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SUMMARY

This paper describes our experience in implementing the classical N-body algorithm in SAC and analysing
the runtime performance achieved on three different machines: a dual-processor 8-core Dell PowerEdge
2950 (a Beowulf cluster node, the reference machine), a quad-core hyper-threaded Intel Core-i7 based
system equipped with an NVidia GTX-480 graphics accelerator and an Oracle Sparc T4-4 server with a
total of 256 hardware threads. We contrast our findings with those resulting from the reference C code and
a few variants of it that employ OpenMP pragmas as well as explicit vectorisation.

Our experiments demonstrate that the SAC implementation successfully combines a high-level of
abstraction, very close to the mathematical specification, with very competitive runtimes. In fact, SAC
matches or outperforms the hand-vectorised and hand-parallelised C codes on all three systems under
investigation without the need for any source code modification. Furthermore, only SAC is able to effectively
harness the advanced compute power of the graphics accelerator, again by mere recompilation of the same
source code. Our results illustrate the benefits that SAC provides to application programmers in terms of
coding productivity, source code and performance portability among different machine architectures, as
well as long-term maintainability in evolving hardware environments.
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1. INTRODUCTION

The SICSA MultiCore Challenge is a long term initiative that aims at evaluating the state of the art in
programming language support for multi-core systems. Since 2010, two programming challenges
have been identified; researchers have been invited to contrast programming languages of their
choice against a given reference implementation on a given reference system. For details on the
SICSA MultiCore Challenge see [22].

This paper focuses on the second SICSA challenge, themed around the N-body problem. The N-
body problem is that of predicting the motion of a group of celestial objects, interacting with each
other gravitationally. As formulated in “Philosophiae Naturalis Principia Mathematica” by Sir Isaac
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Newton, the N-body problem can be described as a system of the following differential equations:

n
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where mq, ms,...m, are point masses of the planets, ¢i,¢g2,...,q, are 3-dimensional vector
functions of time variable ¢ describing the positions of the point masses and G is the universal
gravitational constant. It is assumed that initial positions ¢;(0) and velocities ¢;(0) are defined, and
0:(0) # 4;(0) if i # j.

The classical way to approximate ¢;(¢) for all ¢ and a given interval for ¢ is to use numerical
integration, separating the second-order differential equation into two first-order equations, and to
apply the Euler method of order one. This leads to the following equations, where k indicates the
discretised time while v; and a; denote ¢; (velocity) and §; (acceleration), respectively.
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This discretised form straightforwardly leads to an algorithm of complexity O(N?), which is
often referred to as all-pairs N-body simulation. In practice, however, this algorithm is rarely used
as such because its quadratic complexity makes it prohibitively expensive as the number of bodies
increases. More sophisticated techniques, such as Barnes-Hut[1], are more popular in practice.
They are based on the observation that distant objects have negligible gravitational effect on each
other and, hence, can be accounted for in a cumulative fashion. This brings down the complexity
to O(Nlog(N)). However, as part of the Barnes-Hut algorithm, the effect of all bodies within a
given local scope are treated individually, typically by applying the simple all-pairs algorithm,
as explained above. As a consequence, the all-pairs algorithm itself can nevertheless be seen as
a suitable object for analysis. The ability to program and parallelise this algorithm effectively
constitutes an important prerequisite for any effective Barnes-Hut implementation.

In this paper, we look at a SAC implementation of the all-pairs algorithm. SAC (Single
Assignment C) is a purely functional programming language with a C-like syntax whose most
prominent feature is genuine support for truly multidimensional and truly functional (state-free)
arrays [8, 18]. SAC aims at combining high programmer productivity with high performance
across a range of multi-core architectures, a goal that aligns very well with the SICSA MultiCore
Challenge.

SAC achieves high programmer productivity through extreme abstraction. In fact, SAC programs
often remain very close to abstract algorithmic or even mathematical specifications. For instance,
all memory management for aggregate data structures like arrays is completely automatic. SAC
programs permit a high level of code reuse across applications and across a range of parallel target
platforms from multi-socket multi-core systems [6] to GPGPU-style graphics accelerators [10].
Fully automatic parallelisation, regardless of the chosen target architecture, is a fundamental
characteristic of SAC. Thus, in contrast to the pragmas of OpenMP [17, 16] or the explicit kernels
of CUDA [14] and OpenCL [11, 15] SAC programs are 100% target architecture agnostic.

At first glance, the design principles of SAC seem to be fundamentally at odds with the goal of
high performance: highly efficient programs typically avoid unnecessary abstraction. They rather
aim at minimising the materialisation of redundant computations and redundant data structures that
often result from high-level program specifications. Furthermore, efficient programs are usually
finely tuned to the executing machinery, in particular when it comes to targeting multi-core and
other parallel systems.

SAC attacks this seemingly insuperable divide between high productivity and high performance
through aggressive compiler optimisation exploiting the purely functional, side-effect-free
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semantics. Advanced code transformations, such as with-loop folding [19, 20], with-loop fusion [7],
and with-loop scalarisation [9], systematically transform SAC programs from a highly problem-
oriented representation into a radically different machine-oriented representation. From that
representation, dedicated code generators derive tailor-made code for a variety of hardware
architectures.

In this paper, we put the SAC approach to the test by looking at the all-pairs N-body algorithm. We
derive an algorithmic specification as close as possible to the underlying mathematics and evaluate
how it performed on three different contemporary multi-core machines featuring four different
processor architectures: a 2-processor 8-core Intel Xeon based SMP server (a single node of the
Beowulf cluster), an Intel Core-i7 based multi-core system equipped with an NVidia GTX-480
graphics accelerator and an Oracle Sparc SuperCluster T4-4 server with 4 processors, 32 cores and
256 hardware threads in total. Given the embarrassingly parallel nature of the algorithm, we contrast
the SAC runtimes with those of the given reference implementation in C. We also look at variants of
the C code which aim at improving its multi-core performance: we investigate multi-core scalability
by OpenMP annotations, and we explore the potential of explicit vectorisation.

The structure of our paper follows the guidelines for this special issue. The next section gives
a brief introduction into the programming languages under consideration. It summarises SAC, the
vector extensions we use to enforce vectorisation of the reference code and OpenMP, which we
employ to hand-parallelise the reference implementation. Section 3 gives a more detailed account of
the three systems we use for our experiments In Section 4, we describe the various implementations
that form the basis of our experiments. Section 5 presents the experiments themselves and their
analysis. We primarily concentrate on wall-clock times achieved for the given input data for easier
cross-paper comparisons within this special issue. However, we also look at scalability effects for
increased problem sizes. We draw conclusions in Section 6.

2. LANGUAGES AND LIBRARIES

2.1. SAC — Single Assignment C

Single Assignment C — SAC for short — is an array language that looks like C, feels like C, but
nonetheless is purely functional with execution driven by the principle of context-free substitution
and data represented by immutable values. The main idea of SAC is to provide a framework
to operate with arrays. Hence, types in SAC represent arrays with potentially unknown ranks
(number of axes or dimensions) and shapes (extents along axes/dimensions). In order to keep the
language functional, SAC rules out expressions with side-effects, undefined behaviour, pointers,
etc. This allows the compiler to use implicit memory management and to make decisions about
parallel execution of certain code parts without requiring programmer-specified annotations. In
the following we merely introduce some key concepts of SAC to facilitate understanding of code
examples. For more information the interested reader is referred to [8, 21].

As we mentioned before, all types in SAC are array types, and the size of an array is a type
attribute, rather than a variable attribute. For example, in order to declare an array of 5 integers, one
would write the following declaration:

int[5] A;
In SAC, array types can also be specified without a static size, but with a given dimension, e.g. a
two-dimensional array of double of arbitrary size can be defined as following:

double[.,.] A;
Furthermore, SAC supports rank-generic programming through types that leave even the number of
dimensions of an array open:

float [x] A;
For each base type, SAC features a hierarchy of array types, as illustrated in Fig. 1, and supports

overloading of functions accordingly. Built-in primitives allow programs to query for the ranks,
shapes and elements of generic arrays.
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AUD Class:
int[+] rank: dynamic
shape: dynamic
AKD Class:
rank: static
shape: dynamic

AKS Class:

int  int[1] .. int[42] ..  int[1,1] .. intf3,7] ... rank:static
shape: static

Figure 1. Type hierarchy of SAC

One of the key language constructs in SAC is the with-loop. It is a data-parallel array
comprehension construct, by which the programmer specifies how index sets are to be mapped into
element values. Depending on the with-loop used, the computed values are subsequently either
laminated to form an array or they are folded into a single value. The with-loop is used in SAC to
express potentially parallel operations. As an example, consider generating a matrix A of shape M
by N, where all elements at index position i, j are computed through some function foo (i, 7).
In SAC this can be achieved by:

A = with
([0,0] <=T[i,j] <= [M\N]): foo (i,j);
} . genarray ([M,N], 0);
Note that the zero in the end of this specification denotes a default element which would be used
instead of foo (i, j) if the index range would not be fully covered.

SAC does not provide built-in arithmetic array operations, but the standard library defines a
plethora of array operations making use of rank-generic programming, shapely overloading and
the above with-loop construct. For example, it is possible to add two objects of the same type and
shape, in which case the operation is applied element-wise. Arithmetic operations of different types
are also supported, e.g. it is possible to multiply an arbitrarily shaped array by a scalar or vice versa.
The usual reduction operations are likewise provided.

A thorough introduction to programming in SAC can, for instance, be found in [4].

2.2. Portable vectorisation in gcc

Despite the omnipresence of SIMD accelerators in almost all mainstream processors, dedicated use
of these through a C program proves surprisingly difficult. Most modern compilers are aware of
the SIMD capabilities of a target architecture and most of the mainstream C compilers do come
with some auto-vectorisation capabilities [13, 24, 3]. This would be an ideal solution, as it requires
minimum effort by the user. Unfortunately, if the auto-vectoriser fails, the user cannot easily help it
along. The alternative is to either use intrinsic operations or to use inline assembly, both of which
make the code non-portable. So the question is: How can we help the compiler, while retaining
portability?

As a potential solution to the problem, we have implemented a set of OpenCL-compatible vector
operations in the context of GNU gcc compiler. We do not provide a general introduction to the
framework in this paper, but we will mention the key points of it. Details can be found in [23].

In order to force a C compiler to generate SIMD operations, one has to use operations on vector
types. To declare a vector type, the notion of attributes is used. Consider the following example:

int __attribute__ ((vector_size (16))) var;

The int type specifies the base type of the vector, and the attribute specifies the length of the
vector type, measured in bytes. In the declaration above, given that int is a 32-bit type, we define
a vector of 4 integers.

Language-wise, a vector type does not differ from a scalar type: one can have an array of
pointers of vector types, arrays of vector types, typecasting, etc. Most of the operations applicable
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to scalar types can be used on vector types. Vector types allow indexing of the inner elements using
array indexing notation, support arithmetic operations written as scalar/vector or vector/scalar, and
support vector-specific operations such as shuffle.

2.3. OpenMP

The OpenMP API provides a set of annotations, recognized by C/C++ and Fortran, which allow
a programmer to mark a code to be executed in parallel, using threads. The main advantage of
this approach is its simplicity of use. A programmer does not have to deal with any complications
introduced by thread programming, such as mutexes, locking and potential deadlocks. The only
thing one has to provide is an annotation and the scope of application. As OpenMP defines a standard
only, a programmer is free to choose which implementation to use.

A common scenario of using OpenMP is loop-parallelization, which could be achieved using the
following annotation:

#pragma omp parallel for shared (a,b) private (i)
for (i = 0; i < N; i++)
ali] = foo (b[i]);
In the example given, we inform the compiler that the loop should be executed in parallel, that
the variables a, b are shared between the threads, and that the variable i is private to the individual
threads. Being the iteration variable, ¢ for any given thread would range over a slice from the overall
range. For more details on OpenMP we refer the interested reader to other sources such as [2, 17].

3. EXPERIMENTAL INFRASTRUCTURE

3.1. Machines and operating systems

We run our experiments on three different machines exposing four distinct computer architectures.
The first system is the reference machine for the SICSA MultiCore Challenge, in our case a single
node of the Beowulf cluster at Heriot-Watt University: an 8-core Intel Xeon based Dell PowerEdge
2950. Next, we employ an Intel Core-i7-based system equipped with an NVidia GTX-480 GPU,
where we investigate both the performance using solely the CPU as well as using the CPU and the
GPU together. Finally, we look at a 256-way hardware threaded Sparc SuperCluster T4-4 system.

3.1.1. Beowulf cluster: Dell PowerEdge 2950 The Beowulf cluster at Heriot-Watt University is the
reference machine for the SICSA MultiCore Challenge. It consists of 64 Dell PowerEdge 2950
nodes. Each node has two quad-core Intel Xeon E5504 processors with 4MB Intel Smart Cache
running at 2GHz. The operating system is CentOS 5.8. Since the tool chains under consideration in
this paper do not support cluster architectures for the time being, we restrict ourselves to a single
node.

On this system we demonstrate the fully automatic parallelisation technology of the SAC
compiler [6] and compare them to OpenMP explicit parallelisation directives. Furthermore, we
investigate the impact of explicit vectorisation instructions as provided by the gcc version we used.

3.1.2. Intel Core-i7 Our second benchmark system is representative of high-end consumer-level
hardware. It is equipped with a quad-core Intel Core-i7 930 processor. Each of the four cores is
two-way hyper-threaded. The system is clocked at 2.8GHz and comes with 64KB L1 cache and an
8MB L2 cache. It runs a 32-bit Ubuntu 10.04 operating system.

We effectively repeat our experiments from the Beowulf cluster node. The differences between
the server hardware in the Dell PowerEdge 2950 (i.e. two independent processors, 8 fully-fledged
cores) and the consumer hardware here (i.e. only a single processor, hyper-threaded cores) lead to
interesting insights.

3.1.3. Intel Core-i7 + NVidia GTX-480 The above Core-i7 system is further equipped with an
NVidia GTX-480 GPGPU. This graphics accelerator features 480 (simple) cores running at 1.4GHz.
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The peak memory bandwidth between the host and the GPU is 8GB/sec, while the bandwidth
between the GPU cores and GPU memory is 177.4GB/sec. The graphics card comes with 1.5GB of
memory and 16KB cache per 32 cores. We use CUDA 4.0

Combining a multi-core CPU with a high-end graphics accelerator is a typical hardware scenario
these days, from consumer-level systems to high performance computing installations [26]. On this
system, we evaluate the automatic CUDA code generation capabilities of the SAC compiler [10].

3.1.4. Oracle Sparc SuperCluster T4-4 Our third benchmark system is an Oracle Sparc T4-4
server [25]. The Sparc T4 processor is the latest generation of a series of highly parallel, throughput-
oriented processors developed by SUN MicroSystems, now Oracle, under the code name Niagara.
The T4-4 server is a cache-coherent SMP system with four Sparc T4 processors running at 2.85GHz.
Each T4 processor consists of eight V9 cores, each of which is §-way hardware threaded. Each V9
core is equipped with two out-of-order integer execution pipelines, one floating point unit, branch
prediction and hardware data prefetch. Furthermore, each core has 16KB of data and instruction
cache each and 128KB private unified L2 cache. Each processor has a 4MB 8-banked 16-way
associative L3 cache shared across all eight cores. The operating system is Solaris 10 (Beta).

The T4-4 server provides a total of 256 hardware threads and thus exactly the same level of
hardware concurrency as the entire Beowulf cluster. We use this system specifically to validate the
automatic parallelisation feature of the SAC compiler when confronted with levels of concurrency
that exceed those of the more main stream x86-based systems by way more than an order of
magnitude.

3.2. Compilers

Throughout the experiments, we use the SAC compiler sac2c v1.00-beta (revision 17726) and the
SAC standard library (revision 1558). On the two x86-based systems we use gcc 4.7 checked-
out from the repository (rev 183874) both for compiling the various C sources and as backend
code generator for sac2c. This version of gcc came with the GNU implementation of OpenMP and
explicit vectorisation instructions. For harnessing the GTX-480 GPGPU we use CUDA 4.0 and the
NVidia C compiler nvce as backend code generator for sac2c Finally, we use the Oracle/Sun Studio
C compiler 12.3 on the Sparc T4-4 server again both as a backend code generator for sac2c and for
compiling the reference C implementation of the N-body problem.

4. IMPLEMENTATION OF ALGORITHMS

In this section, we present all implementations used in this study. We also manifest important aspects
of each implementation, as they are relevant to performance evaluation. We begin with the SAC
implementation because it is very similar to the mathematical specification as presented in the
formulae (2) — (4). Afterwards, we discuss several C-based parallel implementations.

4.1. SAC

The SICSA N-body challenge simulates the movement of 1024 bodies in 3-dimensional space over
a period of time. Each body is characterised by its mass, treated as a single point, and by a directed
velocity vector. As explained in the introduction, we look at the all-pairs implementation of the N-
body problem. At each time step, each body experiences gravitational acceleration from all other
bodies (4), which affects its velocity and its direction (3), and, consequently, its next position (2).
In SAC, we can straightforwardly turn the underlying physics into program code. Fig. 2 shows
the complete SAC code for computing one time step. The function advance takes four arguments:
a vector of 3-dimensional positions, a vector of 3-dimensional velocities, a vector of masses and
a time interval dt. From these arguments, it computes new positions and new velocities for the
time after the given time interval has elapsed. To do so, we first compute, for each body i, the
accumulated effect of the acceleration as a result from the gravitational effect of all other bodies.
This effect is captured as a vector of accelerations. Using this vector, we conveniently specify the
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double
sicsaL2Norm ( double[.] x)

return sqrt(sum (x"2) + 0.01);

double[3]
acceleration( double[3] posl, double[3] pos2, double mass)

NoNo RN Ro MU RSOV SR

10 return (pos2 — posl) x mass / (sicsaL2Norm(pos2 — posl) ~ 3);

13 double[3]

14 acceleration( double[3] pos, double[.,.] positions, double[.] masses)
16 acc = [0.0, 0.0, 0.0];

18 for (i = 0; i < length(masses); i++) {

19 acc += acceleration (pos, positions[i], masses[i]);

22 return acc;

25 double[.,.], double].,.]
26 advance( double [.,.] positions, double [.,.] velocities ,

27 double [.] masses, double dt)

28 {

29 accelerations = with

30 ([0] <= [i] < shape(masses))

31 acceleration (positions[i], positions , masses);
32 }: genarray (shape(masses), [0.0, 0.0, 0.0]);
33

34 velocities += accelerations x* dt;

35 positions += velocities * dt;

36

37 return (positions, velocities);

38}

Figure 2. Complete N-body code in SAC

effect of those accelerations on the bodies’ velocities by means of an element-wise multiplication
with dt and an element-wise addition to the previous velocities. In the same fashion, we compute
the new positions as an effect of the new velocities over time.

The function acceleration computes the acceleration that results from the gravitational
forces of either a single body or multiple bodies to a given body. It is implemented by overloading
two function specifications, one to compute the acceleration due to an individual body (first
definition in Fig. 2), and a second one, to add up the effects of several individual bodies (second
definition in Fig. 2). The actual computation of the gravitational force is almost identical to any
textbook definition. Adjustments, such as the use of a slightly diffuse L2 norm, which ensures a
non-zero minimum distance, are consequences of the problem formulation provided by the SICSA
MultiCore Challenge.

4.2. Reference C implementation

The first C implementation we consider is the reference implementation of the second SICSA
MultiCore Challenge, which originates from the Debian Shootout benchmark. This code is used
as a base line for all comparisons. We show the advance function in Fig. 3.

We present several important differences between the C implementation and the SAC solution in
Fig. 2. First of all, we see that the C implementation uses a vector of records as a representation
of the bodies, instead of using individual vectors for positions, velocities and masses. We can also
observe that there is no dynamic memory management whatsoever. By the way the code is specified,
static memory reuse between time steps is guaranteed. In contrast, the SAC implementation does
not enforce this at all: The decisions as to whether or not the vectors for the positions, velocity and
masses can be reused, are inferred by the compiler, or decided dynamically by the runtime system.
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1 struct planet

2

3 double x, y, z;

4 double vx, vy, vz;

5 double mass;

6 };

7

g struct planet bodies[N];

10 void advance( int nbodies, struct planet xbodies, double dt)
11

12 int i, j;

13 for (i = 0; i < N; i++)

14 {

15 struct planet *bl = &(bodies[i]);

16 for (j =1 + 1; j <N; j++)

17

18 struct planet *xb2 = &(bodies[]j]);
19 double dx = bl-—>x — b2—>x;

20 double dy = bl—>y — b2—>y;

21 double dz = bl—>z — b2—>z;

22 double distance = sqrt(dx *= dx + dy %= dy + dz * dz + 0.01);
%Z double mag = dt / (distance = distance * distance)
25 bl—>vx —= dx * b2—>mass * mag;

26 bl—>vy —= dy * b2—>mass * mag;

27 bl—>vz —= dz * b2—>mass * mag;

28 b2—>vx 4= dx * bl—>mass * mag;

29 b2—>vy += dy * bl—mass x mag;
30 b2—>vz += dz * bl—>mass * mag;

31 }

32 }

33

34 for (i = 0; i < nbodies; i++)

35 {

36 struct planet xb = &(bodies[i]);

37 b—>x += dt * b—>vx;

38 b—>y += dt * b—>vy;

39 b—>z += dt *x b—>vz;

40 }

41 }

Figure 3. Reference C implementation of the N-body problem

Another difference we can observe in the C code is that no functional abstractions have been
made which obfuscate the relation to the mathematical specification. However, having the complete
functionality within one function body enables a rather smart (hand-coded) optimisation. Instead

of computing N? — N accelerations, as in the SAC case, the C implementation only computes
N2 - N . . S . o .
accelerations. This optimisation is based on the observation that for each pair ¢ and j the

. Lo k+1 k+1 .
expressions under the sum sign in formula (4) for ‘a; and a; share a computationally heavy part,

as we have:

ko k ko k
(G —a)  (4—q)
Ek|3 Eok|3
’%‘_Qi Qi_Qj’

Lines 25-30 in the C listing reflect this sharing of the computation as the velocities of both,
b and b2 are updated adjacently. While this measure substantially reduces the number of the
computations, it does come at a price: the outer loop can no longer easily be parallelised, because
the inner loop updates v; and v;, creating a potential for concurrent writes and thus race conditions.
A similar optimisation could also be achieved in SAC. However, that would require the abstractions
for the acceleration function to be changed, and it would require the with-loop, in lines 29—
32 of the SAC listing, to be replaced by a for-loop. The latter would inhibit parallelisation of the
outer loop in SAC.
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1 struct planet

2

3 float x, y, z, paddingO;

4 float vx, vy, vz, paddingl;

5 b

6

7 struct planet bodies[N];

8 float masses[N];

9

10 typedef float __attribute__. ((vector_size (16))) vdr;
11 #define vecptr(mem) ((vé4r *)&(mem))

12

13 advance( int nbodies, struct planet xbodies, float dt)
14

15 int i, j;

16

17 for (i = 0; i < nbodies; i++)

18 {

19 struct planet bl = &(bodies[i]);

20 for (j =1 + 1; j < nbodies; j++)

21

22 struct planet *xb2 = &(bodies[j]);

23 register v4r d, d-2;

24 float distance , mag;

25

26 d = xvecptr (bl—>x) — xvecptr (b2—>x);

27 d2 =4d * d;

28 distance = sqrt(d-2[0] + d_-2[1] + d-2[2] + 0.01);
29 mag = dt / (distance x distance x distance);
30

31 xvecptr (bl—>vx) —= d * masses[j] * mag;

32 xvecptr (b2—>vx) += d x masses[1] * mag;

33 }

34

35 svecptr (bl—>x) += xvecptr (bl-—>vx) *x dt;

36

37 }

Figure 4. Reference C implementation augmented with explicit vectorisation

4.3. Vectorisation

Looking at the reference C implementation, we observe that operations such as distance computation
or velocity update are, in essence, performed on three-element vectors.

To investigate the effect of vectorisation of the C code, we augmented it by expressing these
operations using SIMD vectors, as shown in Fig. 4. We use a set of gcc extensions which provide
a portable interface to SIMD instructions across processor architectures. The SIMD units we use
during the experiments can operate on four single precision (Intel SSE) or four double precision
(Intel AVX) floating point numbers. In order to compare absolute times, we used floats in all the
vector implementations.

Intel architectures distinguish two load operations to vector registers: move from aligned or from
unaligned memory'. As an aligned move is noticeably faster than an unaligned move, we keep
position triplets and velocity triplets at aligned addresses. We add two paddings in the structure,
making the size of the structure a multiple of four floating-point numbers. This approach increases
the total memory demand, but ensures proper alignment. It further eliminates the problem of
shifting and masking which would be required if we performed vector operations using the original
representation. We define a vector type and exploit the fact that the address of the first element
is also the address of the vector of all the positions of an individual element. The same holds for
velocities. Note that the extensions allow us to mix scalar and vector operations and thus to express
computations in a compact way.

T A memory address is considered aligned if it can be divided by 16 in the case of SSE or by 32 in the case of AVX.
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4.4. OpenMP annotations

We consider two parallelisation strategies: inner loop parallelisation and outer loop parallelisation.
The first approach preserves the number of computations used in the reference C implementation,
but changes the order of the computation to exploit more parallelism. The second approach mimics
the SAC implementation: it uses twice as many computations, but offers the chance for coarse-grain
parallelisation on the outer level.

OpenMP inner loop parallelisation In this implementation, we parallelise the inner loop of the
advance function, which uses & 22’ N pair computations. As we can see from the reference
implementation, the computation shape is a triangular matrix of size N x N. If we were to
parallelize inner loops of that reference algorithm, then a problem would arise: the lines of a
triangular matrix that contain few elements introduce more threading overhead than performance
gain. Therefore, we would like to rearrange the computation in order to make it more rectangular,
rather than triangular. In order to do that we apply the following technique. Let us look at a 6-body

problem as an example. First, we enumerate all pairs of indices j, ¢ we are interested in:

0,0

0,1 1,1

0,2 1,2 2,2

0,3 1,3 2,3 3,3

0,4 1,4 2,4 3,4 4,4
0,5 1,5 2,5 3,5 4,5 5,5

) ) )

Now, we want to make sure that we construct a rectangular array of size N x %, where each line
could be executed in parallel, such that any element of any pair occurs only once per line. We may
see, that the half of a second diagonal of the matrix: [(0,5), (1,4), (2,3)] has this property. Using
this observation as a basis, we construct a table in the following way: following the direction of
the second diagonal of the matrix, we join [(0,0)] with [(1,5), (2,4),...], [(0,1)] with [(2,5),...],
[(0,2),...] with [(3,5),...] and so on, excluding pairs from the main diagonal. That gives us the

following table:

(0,1) (2,5) (3,4)
(0,2) (3,5)
(0,3) (1,2) (4,5)
(0,4) (1,3)
(0,5) (1,4) (2,3)
(1,5) (2,4)

Using this table as a pseudo-scheduler provides reasonably good workload balance. It also
allows us to instruct OpenMP to apply static scheduling in order to avoid any overheads inflicted
by dynamic scheduling. This appears to be relevant, as initial experiments relying on dynamic
scheduling rather than the above indexing scheme actually showed slowdowns. The complete code
is shown in Fig. 5.

The function precompute_idxes in lines 8-22 initialises a static matrix idxes, which holds
the table described above for the given number of 1024 bodies. The actual computation is lifted
into a function advance_pair, which is called with the index pairs coming from the scheduling
matrix idxes. This scheduling happens in lines 33-35. Note that we omitted the definition of
advance_pair as it basically consists of a copy of lines 21-33 of the vectorised version without
OpenMP pragmas.

OpenMP outer loop parallelisation As we mentioned earlier, the outer loop parallelisation gives us
a coarser grained parallelism, but doubles the number of computations. The code shown in Fig. 6
uses very similar OpenMP annotations, but this time on the outer for-loop. The scheduling is also
static as the amount of work in every statically defined part is the same.
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1 struct pair

2

3 short i, j;

4 ;

5

6 struct pair idxes[N][N/2];

7

8 static inline void

9 precompute_idxes( void)

10

11 int i, p0, pl, cnt;

12

13 for (i = 0; i <N; i++)

14

15 for (cnt = 0, i = N—-17 (p0O =0, pl =1i+1) : (p0 =1, pl = 1);
16 cnt < N/2;

17 cnt++, p0 = (p0O + 1) % N, pl = (pl — 1) % N,
18 pO > pl ? (pO = i+2, pl = N-1) : p0)

19

20 idxes[i][cnt] = (struct pair){p0, pl};

21 }

22 }

23}

24

25 void

26 advance( int nbodies, struct planet xbodies, real dt)
27

28 int i;

29

30 omp.-set_num_threads (8);

31 for (i = 0; i < nbodies; i++)

32

33 int cnt;

34 #pragma omp parallel for shared(idxes, dt) private(cnt) schedule(static)
35 for (cnt = 0; cnt < N/2; cnt++)

36 advance_pair (idxes[i][cnt].i, idxes[i][cnt].j, dt);
37

38

39 #pragma omp parallel for shared(bodies) private(i) schedule(static)
40 for (i = 0; 1 < nbodies; i++)

41 {

42 struct planet *b = &(bodies[i]);

43 xvecptr (b—>x) += *xvecptr (b—>vx) * dt;
44

45 }

Figure 5. C reference implementation explicitly parallelised using OpenMP pragmas following the inner
loop approach

5. EVALUATION

This section presents our analysis of the performance of the SAC implementation of the N-body
problem compared with the various C-based ones.

5.1. Experimental setup

While the specification of the SICSA MultiCore Challenge suggests measuring 20 time steps
of the N-body simulation, we decided to measure 200 time steps and to present average wall-
clock runtimes per individual time step. Our experimental setup is motivated by the following
observations: First, the runtime for 20 iterations, even when executed single-threaded, is too short
for sufficiently accurate time measurements. Second, we see a perfectly linear relation between the
number of iterations and the overall runtime. Third, with 200 iterations we see very little fluctuation
in the overall runtimes measured. In some critical cases, e.g. highly parallel program runs on the
Sparc T4-4 system, we re-ran our experiments with 2000 iterations to confirm our measurements
with 200 iterations.

We repeated every experiment 5 times and took the shortest execution time out of 5 successful
program runs. We prefer shortest runtimes over, for instance, average runtimes because all codes
are essentially deterministic. Any non-negligible difference in observed runtimes stems from purely
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1  void

2 advance( int nbodies, struct planet xbodies, float dt)
3

4 int i;

5

6 omp._set_num_threads (8);

7 #pragma omp parallel for shared(bodies,dt) private(i) schedule(static)
8 for (i = 0; 1 < nbodies; i++)

9

10 { struct planet bl = &(bodies[i]);

11 int j;

12

13 for (j = 0; j < nbodies; j++)

14

15 struct planet *xb2 = &bodies[j];

16 register v4r d, d-2;

1; float distance , mag;

1

19 d = xvecptr (bl—>x) — xvecptr (b2—>x);

20 d2 =4d x d;

21 distance = sqrt(d-2[0] + d_-2[1] + d-2[2] + 0.01);
%% mag = dt / (distance x distance x distance);
24 xvecptr (bl—>vx) —= d * masses[j] * mag;

25 }

26 }

27

28 #pragma omp parallel for shared(bodies,dt) private(i) schedule(static)
29 for (i = 0; 1 < nbodies; i++)

30 {

31 struct planet *b = &(bodies[i]);

32 xvecptr (b—>x) += xvecptr (b—>vx) x dt;
33

KZ

Figure 6. C reference implementation explicitly parallelised using OpenMP pragmas following the outer
loop approach

coincidental activity of the operating system, which is both beyond our control and irrelevant for
our findings. Taking average runtimes would potentially incorporate such coincidental activity and
thus blur our observations.

Since on the given architectures vectorisation is only effective for single-precision floating point
numbers, we first run all experiments with single-precision arithmetic and later conduct a separate
analysis of the performance impact of double-precision floating point arithmetic for the non-
vectorised test cases. Furthermore, we investigate the performance impact of increasing the problem
size on the spatial domain. Starting out with the SICSA setup of 1024 bodies, we explore the effect
of simulating 2048, 4096 and 8192 bodies, respectively.

5.2. SAC vs C on Dell PowerEdge 2950 Beowulf cluster node

Our first experiment runs the N-body problem, using 32-bit floating-point arithmetic, on a single
node of the Beowulf cluster. We relate the performance achieved by the SAC implementation to that
of the C implementations discussed in the previous section: the plain reference code, the hand-
vectorised variant and the two OpenMP hand-parallelised versions (inner and outer), each in a
vectorised and in a non-vectorised form. Fig. 7 shows average execution times for one time step
of the N-body simulation while Fig. 8 visualises the same findings as speedups relative to the plain
C reference implementation.

Let us first focus on sequential performance. Here, we must admit that the SAC program is about
a factor of 2 slower than the C reference code. This performance difference can be attributed to
essentially three independent factors. First of all, we can generally hold the high level of abstraction
of the SAC code responsible for some performance impact when compared to any low-level C
implementation. In this particular case, however, there are two additional aspects worth mentioning.
For one, the SAC code does not exploit the symmetry of gravitation between any two bodies as the
C reference implementation does. Consequently, it performs significantly more computations than

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
Prepared using cpeauth.cls DOL: 10.1002/cpe



ALL-PAIRS N-BODY IN SAC 13

35.0 T T T T T T
A\ Reference C —+—
Y Vectorised C ---x---
\ SaC --#-
300 b C OpenMP outer i
: Y Vectorised C OpenMP outer
\ C OpenMP inner ---6--
M Vectorised C OpenMP inner ---%:---

Milliseconds/Iteration

0.0 I I I I I I
1 2 3 4 5 6 7 8

Number of threads

Figure 7. Average wall-clock execution times per N-body simulation step on a Dell PowerEdge 2950
Beowulf cluster node using single-precision floating point arithmetic
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Figure 8. Speedups of average wall-clock execution times per N-body simulation step on a Dell PowerEdge
2950 Beowulf cluster node relative to the (sequential) C reference implementation using single-precision
floating point arithmetic

the reference implementation. The similarly increased runtimes for the two OpenMP outer-loop
parallelised versions nicely demonstrate the effect.

Last, but not least, the SAC code makes use of a different memory representation than the C
reference implementation. Whereas the latter operates on a vector of 7 floating point numbers, in
SAC we properly separate positions, velocities and masses and use two vectors of three floating
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point numbers each for spatial information and a third vector for the masses. We made a small side
experiment to quantify the impact of these two different memory layouts. For this we rewrote the
C reference implementation to use a similar memory layout as SAC. This seemingly small change
increased the execution time of the N-body simulation by about one third.

As Fig. 7 and Fig. 8 show, our hand-vectorised version of the C reference code runs about 30%
faster than the original code.

Using multiple cores, the SAC implementation, as well as the OpenMP outer-loop version,
quickly catch up with the reference C code. In fact, only two threads/cores suffice to break even
in the case of SAC and to noticeably outperform the sequential code in the case of OpenMP (outer
loop). Only three cores are needed to equalise even the (single-core) hand-vectorised C code. At
about five cores, both the SAC code and the OpenMP outer-loop code begin outperforming the
initially much faster OpenMP inner-loop code.

When utilising all eight cores of the machine, we observe a minimum runtime of around
4ms per N-body iteration, which is less than a fourth of the sequential runtime of the
reference implementation. The best performance (3.9 ms) is achieved by OpenMP with outer-loop
parallelisation. While the vectorised version does perform marginally better than the non-vectorised
one, one must conclude that the effect of vectorisation here is disappointing. Not disappointing at all
is that the SAC implementation finishes third with 4.9ms. Relative to the initial single core runtime
of 35ms, this constitutes a 7.15-fold performance increase and thus an almost ideal utilisation of the
parallel computing resource.

20.0
single-precision (32-bit) Ezem
double-precision (64-bit) ExXx=
18.0 | 17.67 -

17.02

16.0 - B
140 4
12.10

120 | .

100 | .

Milliseconds/Iteration

8.0 | ]

7.02
6.16

6.0 - ]

4.884.86
4.104.12 3.94

4.0 |-

20 -

0.0

RefC Vec C SacC [8] OMP[8] Vec OMP[8] OMP[8] Vec OMP[8]
inner inner outer outer

Figure 9. Performance impact of floating point arithmetic precision on a Dell PowerEdge 2950 Beowulf
cluster node

Fig. 9 shows the effects of using different representations for floating point numbers, to quantify
the effect of changing numeric precision. We compare 32-bit single-precision (“float”) arithmetic
with 64-bit double precision (“double”) arithmetic. The results show that, for any particular
implementation, little difference in performance can be observed between these numeric types.
However, the vectorised versions are only available for float numbers because the SIMD
architecture would not be able to keep an entire set of double data in the SIMD registers.

Finally, we investigate how scalability is affected by the number of bodies in the simulation.
Increasing the problem size has two effects in the context of the all-pairs N-body problem: On
the one hand we expect an increased demand on the memory bus, which may limit the observable
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speedup. On the other hand, we expect less scheduling overhead as the number of tasks and their
granularity increases.

10.0
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Speedup

6.0 - .
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3.0 L L
1024 2048 4096 8192

Problem size

Figure 10. Performance impact of spatial problem size (number of bodies) on a Dell PowerEdge 2950
Beowulf cluster node

We present the speedup of the best SAC runtime over (i) the sequential SAC runtime and (ii)
the reference C code runtime for four different problem sizes: 1024, 2048, 4096 and 8192 bodies
in Fig. 10. We see slight improvements with increasing number of bodies, but saturation occurs at
about 4096 bodies for which we achieve an almost ideal speedup of 7.8.

5.3. SAC vs C on an Intel Core-i7

We repeated all the experiments described above in our second experimental environment: a quad-
core hyper-threaded Intel Core-i7 system. Fig. 11 shows average execution times for one time step
of the N-body simulation while Fig. 12 again illustrates speedups relative to the plain C reference
implementation.

At first glance the results appear to be fairly similar to those obtained on the Dell PowerEdge.
Having a closer look, we do observe two relevant differences, however.

First, performance encounters a hit when going from four threads to five threads, regardless of
the code variant used. The hit is most noticeable for the two outer-loop OpenMP codes and least in
the case of SAC, but the effect as such is uniform. What we observe here is the effect of four hyper-
threaded cores as opposed to the eight fully-fledged cores of the Dell PowerEdge server system.
With five threads used, hyper-threading is only effectively used on one of the cores and leads to load
imbalance in the runtime systems of both SAC and OpenMP that expect a “real” fifth core.

Second, we see that the OpenMP inner loop version for any number of cores outperforms the
OpenMP outer loop version or the SAC code. We assume that this is an effect of the more modern
Core-i7 design, which seems to cope better with the indexed memory accesses involved in that
version.

We can further observe that OpenMP, regardless of parallelisation approach and vectorisation
effort, does not benefit from hyper-threading, achieving roughly identical runtimes with four and
with eight threads. In contrast, SAC effectively reduces the runtime from 8ms using four threads to
5.8ms using eight threads.
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Figure 11. Average wall-clock execution times per N-body simulation step on a quad-core hyper-threaded
Core-i7 processor with and without acceleration by an NVidia GTX-480 GPU using single-precision floating
point arithmetic
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Figure 12. Speedups of average wall-clock execution times per N-body simulation step on a quad-core hyper-
threaded Core-i7 processor relative to the (sequential) C reference implementation using single-precision
floating point arithmetic

We summarise the absolute runtimes of our various implementations in Fig. 13. With all cores
used SAC outperforms the C reference implementation by a factor of 2.3. We also quantify the
impact of floating point precision on overall performance in Fig. 13. Similar to the Dell PowerEdge
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2950 we observe little performance differences between single precision and double precision
arithmetic on the Core-i7 processor.
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Figure 13. Performance impact of floating point arithmetic precision on a quad-core hyper-threaded Core-i7
processor and a GTX-480 GPU

Last not least, we investigate the impact of the spatial problem size on performance and show the
results in Fig. 14. Unlike in the case of the Dell PowerEdge 2950, where larger problem sizes led
to marginally increased parallel performance, we cannot observe this effect here and rather see a
constant ratio between parallel and sequential performance.

5.4. SAC on Intel Core-i7 + NVidia GTX-480 graphics accelerator

Our Intel Core-i7 system is also equipped with an NVidia GTX-480 graphics accelerator. While
the technical specifications of the GPU promise performance levels far beyond those of the Core-i7
processor (or even the Dell PowerEdge server used before), effectively harnessing this potential
compute power is seriously difficult and time-consuming. The C reference implementation as
such does not run on the GPU at all. Making it run based on the NVidia CUDA programming
environment requires a complete non-trivial rewrite of the application into CUDA kernels and
explicit organisation of memory transfers from host memory to GPU memory and vice versa, to
name just a few issues.

One of the compelling features of the SAC compiler sac2c is its ability to fully automatically
generate code suitable to run on NVidia GPUs [10]. This simply requires instruction through a
command line option. As a consequence, the exact same SAC source code can be used to run
executable programs on a variety of architectures.

For convenient comparison of the SAC runtime performance on the GTX-480 GPU with plain
CPU performance of the Core-i7 processor we include SAC CUDA times in Fig. 11 and in
Fig. 13. As the figures show, the purely functional SAC implementation, when compiled for GPU
execution, runs one N-body iteration in 1.3ms. This is 3.3 times faster than the hand-vectorised,
hand-parallelised C code on the CPU, 4.5 times faster than SAC compiled for CPU execution
and 10.4 times faster than the original C reference implementation on the Core-i7 processor. We
deliberately omit the SAC CUDA speedup in Fig. 12 because the speedup of 10.4 is so much higher
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than any other measured speedup that the required y-axis scaling in Fig. 12 would be detrimental to
the readability of all other results.

Looking at the performance impact of floating point arithmetic precision in Fig. 13 we observe
that on the GTX-480 double precision code runs about 80% slower than single precision code. This
clearly sets the GPU architecture of the GTX-480 apart from the CPU architectures we have looked
at so far. As a consequence, this is still 2.1 times faster than the best performing hand-parallelised
C code, 2.6 times faster than SAC compiled for CPU execution and about 5.9 times faster than the
sequential C reference implementation.

45.0

SaC[1] vs SaC[8] ——
C[1] vs SaC[g] ---x---

400 - C[1] vs SaC-CUDA

350 | .
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Figure 14. Performance impact of spatial problem size (number of bodies) on a quad-core hyper-threaded
Core-i7 processor and a GTX-480 GPU

Fig. 14 demonstrates the impact of the number of bodies on performance also for using the GTX-
480 graphics accelerator. In sharp contrast to using the CPU, we observe substantial improvements
for the CUDA version as the problem size grows. Our speedup over the reference C version increases
from 10.4 for 1024 bodies to almost 38 for 8192 bodies. The reason for this improvement lies in the
fact that our runtimes do include the memory transfers to and from the graphics card as well as the
overhead due to kernel invocations. With increasing body numbers these overheads are much better
amortised by the actual computations on the graphics card.

5.5. SAC vs C on the Oracle Sparc SuperCluster T4-4

Lastly, we ran an experiment on the T4-4 server to investigate how SAC scales on a highly
parallel 256-fold hardware-threaded system. Fig. 15 compares our SAC implementation with the
(sequential) reference C implementation using 32-bit floating point numbers. Our experiments
confirm our previous experience with the machine that using all 256 hardware threads is extremely
prone to coincidental operating system activity. Sometimes the combined performance of 256
threads is not better than what is achieved by only 2 threads. Therefore, we only present figures
for using up to 255 threads in the following.

In fact, SAC scales rather well. With 16 threads we achieve an almost linear speedup (precisely
15.87) over the sequential SAC-version and 8.8 over the reference C implementation. Going from 16
to 32 threads incurs a small performance penalty. We attribute this to memory bandwidth limitation
and the lack of data sharing between threads in shared caches. Note that with 32 threads, exactly
one thread runs on each physical core of the T4-4 system. So, latency hiding through hardware
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Figure 15. SAC vs C on Sparc T4-4 server using single precision

multithreading is ineffective. With using multiple hardware threads per core performance increases

again up to a 30.4-fold speedup over sequential SAC and 17.0 over the reference C implementation.

As expected the (inner loop) OpenMP based implementation again does not scale as good as the

SAC code. Although it starts out on par with the C reference implementation, OpenMP achieves

only about 15% speedup when using two threads instead of one. With 16 threads it requires more

than twice the time of SAC per iteration. Last not least, using more than 64 threads results in a

performance decrease, whereas SAC makes effective use of up to 255 threads.

We were not able to repeat the vectorisation experiments on the Sparc T4-4 system as we did not
manage to make gcc 4.7 run properly on this machine.

Fig. 16 summarises our findings on the Sparc T4-4 system and shows the performance effect
of floating point precision. The interesting insight is that on the T4 architecture double precision
arithmetic is actually marginally faster than single precision arithmetic. This is in contrast to
the two x86 architectures investigated before where double precision floating point performance
was marginally lower than single precision and the GTX-480 graphics accelerator where double
precision performance was considerably lower than single precision performance.

Comparing the execution times in Fig. 16 with those in Fig. 13 and in Fig. 9 we see that with
1.21ms for single-precision and 1.16ms for double precision floating point arithmetic, the Sparc T4-
4 turns out to deliver the best performance across the range of architectures we investigated. From a
computer architecture perspective this demonstrates that highly parallel general-purpose many-core
systems like the T4-4 can still compete well with more specialised graphics accelerators even for
applications that suit the latter well. It must be noted, however, that the cost/performance ratio is

nonetheless very much in favour of the GPU. While a state-of-the-art graphics accelerator hardly
costs more than around 1k EUR, the price tag of four T4 processors alone is around 45k EUR, not
to mention a complete system as the T4-4 server we tested.

Last not least we are interested on the impact of the spatial problem size on performance
scalability; results are shown in Fig. 17, in which we can observe the impact of latency hiding
through hardware multithreading. With increased problem sizes from 1024 to 8192 bodies we
observe increased speedups from 30 to 38 for the intra-SAC comparison and from 17 to 22 for
the comparison against the C reference code. Increased granularity does a better job of amortising
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Figure 16. Performance impact of floating point arithmetic precision on Oracle Sparc SuperCluster T4-4
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Figure 17. Performance impact of spatial problem size (number of bodies) on Oracle Sparc SuperCluster
T4-4

overheads, and the increased demands on the memory subsystem are dealt with very effectively by
hardware multithreading.
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6. DISCUSSION

Our experiments show that the SAC implementation successfully combines a high level
of abstraction, very close to the mathematical specification, with very competitive runtime
performance. Without any user annotations or program manipulations of any kind, the automatically
parallelising SAC compiler sac2c generates code that matches, or even outperforms, hand-vectorised
and hand-parallelised C code on all three machines we used. The fact that this is achieved with
no vectorisation support inside sac2c even leaves a considerable performance potential for future
improvements.

Moreover, we demonstrate that the SAC compiler is able to transform, entirely automatically, the
very same SAC source code into CUDA-enabled binary code that exploits the performance potential
of a state-of-the-art graphics accelerator. At the same time, the SAC approach does not require the
domain specialist to make particular programming efforts or to have any specialised knowledge or
skills in parallel programming.

We observe that the array programming style advocated by SAC may seduce programmers into
specifying algorithms in a seemingly sub-optimal style: The smart reuse of already computed
gravitational effects, as it is done in the reference implementation in C, does not fit the data-
parallel setting of SAC well. As a consequence, sequential SAC runtimes in the concrete example
of the N-body simulation are nearly twice as long as those of the reference C implementation.
In this light it is highly interesting to observe that in the end, i.e. when we employ sufficiently
many computational resources, both data-parallel specifications, the SAC and the OpenMP outer
loop variant, actually outperform seemingly smarter implementations that avoid the redundant
computations. This observation shows once more that in a parallel setting redundant computations
can be a tolerable or even a desirable trade-off if they help avoiding conflicting memory accesses
and reducing the number of synchronisation barriers. In our running example of all-pairs N-
body simulation, only 8 cores of an x86-based SMP system suffice to amortise the redundant
computations; on the Sparc T4-4 server even on 4 cores superior performance is achieved without
the seemingly smart trick. The data-parallel approach scales considerably better and, thus, proves to
be crucial for efficient multi-core and many-core performance.

Our measurements also show that the auto-vectorising capabilities of the C compilers used, at
least for the plain C codes tested, do not succeed without the programmer’s help. This does not
come at a big surprise since a change in data layout seems to be essential. While this cannot easily be
automated in the context of C, it is possible in a SAC setting because the entire memory management
in SAC is under the control of the compiler and its runtime system. Future work in this direction
may yield further runtime improvements.

Finally, the fact that SAC shows consistently high performance on a variety of architectures,
despite zero changes to the application source code, demonstrates the benefits that SAC provides to
application programmers in terms of code portability and long-term maintainability in the presence
of evolving machine architectures. This is in stark contrast to the observations we make with the
reference C implementation. For that code, non-trivial rewrites are required to achieve similar
performance. Furthermore, none of these rewrites enables us to utilise the graphics card. This would
require yet another, even more complex, code rewrite based on low-level APIs such as CUDA or
OpenCL.

We conclude that, for the running example of all-pairs N-body simulation, SAC and its tool chain
do exhibit the desired combination of high software engineering productivity and high execution
performance. These findings are in line with several previous application studies [12, 5, 27].
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