0: midplane rotates Keplerian,
vertical shear (KHI)

uφ→ –ηvK: midplane rotates 
subKeplerian, no vertical shear

Solids

Gas
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NSH solution

Whether or not the KHI is triggered 
depends on the Richardson 
number:

nominator 
buoyancy (stabilizing)

denominator
shear (destabilizing)

Ricrit

critical Richardson number; around 
unity; Ri > Ricrit for stability
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Recapitulate...
Goal: planetesimal formation

particle collisions
uncertain (Δv ~ 10 m/sec)

GI of a dense solid layer
a.k.a. Goldreich-Ward 
mechansim

Requires:
a very thin particle disk 
(hp < λc)

Problem:
very thin particle layers will force 
the gas to move Keplerian and 
can trigger KHI when Ri < 1

No KHI:
Disks avoid triggering KHI
→ GW-mechanism viable

Planetesimals!

KHI triggered:
→ Turbulence lofts particle 
back up (hp > λc); no GI

No planetesimals
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Streaming instability

KH-stable?
In HW 1.11 you will assess 
w/r or not the GW-mechanism 
is viable

A: only for very massive disks

Alternative: 
One can conduct a linear 
perturbation analysis to the 
(KH-stable) NSH-solutions for 
the 2-fluid (dust+gas) mixture! 

It turns out that the 2-fluid 
harbors exponentially-growing 
modes for ρp, especially for 
τp~1 particles. This is known 
as the streaming instability
(Youdin & Goodman 2005)



  

Chris Ormel (2016) [Star & Planet Formation || Lecture 9: Gravitational instability and planetesimal formation] 16/25

Streaming instability

Streaming instability (SI)
Linear perturbation analysis 
(Youdin & Goodman 2005) quite 
technical. 

SI occurs even in absence of 
self-gravity!

Best analogies are clusters of 
cyclists or geese that organize 
themselves in the optimal way to 
deal with the headwind!

Nonlinear effects occur when 
perturbations gets large; can 
best be investigates by 
hydrodynamical simulations

… and bound clumps when 
gravity is accounted for
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Streaming instability

Johansen, Klahr, & Henning 
(2011) 

Initial condition: dense-layer of 
pebble-size particles: 
τp ~ 0.25–1

Unit of mass is Ceres 
(already 1,000 km)

Very big planetesimals form, 
but this may be a question of 
resolution
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Homework set changes

● New deadline: Tuesday 13:00 (sharp! no 
delays/exceptions!)

● No more scans!
● Bonus questions (updated problem set on BB)
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Project (2 more weeks)

Communicate!
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Exercise 1.9

Bonus HW
compare the (specific) 
energy across a scale λ

e.g. Etherm ~ λ2 cs
2

only Toomre-Q criterion
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Exercise 1.10 (HW)

(a)–(c) You get kudos 
only for the physical 
interpretation! (“What 
does it mean”)

(d) More challenging. 
Take τp= 0 and show 
that this effectively 
lowers η. Consider the 
definition of η to see 
why you get a reduced 
headwind?
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Exercise 1.11 (HW)

This is a challenging 
exercise. See HW-notes 
for instructions!

You should “estimate” 
the gradients involved in 
the definition of Ri, e.g.,

dρ → Δρ = …
dz → Δz = …
duφ→ Δuφ = ...
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Exercise 1.12 (HW)

This is another n*σ*Δv 
exercise.

You can assume that Δv  is 
given by the eccentricity of 
the planetesimals (dispersion-
dominated regime)
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