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Abstract. SaC is a purely functional array processing language de-
signed with compute-intensive numerical applications in mind. The declar-
ative, generic style of programming in SaC is demonstrated by means of
a small case study: 3-dimensional complex fast-Fourier transforms. The
impact of abstraction on expressiveness, readability, and maintainabil-
ity of code as well as on clarity of underlying mathematical concepts
is discussed and compared with other approaches. The associated im-
pact on runtime performance is quantified both in uniprocessor and in
multiprocessor environments.

1 Introduction

Functional languages are generally considered well-suited for parallelization. Pro-
gram execution is based on the principle of context-free substitution of expres-
sions. Programs are free of side-effects and adhere to the Church-Rosser property.
Any two subexpressions without data dependencies can be executed in parallel
without any further analysis.

Classical domains of parallel computing like image processing or computa-
tional sciences are characterized by large arrays of numerical data [1]. Unfortu-
nately, almost all functional languages focus on lists and trees, not on arrays. No-
tational support for multi-dimensional arrays is often rudimentary. Even worse,
sequential runtime performance in terms of memory consumption and execution
times fails to meet the requirements of numerical applications [2–4].

SaC (Single Assignment C) [5] is a purely functional array language. Its
design aims at combining generic, high-level array processing with a runtime
performance that is competitive with low-level machine-oriented programs writ-
ten in C or Fortran. The core syntax of SaC is a subset of C with a strict,
purely functional semantics based on context-free substitution of expressions.
Nevertheless, the meaning of functional SaC code coincides with the state-based
semantics of literally identical C code. This design is meant to facilitate conver-
sion to SaC for programmers with a background in imperative languages.

The language kernel of SaC is extended by multi-dimensional, stateless ar-
rays. In contrast to other array languages, SaC provides only a very small set of



built-in operations on arrays, mostly primitives to retrieve data pertaining to the
structure and contents of arrays. All aggregate array operations are specified in
SaC itself using a versatile and powerful array comprehension construct, named
with-loop. with-loops allow code to abstract not only from concrete shapes
of argument arrays, but even from concrete ranks (number of axes or number
of dimensions) . Moreover, such rank-invariant specifications can be embedded
within functions, which are applicable to arrays of any rank and shape.

By these means, most built-in operations known from Fortran-95 or from
interpreted array languages like Apl, J, or Nial can be implemented in SaC

itself without loss of generality [6]. SaC provides a comprehensive selection of
array operations in the standard library. In contrast to array support which is
hard-wired into the compiler, our library-based solution is easier to maintain, to
extend, and to customize for varying requirements.

SaC propagates a programming methodology based on the principles of ab-
straction and composition. Like in Apl, complex array operations and entire ap-
plication programs are constructed by composition of simpler and more general
operations in multiple layers of abstractions. Unlike Apl, the most basic build-
ing blocks of this hierarchy of abstractions are implemented by with-loops, not
built-in. Whenever a basic operation is found to be missing during program de-
velopment, it can easily be added to the repertoire and reused in future projects.

Various case studies have shown that despite a generic style of programming
SaC code is able to achieve runtime performance figures that are competitive
with low-level, machine-oriented languages [7, 8, 5, 9]. We achieve this runtime
behaviour by the consequent application of standard compiler optimizations in
conjunction with a number of tailor-made array optimizations. They restruc-
ture code from a representation amenable to programmers and maintenance to-
wards a representation suitable for efficient execution by machines [10, 5, 9, 11].
Fully compiler-directed parallelization techniques for shared memory architec-
tures [12–14] further enhance performance. Utilization of a few additional pro-
cessing resources often allow SaC programs to outperform even hand-optimized
imperative codes without any additional programming effort.

The rest of the paper is organized as follows. Section 2 gives a short intro-
duction to SaC, while Section 3 further elaborates on programming methodol-
ogy. Section 4 applies the techniques to a well-known benchmark: 3-dimensional
complex FFT. Section 5 provides a quantitative analysis, while Section 6 draws
conclusions and outlines directions of future work.

2 SAC — Single Assignment C

Essentially, SaC is a functional subset of C extended by multi-dimensional state-
less arrays as first class objects. Arrays in SaC are represented by two vectors.
The shape vector specifies an array’s rank and the number of elements along
each axis. The data vector contains all elements of an array in row-major order.
Array types include arrays of fixed shape, e.g. int[3,7], arrays of fixed rank,
e.g. int[.,.], arrays of any rank, e.g. int[+], and a most general type encom-



passing both arrays of any rank and scalars: int[*]. The hierarchy of array
types induces a subtype relationship. SaC supports function overloading both
with respect to different base types and with respect to the subtype relationship.

SaC provides a small set of built-in array operations, basically primitives
to retrieve data pertaining to the structure and contents of arrays, e.g. an
array’s rank (dim(array)), its shape (shape(array)), or individual elements
(array[index-vector]). Compound array operations are specified using with-
loop expressions. As defined in Fig. 1, a with-loop basically consists of three
parts: a generator, an associated expression and an operation.

WithLoopExpr ⇒ with Generator : Expr Operation

Generator ⇒ ( Expr Relop Identifier Relop Expr [ Filter ] )
Relop ⇒ <= | <

Operation ⇒ genarray ( Expr [ , Expr ] )

| fold ( FoldOp , Expr )

Fig. 1. Syntax of with-loop expressions.

The operation determines the overall meaning of the with-loop. There are
two variants: genarray and fold. With genarray( shp, default ) the with-
loop creates a new array. The expression shp must evaluate to an integer vec-
tor, which defines the shape of the array to be created. With fold( foldop,

neutral ) the with-loop specifies a reduction operation. In this case, foldop
must be the name of an appropriate associative and commutative binary oper-
ation with neutral element specified by the expression neutral .

The generator defines a set of index vectors along with an index variable
representing elements of this set. Two expressions, which must evaluate to integer
vectors of equal length, define lower and upper bounds of a rectangular index
vector range. An optional filter may be used to further restrict generators to
various kinds of grids; for simplification we omit this detail in the following.

For each element of the set of index vectors defined by the generator the
associated expression is evaluated. Depending on the variant of with-loop, the
resulting value is either used to initialize the corresponding element position of
the array to be created (genarray), or it is given as an argument to the fold
operation (fold). In the case of a genarray-with-loop, elements of the result
array that are not covered by the generator are initialized by the (optional)
default expression in the operation part. For example, the with-loop
with ([1,1] <= iv < [3,4]) : iv[0] + iv[1]
genarray( [3,5], 0)

yields the matrix





0 0 0 0 0
0 2 3 4 0
0 3 4 5 0



 while the with-loop

with ([1,1] <= iv < [3,4]) : iv[0] + iv[1]
fold( +, 0)

evaluates to 21. More information on SaC is available at www.sac-home.org.



3 Programming methodology

As pointed out in the introduction, SaC propagates a programming methodology
based on the principles of abstraction and composition. The usage of vectors in
with-loop generators as well as in the selection of array elements along with the
ability to define functions which are applicable to arrays of any rank and size
allows us to implement generic compound array operations in SaC itself.

double[+] abs( double[+] a)
{
res = with (. <= iv < shape(a)) : abs(a[iv])

genarray( shape(a));

return( res)
}

bool[+] (>=) ( double[+] a, double[+] b)
{
res = with (. <= iv <= .) : a[iv] >= b[iv]

genarray( min( shape(a), shape(b)));

return( res)
}

bool any( bool[+] a)
{
res = with (0*shape(a) <= iv < shape(a)) : a[iv]

fold( ||, false);

return( res)
}

Fig. 2. Defining rank-invariant aggregate array operations in SaC.

Fig. 2 illustrates the principle of abstraction by rank-invariant definitions of
three standard aggregate array operations. abs and <= extend the corresponding
scalar functions to arrays of any rank and shape. The function any is a standard
reduction operation, which yields true if any of the argument array elements is
true, otherwise it yields false.

Some of the generators use the dot notation for lower or upper bounds.
The dot represents the smallest or the largest legal index vector of the result
array of a genarray-with-loop. The notation facilitates specification of frequent
operations on all or on all inner elements of arrays.

In analogy to the examples in Fig. 2 most built-in operations known from
other array languages can be implemented in SaC itself. The array module of the
SaC standard library includes element-wise extensions of the usual arithmetic
and relational operators, typical reduction operations like sum and product,
various subarray selection facilities, as well as shift and rotate operations.

Basic array operations defined by with-loops lay the foundation to con-
structing more complex operations by means of composition, as illustrated in



bool cont( double[*] new, double[*] old, double eps)
{
return( any( abs( new - old) >= eps))

}

Fig. 3. Defining array operations by composition.

Fig. 3. We define a generic convergence criterion for iterative algorithms of any
kind purely by composition of basic array operations. Following this composi-
tional style of programming, more and more complex operations and, eventually,
entire application programs are built.

The strength of this generic rank-invariant programming style is the ability
to specify array operations that are universally applicable to arrays of any shape,
a property that is usually limited to built-in primitives in other languages.

4 Case study: NAS benchmark FT

In this section, we apply the generic programming techniques of SaC to a small
but representative case study: 3-dimensional complex FFT. As part of the NAS
benchmark suite [15] this numerical kernel has previously been used to assess the
suitability of languages and compilers. Formal benchmarking rules and existing
implementations in many languages ensure comparability of results. The NAS
benchmark FT implements a solver for a class of partial differential equations
by means of repeated 3-dimensional forward and inverse complex fast-Fourier
transforms. They are implemented by consecutive collections of 1-dimensional
FFTs on vectors along the three dimensions., i.e., an array of shape [X,Y,Z] is
consecutively interpreted as a ZY matrix of vectors of length X, as a ZX matrix
of vectors of length Y, and as a XY matrix of vectors of length Z.

complex[.,.,.] FFT( complex[.,.,.] a, complex[.] rofu)
{
b = { [.,y,z] -> FFT( a[.,y,z], rofu) };
c = { [x,.,z] -> FFT( b[x,.,z], rofu) };
d = { [x,y,.] -> FFT( c[x,y,.], rofu) };

return( d);
}

Fig. 4. SaC implementation of 3-dimensional FFT.

As shown in Fig. 4, the algorithm can be carried over into a SaC specifica-
tion almost literally. The function FFT takes a 3-dimensional array of complex
numbers (complex[.,.,.]) and consecutively applies 1-dimensional FFTs to
all subvectors along the x-axis, the y-axis, and the z-axis. The SaC code takes
advantage of the axis control notation. This notation facilitates specification of
operations along one or multiple whole axes of argument arrays. Applications
of this notation are transformed into with-loops in a pre-processing step. A



detailed introduction to both usage and compilation can be found in [16]. The
additional parameter rofu provides a pre-computed vector of complex roots of
unity, which is used for 1-dimensional FFTs.

complex[.] FFT(complex[.] v, complex[.] rofu)
{
even = condense(2, v);
odd = condense(2, rotate( [-1], v));
rofu_even = condense(2, rofu);

fft_even = FFT1d( even, rofu_even);
fft_odd = FFT1d( odd, rofu_even);

left = fft_even + fft_odd * rofu;
right = fft_even - fft_odd * rofu;

return( left ++ right);
}

complex[2] FFT(complex[2] v, complex[1] rofu)
{
return( [v[[0]] + v[[1]] , v[[0]] - v[[1]]]);

}

Fig. 5. SaC implementation of 1-dimensional FFT.

The overloaded function FFT on vectors of complex numbers (complex[.])
almost literally implements the Danielson-Lanczos algorithm [17]. It is based on
the recursive decomposition of the argument vector v into elements at even and
at odd index positions. The vector even can be created by means of the library
function condense(n,v), which selects every n-th element of v. The vector odd
is generated in the same way after first rotating v by one index position to the
left. FFT is then recursively applied to even and to odd elements, and the results
are combined by a sequence of element-wise arithmetic operations on vectors of

typedef double[2] complex

complex (*) (complex a, complex b)
{
return( [ a[0] * b[0] - a[1] * b[1],

a[0] * b[1] + a[1] * b[0] ]);
}

complex[+] (*) (complex[+] a, complex[+] b)
{
res = with (. <= iv <= .) : a[iv] * b[iv]

genarray( min( shape(a), shape(b)));

return( res);
}

Fig. 6. Complex numbers in SaC.



complex numbers and a final vector concatenation (++). A direct implementation
of FFT on 2-element vectors (complex[2]) terminates the recursion.

Note that unlike Fortran neither the data type complex nor any of the
operations used to define FFT are built-in in SaC. Fig.6 shows an excerpt from
the complex numbers module of the SaC standard library.

subroutine cffts1 ( is,d,x,xout,y)

include ’global.h’
integer is, d(3), logd(3)
double complex x(d(1),d(2),d(3))
double complex xout(d(1),d(2),d(3))
double complex y(fftblockpad, d(1), 2)
integer i, j, k, jj

do i = 1, 3
logd(i) = ilog2(d(i))

end do

do k = 1, d(3)
do jj = 0, d(2)-fftblock, fftblock
do j = 1, fftblock
do i = 1, d(1)
y(j,i,1) = x(i,j+jj,k)

enddo
enddo

call cfftz (is, logd(1),
d(1), y, y(1,1,2))

do j = 1, fftblock
do i = 1, d(1)
xout(i,j+jj,k) = y(j,i,1)

enddo
enddo

enddo
enddo

return
end

subroutine fftz2 ( is,l,m,n,ny,ny1,u,x,y)

integer is,k,l,m,n,ny,ny1,n1,li,lj
integer lk,ku,i,j,i11,i12,i21,i22
double complex u,x,y,u1,x11,x21
dimension u(n), x(ny1,n), y(ny1,n)

n1 = n / 2
lk = 2 ** (l - 1)
li = 2 ** (m - l)
lj = 2 * lk
ku = li + 1

do i = 0, li - 1
i11 = i * lk + 1
i12 = i11 + n1
i21 = i * lj + 1
i22 = i21 + lk
if (is .ge. 1) then
u1 = u(ku+i)
else
u1 = dconjg (u(ku+i))
endif
do k = 0, lk - 1
do j = 1, ny
x11 = x(j,i11+k)
x21 = x(j,i12+k)
y(j,i21+k) = x11 + x21
y(j,i22+k) = u1 * (x11 - x21)

enddo
enddo

enddo

return
end

Fig. 7. Excerpts from the Fortran-77 implementation of NAS-FT.

In order to help assessing the differences in programming style and abstrac-
tion, Fig. 7 shows excerpts from about 150 lines of corresponding Fortran-77

code. Three slightly different functions, i.e. cffts1, cffts2, and cffts3, in-
tertwine the three transposition operations with a block-wise realization of a
1-dimensional FFT. The iteration is blocked along the middle dimension to im-
prove cache performance. Extents of arrays are specified indirectly to allow reuse
of the same set of buffers for all orientations of the problem. Function fftz2 is
part of the 1-dimensional FFT. It must be noted that this excerpt represents
high quality code, which is well organized and well structured. It was written by
expert programmers in the field and has undergone several revisions. Everyday
legacy Fortran-77 code is likely to be less “intuitive”.

5 Experimental evaluation

This section investigates the runtime performance achieved by code compiled
from the SaC specification of NAS-FT, as outlined in the previous section. It is



compared with that of the serial Fortran-77 reference implementation coming
with the NAS benchmark suite 2.31, with a C implementation derived from the
Fortran-77 code and extended by OpenMP directives2 by Real World Com-
puting Partnership (RWCP), and last but not least with the fastest Haskell

implementation proposed in [4]. All experiments were made on a 12-processor
SUN Ultra Enterprise 4000 shared memory multiprocessor using SUN Workshop
compilers.
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Fig. 8. Single processor performance of NAS-FT.

Fig. 8 shows sequential execution times for Fortran, C, and SaC. For both
size classes investigated, Fortran-77 outperforms SaC by less than a factor of
2.4 while C outperforms SaC by less than a factor of 2.0. The performance of
a few lines of highly generic SaC code is in reach of hand-optimized imperative
implementations of the benchmark. The remaining performance gap must to a
large extent be attributed to dynamic memory management overhead caused by
the recursive decomposition of argument vectors when computing 1-dimensional
FFTs. Unlike SaC, both imperative implementations use a static memory layout.
Haskell runtimes are omitted in Fig. 8 because with more than 27 minutes
runtime for size class W it is more than 2 orders of magnitude slower than the
other candidates. Furthermore, Haskell fails altogether to compute size class
A in a 32-bit address space. Therefore, we have excluded Haskell from further
experiments.

Fig. 9 shows the scalability achieved by the 3 candidates, i.e. parallel exe-
cution times divided by each candidate’s best serial runtime. Whereas hardly any
performance gain can be observed for automatic parallelization of the Fortran-77

code, SaC achieves speedups of up to 5.5 and up to 6.0 for size classes W and
A, respectively. With these figures SaC even slightly outperforms OpenMP in
terms of scalability.

Fig. 10 shows absolute runtimes using ten processors. Due to its superior
sequential performance the C/OpenMP combination achieves the best abso-

1 The source code is available at http://www.nas.nasa.gov/Software/NPB/ .
2 The source code is available at http://phase.etl.go.jp/Omni/ .
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Fig. 9. Speedups achieved by multithreaded execution.

lute runtimes. However, this comes at the expense of 25 compiler directives for
guiding parallelization. While parallelization of the SaC code is completely im-
plicit like a compiler optimization, the resulting performance is still in reach
of explicit approaches. It clearly outperforms automatic parallelization of the
original Fortran-77 code.
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Fig. 10. 10-processor performance of NAS-FT.

6 Conclusions and future work

SaC aims at combining high-level, generic array programming with competi-
tive runtime performance. The paper evaluates this approach based on the NAS
benchmark FT. It is shown how 3-dimensional FFTs can be assembled by about
15 lines of SaC code as opposed to about 150 lines of fine-tuned Fortran-77

or C code. Due to its conciseness and high level of abstraction the SaC code
clearly exhibits underlying mathematical algorithms, which are completely dis-
guised by performance-related coding tricks in the case of Fortran-77 or C.



Development and maintenance of these codes require deep knowledge about
computer architecture and corresponding optimization techniques, e.g. padding,
tiling, buffering, or iteration ordering.

Nevertheless, the SaC runtime is within a factor of 2.4 of the Fortran-77

code and within a factor of 2.0 of the C code. In contrast, using the general-
purpose functional language Haskell leads to a performance degradation of
more than two orders of magnitude and prohibitive memory demands for non-
trivial problem sizes. Furthermore, SaC by simple recompilation outperforms
both low-level imperative implementations with only 4 processors of an SMP sys-
tem. In contrast, only annotation with 25 OpenMP directives succeeded in ex-
ploiting multiple processors, whereas implicit parallelization of the Fortran-77

code failed to achieve any performance improvements.
Future work is basically twofold. First, various inefficiencies in the inter-

mediate SaC code should be overcome by additional symbolic program trans-
formations, which may allow us to further close the performance gap between
SaC and low-level solutions. Second, we would like to extend the comparative
study to other benchmark implementations, e.g. Mpi-based parallelization of
Fortran-77 and C codes, a data parallel Hpf implementation, or a presum-
ably faster Haskell implementation based on strict and unboxed arrays.
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