
1. Introduction

Cellular automata are a powerful concept for the simulation of complex systems; they have
successfully been applied to a wide range of simulation problems Boccara et al. (1993);
Canyurt & Hajela (2005); D’Ambrosio et al. (2007); Ermentrout & Edelstein-Keshet (1993);
Georgoudas et al. (2007); Guisado et al. (2006); Nagel & Schreckenberg (1992); Popovici &
Popovici (2002); Stevens et al. (2007). This work is typically done by scientists who are
experts in their field, but generally not experts in programming and computer architecture.
Programming complex simulations both correctly and efficiently quickly turns into a painful
implementation venture distracting from the far more interesting aspects of the simulation
problem itself or the simulated subject matter.
Current advances in computer architecture make the situation even worse. Abundance of
parallel processing power through multicore technology requires parallelisation of simulation
software in order to effectively use even standard laptop and desktop computing machinery,
not to mention clusters of workstations and fully-fledged supercomputing equipment.
This situation confronts our dear simulation scientist not only with the task of writing
a fairly efficient sequential program, but exposes him or her to the notorious hazards of
parallel programming Amarasinghe (2008); Chapman (2007); Gabb et al. (2009). Getting
synchronisation and communication requirements correct and deterministic is know to be
a far from trivial task, but in fact the problem is even more intricate. Today’s hardware
reality quickly creates a multi-level granularity problem with different communication and
synchronisation abstractions and very different latency/throughput characteristics on each
level, from networks interconnecting geographically separated compute centers to multiple
cores within the same processor. An experienced programmer can certainly solve all these
issues with sufficient time and resources, but the point we make is that scientist we have in
mind should not devote his time to this, but rather work on improving his or her model, etc.
The model of cellular automata naturally lends itself to parallel execution following a data
parallel approach. This holds not only for multicore processors on the desktop, but likewise
for clusters of workstations and parallel computers, in other words on all levels of today’s
multi-level compute environments. Yet surprisingly little support for programming cellular
automata with a focus on high-performace simulation exists. Simulation software is typically
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limited in the complexity of cellular automata that can be described: the number of states per
cell and the state transition function are typically more oriented towards demonstrations of
Conway’s game of life Conway (1970) than towards real-life simulations. Furthermore, many
approaches seem to focus on the visual aspects of cellular automata rather than simulation
performance. Programming complex cellular automata in general-purpose programming
languages is not extremely difficult, but it does require substantial programming skills. This
hinders the effective utilisation of cellular automata by scientists who are experts in their field,
but not necessarily experts in programming.
We propose a new domain-specific programming language named CAOS (Cells, Agents and
Observers for Simulation) that is tailor-made for programming simulation software based on
the model of cellular automata. Since it is restricted to this single purpose, CAOS provides
the scientist with support for the rapid prototyping of complex simulations on a high level
of abstraction. Nevertheless, the CAOS compiler fully automatically generates portable and
efficiently executable code for a wide range of architectures. We support both shared memory
systems through OPENMP Dagum & Menon (1998) and distributed memory systems through
MPI Gropp et al. (1994). Both approaches can easily be combined having the compiler generate
multithreaded OPENMP code within MPI processes for hybrid architectures. Thus, CAOS not
only supports individual multicore processors, but the whole range of computer architecture
from laptop processors to supercomputing installations. CAOS allows scientists to harness
the potential compute power of both small-scale and large-scale parallel computers for
complex simulations with little or even no expertise in parallel programming and computer
architecture.
The remainder of this chapter is organised as follows: In Section 2 we introduce the language
design of CAOS. Section 4 outlines principles of our implementation while Section 3 provides
a brief explanation of the CAOS tool chain. Section 5 discusses a number of runtime
performance related experiments. We address related work in Section 6 and conclude in
Section 7.

2. CAOS language design

A CAOS program implements all aspects of a cellular automaton simulation. It defines the
layout of a multi-dimensional grid of cells, its initialisation (which may also be read from
a file) and the behaviour of the cells in the form of a potentially non-trivial state transition
function. It also defines how and when snapshots of the simulation are taken and saved.
Each of these aspects is implemented in a dedicated CAOS program section. Thus, a CAOS
program is organised into a sequence of sections as shown in Fig. 1.

CAOS Program ⇒ Declarations Grid Cell Init Behaviour [Observer ]*

Fig. 1. General structure of CAOS source files

The declaration section contains a number of global decalarations referring to user-defined
types, compile time constants and runtime program parameters. Next comes the grid
section with the definition of the grid, which may have any number of axes, sizes and
different boundary conditions. The cell section defines the attributes making up each
cell’s state. The initialisation section defines initial values for cells and boundaries. Most
importantly, the behaviour section defines the state transition function including the definition
of neighbourhoods in the cellular automaton. And, last not least, the observer section defines
how and when snapshots of the cellular automaton are saved to disk while the simulation
is running and/or after it has been completed, depending on the concrete application
requirements. In the sequel, we will look into each of these sections in greater detail.
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2.1 Global declarations

Unlike the other sections the global declaration section itself is a sequence of subsections
declaring different objects to be used throughout the remainder of the program. Fig. 2 gives
an overview and defines the exact syntax.

Declarations ⇒ [Enum ]* [Constant ]* [Param ]* [Extern ]*

Constant ⇒ const Type Id = value ;

Param ⇒ param [ “String“ ] Type Id = value ;

Enum ⇒ enum Id { Id [ , Id ]* } ;

Extern ⇒ extern Type Id ( [Type [ ,Type ]* ] ) ;

Type ⇒ bool | int | double

Fig. 2. CAOS global declaration syntax

The first set of declarations refers to types. CAOS is not a particularly versatile language when
it comes to types and type constructors. We deliberately restrict ourselves here; extending the
language design by additional machine-supported basic types and standard type constructors
like records is merely a matter of engineering, not of language design. In essence, CAOS
supports three built-in types: Boolean values (bool), machine word integer numbers (int)
and double precision floating point numbers (double). The only type constructor CAOS
supports for now are symbolic enumeration types as known from C. We do this to advocate
a symbolic style of programming in contrast to a machine-oriented one. Taking Conway’s
famous Game of Life as a running example, we would suggest to define an enumeration type
dead_or_alive rather than encoding these different states in Boolean or integer values
The const keyword marks the second kind of global declarations; it is used to declare an
identifier with a compile time constant value. Again we recommend to define symbolic
constants for relevant numerical values to improve the readability of code.
In addition to (compile time) constants CAOS also features simulation parameters. These
are compile time symbolic values, but runtime constants initialised during program startup.
Parameters are declared using the param keyword. Like a constant a parameter has a
type, a name and a (default) value. The difference is that the given value indeed only is a
default value. This default value may be overwritten upon startup of a simulation through
a command line parameter. Parameters are a very useful feature if a simulation needs to be
run several times for different parameter sets, e.g. from a shell script. Typical applications for
parameters are the initialization of

• values of cell components,

• used variables in the cell behavior,

• time steps for observations,

but many others are possible. The keyword param may be followed by an optional
string enclosed in quotation marks to compile a short description of the parameter into the
executable. The information given here will be displayed within the help text that a compiled
CAOS program displays if --help is passed as command line parameter.
It is possible to use external functions in a CAOS program via the extern keyword and a
C-style function prototype. The main intended use of this feature is to make mathematical
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libraries available to CAOS program to be used in the definition of the state transition
function. Fig. 4 shows a some example declarations in a CAOS implementation of Conway’s
famous Game of Life.

2.2 Grid layout definition

The main characteristic of cellular automaton based simulation is the existance of a
multidimensional grid of cells. The grid of cells in CAOS may indeed comprise an arbitrary
number of dimensions, each of a potentially different size. The keyword grid marks the
beginning of this section; Fig. 3 shows the complete syntax.

Grid ⇒ grid Axis [ , Axis ]* ;

Axis ⇒ Id : Size : Id <.> Id : Boundary

Size ⇒ IntConstant | Id

Boundary ⇒ static | cyclic

Fig. 3. CAOS grid layout definition syntax

A grid topology specification is a comma-separated list of axis specifications. Each axis
specification consists of four parts separated by colons. Firstly, we have an identifier that
names the axis. The second part defines the size of the grid along the given axis. This can
either directly be defined by an integer constant or indirectly through a symbolic identifier,
thus making use of the constant or parameter mechanism explained before. In particular, the
grid size can but need not be fixed at compiler time. Through the parameter mechanism, this
vital simulation parameter can easily be supplied at runtime.
The following two identifiers separated by the special symbol <.> define names for accessing
neighbouring grid cells in direction of decreasing and of increasing indices, respectively. There
use will be discussed in detail in Subsection 2.5. The last part defines the boudary condition of
the grid, which can either be static or cyclic. With cyclic boundary condition, the cells on
one boundary do have the cells on the other boundary of that axis as their neighbours. With
static boundary condition additional constant boundary cells are added to the grid to ensure
that all proper cells have a complete neihbourhood. The CAOS example in Fig. 4 continues
with a 2-dimensional grid layout declaration where the boundary conditions are cycly, the
extent along the x -axis is fixed to 256 cells and the extent along the y-axis defaults to 256 cells,
but can be overwritten by a command line parameter at program startup. The directions from
any one cell to its neighbours in the grid are named left and right along the x-axis and up and
down along the y-axis.

enum dead_or_al ive { dead , a l i v e } ;
const i n t x−s i z e = 2 5 6 ;
param "Y grid s i z e " i n t y−s i z e = 2 5 6 ;

gr id : X : x−s i z e : l e f t <. > r i g h t : c y c l i c , Y : y−s i z e : up<. >down : c y c l i c ;

c e l l {
dead_or_al ive s t a t e ;

}

Fig. 4. CAOS example Game of Life implementation (declaration part)
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2.3 Cell attribute definition

After defining the size and topology of the grid, it needs to be populated with cells. The
cell section defines the attributes of each cell, which can be drawn from the set of built-in
types int, double and bool plus previously defined enumeration types. As shown in Fig. 5,
syntactically the cell section very much resembles record definitions in imperative languages
or the attribute sections of class definitions in object-oriented langauges.
Cell atrributes are readable by other cells from the neighborhood. For example, our running
example in Fig. 4 has a single attribute that we simply call state, which can be either dead or
alive according to the previous definition of the enumeration type (and the definition of the
Game of Life). In general, cells can have a number of different attributes of different types
supporting complex state spaces.

Cell ⇒ cell { [ Attribute ]+ }

Attribute ⇒ Type Id ;

Fig. 5. CAOS cell attribute definition syntax

2.4 Grid initialisation

Init ⇒ init [Selector ] { [ Assignment ]+ }

Selector ⇒ [ Id [ˆ Id ]* ]

Assignment ⇒ Id = Expr ;

Fig. 6. CAOS initialisation section syntax

Before the simulation of the first time step the cells on the grid are initialised. This initial state
is defined through a init section as shown in Fig. 6 or it may be read in from a file as well.
All components of a cell, which are defined in the cell section, appear as left hand side of
an assignment in the init section. Of course, it is possible to leave components uninitialised,
but this may obviously lead to erroneous and unpredictable behaviour.
The keyword init may be followed by a selector to initialize boundary cells at static
boundaries. Assume that we would change the grid definition of our example in Fig. 4 to

grid:X:1..40:left<.>right:static,Y:1..40:up<.>down:static;

Then, to assign values to the cells on the lower boundary of the first dimension, init[left]
would be used. It is also possible to combine direction specifier. Accordingly, init[right ˆ
down] would initialize the cells that belong to the upper boundary of the first and the second
dimension.

2.5 Simple state transition functions

In CAOS the state transition function of the cellular automaton is defined by he behaviour
section. Unlike most cellular automata simulation systems, CAOS provides a fully-fledged,
structured imperative programming language to define complex state transition functions. As
shown in Fig. 7, we base CAOS on the syntactic foundations of C to faciliate familiarisation.
A simple CAOS behaviour section consists of a sequence of assignments preceded by
declarations of local variables. Whereas the declaration of local variables syntactically very
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Behaviour ⇒ behaviour { [LocalVarDecl ]* [ Instruction ]* }

LocalVarDecl ⇒ LocalType Id ;

LocalType ⇒ Type | dir

Instruction ⇒ Assignment

Assignment ⇒ Id = Expr ;

Expr ⇒ IntConstant | DoubleConstant | BoolConstant
| ( Expr ) | MonOp Expr | Expr BinOp Expr

| Id ( [Expr [ , Expr ]* ] )
| Id [ [ Id [ˆ Id ]* ] ]

Fig. 7. CAOS state transition function syntax

much resembles the declaration of cell attributes in the cell section, the meaning is quite
different. Cell attributes form the basis of the cellular automaton, are recomputed in each
simulation step and can be read be neighbouring cells. In contrast, local variables in the
behaviour section are not more than symbolic placeholders for intermediate values; their
meaning is strictly limited to one instantiation of the state transition function.
Like the cell attributes, a local variable can be of any of the built-in types or of any of
the previously defined enumeration types. What again separates local variables from cell
attributes is the existance of one more built-in type: the direction type dir. The values of
this type are the direction identifiers introduced in the grid construct. The only operations
available on direction values are equality, inequality and the concatenation operator hat. With
these restrictions direction values are first-class citizens of CAOS.
Left hand side variables in assignments can be either cell attributes or local variables. In the
former case the new value of that attribute is defined; in the latter case the assignment has
no effect, unless the local variable occurs in a subsequent expression that actually defines an
attribute. Repeated assignment to the same cell attribute or local variable simply overwrites
the previous value.
Right hand side expressions are made up of identifiers, the usual unary and binary operator
applications and function applications. CAOS supports all built-in operators of C and the
same associativities and priorities as in C apply. As CAOS in its current state does not support
the definition of functions, function applications refer to external functions declared in the
declaration section using the extern keyword.
Identifiers in expression position may either refer to cell attributes or to local identifiers. The
latter case requires a preceding assignment to the local variable, otherwise its value and,
hence, the value of the expression is undefined. If an identifier refers to the cell state, the
value of the attribute is always the previous iteraions’s value, even if an assignment to the
same cell attribute precedes the occurence of the identifier.
A specialty of CAOS is the symbolic definition of neighbourhoods, more precisely the way
the previous iteration’s state of neighbouring cell’s attributes are accessed. While a plain
cell attribute identifier refers to the previous value of this attribute in the current cell,
neighbouring cells can be accessed through symbolic selectors that make use of the direction
identifiers defined together with the grid layout in the grid definition section. To support
complex neighbourship relationships, multiple direction specifiers can be combined using the
hat operator.
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grid : X : 1 0 0 : l e f t <. > r i g h t : c y c l i c , Y : 1 0 0 : up<. >down : c y c l i c ;

c e l l {
double s t a t e ;

}

behaviour {
double sum ;
sum = s t a t e + s t a t e [ up^ l e f t ] + s t a t e [ up ] + s t a t e [ up^ r i g h t ]

+ s t a t e [ l e f t ] + s t a t e [ r i g h t ]
+ s t a t e [down^ l e f t ] + s t a t e [down] + s t a t e [down^ r i g h t ] ;

s t a t e = sum / 9 . 0 ;
}

Fig. 8. CAOS example comuting average with eight neighbouring cells

Fig.8 illustrates the use of selectors using a simple CAOS program, where the state is a made
up of a floating point number, the grid is two-dimensional with cyclic boundary conditions,
and the state transition function computes the arithmetic mean between previous value and
those of the eight neighbouring cell’s values.

2.6 Control flow constructs

Simple state transition functions made up of sequences of assignments are too restricted to
define most interesting cases. Even Conway’s Game of Life, despite all its simplicity, cannot
defined in this restricted setting. For general-purpose applicability CAOS supports a number
of control flow manipulating constructs, some of which are directly borrowed from other
languages (more precisely from C as far as syntax is concerned), some are tailor-made for
CAOS. Fig. 9 defines the additional syntax for CAOS behaviour sections.

Instruction ⇒ Assignment | Cond | Switch | ForEach

Block ⇒ Instruction

| { [ Instruction ]* }

Cond ⇒ if ( Expr ) Block else Block

Switch ⇒ switch ( Id ) { [Case ]+ [Default ] }

Case ⇒ case CaseVal [ , CaseVal ]* [Guard ] : Block

Guard ⇒ | Expr

Default ⇒ default : Block

ForEach ⇒ foreach ( LocalType Id in Set [Guard ] ) Block

Set ⇒ [ Expr [ , Expr ]* ]

Fig. 9. CAOS control flow construct syntax

The simplest control flow construct is a conditional or branching construct as supported in
one way or another by any programming language. Fig. 10 illustrates its use and shows how
Conway’s Game of Life can be implemented with just this control flow construct.
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c e l l {
dead_or_al ive s t a t e ;

}

behaviour {
i n t counter ;

counter = 0 ;
i f ( s t a t e == a l i v e ) counter=counter +1;
i f ( s t a t e [ up ] == a l i v e ) counter=counter +1;
i f ( s t a t e [down] == a l i v e ) counter=counter +1;
i f ( s t a t e [ l e f t ] == a l i v e ) counter=counter +1;
i f ( s t a t e [ r i g h t ] == a l i v e ) counter=counter +1;

i f ( counter == 2 || counter == 3) {
s t a t e = a l i v e ;

}
e l s e {

s t a t e = dead ;
}

}

Fig. 10. CAOS example implementing the Game of Life behaviour

The second control flow construct is a switch-construct. Despite the obvious syntactic
similarities, the CAOS switch does differ from its C counterpart in essentially two aspects.
Each case-statement may feature multiple values rather than just one as in C. Accordingly,
CAOS does not feature multiple cases sharing the same block of instructions as would be
achieved in C by leaving out the break-statement in between. Having said that, CAOS does
not know the break-statement and it will always execute the block of instructions associated
with the first case that fits the pattern as defined by the variable following the key word
switch. The other difference between CAOS and C is that individual cases can be refined by
a guard expression, which is syntactically is separated from the values by a vertical bar. If the
switch variable has one of the values listed by some case, the guard expression is evaluated.
This expression must yield a Boolean value. If the value is true, the associated block of
instructions is executed; otherwise, the execution of the switch-construct continues with the
next case.
CAOS does not feature any C-like loop constructs, but it does have a related construct, named
foreach. The foreach-construct allows the programmer to define a block of instructions
that is executed for each element of a given set of elements. Each expression of the set (enclosed
by square brackets) is assigned exactly once to the identifier introduced in the construct
and the associated block of instructions is executed for this value. As Fig. 9 shows, the set
definition may be followed by an optional guard expression that has the same meaning as in
the switch-construct introduced before. Fig. 11 illustrates the use of foreach and switch

through an alternative implementation of the Game of Life.

2.7 Non-deterministic features

In some scenarios it is desirable to introduce probabilistic behaviour of cells. For this purpose
three constructs forone, with and choose are provided as part of the CAOS language.
Fig. 12 defines their exact syntax.
The forone constructs syntactically very much resembles the (deterministic)
forall-construct. However, unlike forall, foreach selects exactly one element
from the given set. The element is selected using pseudo-random methods. Once an element
from the set is chosen, the (optional) guard expression is evaluated. If it evaluates to true,
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c e l l {
dead_or_al ive s t a t e ;

}

behaviour {
i n t counter ;

counter = 0 ;

foreach ( d i r d in [ l e f t , r ight , . , up , down] | s t a t e [ d ] == a l i v e ) {
counter = counter + 1 ;

}

switch ( counter ) {
case 0 , 1 , 4 : s t a t e = dead ;
case 2 , 3 : s t a t e = a l i v e ;

}
}

Fig. 11. CAOS alternative example implementing the Game of Life behaviour using
advanced control flow constructs

Instruction ⇒ ...
| ForeOne | With

ForOne ⇒ forone ( Type Id in Set [Guard ] ) Block

With ⇒ with ( Expr ) Block [ else Block ]

Expr ⇒ ...
| Choose

Choose ⇒ choose ( LocalType Id in Set )

Fig. 12. CAOS syntax of non-deterministic language constructs

the associated block of instructions is executed; otherwise, program execution proceeds to the
instruction following the forone-construct.
Fig. 13 illustrates the use of the forone-construct (and of the other non-deterministic
langauge features introduced below). In the first behaviour section one of the four direct
neighbours is non-deterministacally chosen and the state of that neighbour defines the new
state of the current cell.
If the sole intention of using a forone is to non-deterministically choose one value out of a set
of values, the choose-construct provides a more concise alternative. The choose-construct
actually is an expression rather than an instruction. It can be used anywhere in expression
position; its value is one of the values described by the set, which one is non-deterministc.
The second behaviour section in Fig. 13 illustrates the use of choose.
Last not least, the with-construct introduces the notion of probabilistic execution of code
blocks. After specifying a probability 0 ≤ p ≤ 1, p ∈ R a block of code will be executed
with this probability. With probability 1 − p the code block following the key word else

is executed. The absence of an else-block is treated as an empty else-block. The third
behaviour block in Fig. 13 illustrates the use of with. With 70% propability the state of the
left neighbour is chosen as new state of the current cell, with 30% propability the state of the
right neighbour.
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behaviour {
forone ( d i r d in [ l e f t , r ight , up , down ] ) {

s t a t e = s t a t e [ d ] ;
}

}

behaviour {
s t a t e = choose ( i n t val in [ s t a t e [ l e f t ] , s t a t e [ r i g h t ] , s t a t e [ up ] , s t a t e [down ] ) ;

}

behaviour {
with ( 0 . 7 ) s t a t e = s t a t e [ l e f t ] ;
e l s e s t a t e = s t a t e [ r i g h t ] ;

}

Fig. 13. Examples for the use of CAOS non-deterministic features

2.8 Observers

It is paramount for any simulation software to make the result of simulation, and in most
cases intermediate states at regular intervals as well, visible for interpretation. Observers
serve exactly this purpose. They allow us to observe the values of certain attributes of cells
and agents or cumulative data about them (e.g. averages, minima or sums) at certain regular
intervals of the simulation or just after completing the entire simulation.
Each observer is connected with a certain file name (not a certain file). The parallel runtime
system takes full advantage of parallel I/O both when using MPI and OPENMP as backend.
This file system handling is particularly tricky if it is to be hand-coded. An auxiliary tool suite
provides a comfortable user-interface to observer data produced through parallel file I/O.

Observer ⇒ Observeall | Observe

Observeall ⇒ observeall ( Filename , Expr ) { [ObsAllInstr ]+ }

Observe ⇒ observe ( Filename , Expr ) { [ObsInstr ]+ }

ObsAllInstr ⇒ Type String = Expr ;

ObsInstr ⇒ Type String = ReduceOp ( Expr ) ;

ReduceOp ⇒ avg | min | max | sum | prod | all | any | cnt

Fig. 14. CAOS observer syntax

There are two conceptual different classes of observers (see Fig. 14 for concrete syntax) that
either observe values of cell attributes individually or that apply a reduction operation to
all cells and produce scalar results. Both concepts allow the programmer to specify time
steps in which the blocks are executed. For this, an Boolean expression depending on the
current timestep may be specified. It is evaluated in each time step. If the value is true, the
associated observation block is executed. Both observer classes require the declaration of a
filename. All data gathered by the observer are written to the file specified by that filename.
Each entry in an observation block is build up in the same way: First, the type of the result has
to be specified, followed by a user-definable identifier of that entry. The identifier is followed
by the expression that computes the desired result.
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observe ( " myObserverFile " , t imestep%10 == 0) {
i n t " c e l l s A l i v e " = cnt ( s t a t e == a l i v e ) ;

}

o b s e r e v a l l ( " mySnapshot " , t imestep == 1) {
i n t " c e l l S t a t e " = s t a t e ;
bool " a c t i v e S t a t e " = a c t i v e ;

}

Fig. 15. Examples for the use of observers

The keyword observe denotes the start of an observer that uses reduce operations on
selected components. Each line in the observe section yields one value that is written to file.
There are eight different reduce operators available:

• min/max/avg These operators determine the minimum/maximum/average of the given
expression for all cells.

• sum/prod The value of the expression for each cell is summed/multiplied up.

• cnt If the Boolean expression holds, a counter is increased by one. Eventually, the value
of the counter is written to the file.

• any/all These operators yield true if the expression is true for all cells/any cell and false
otherwise.

Fig. 15 illustrates the use of observers by two simple examples. The first observer observes
the number of cells that are in state alive after every 10 timesteps.
The keyword observeall starts the definition of an observer that saves values for every
single cell to the file. The resulting file contains a tuple of results for every cell, representing
the results of expressions given in the observer section. Thus, a simple snapshot of the grid
is generated by specifying the cell components as results in the observer section in the same
order as they appear in the cell section. Fig. 15 again provides a simple example.

2.9 Agents

Agents are similar to cells in that they consist of a set of attributes. Agents move from cell
to cell; at any step during the simulation an agent is associated with exactly one cell. A cell
in turn may be associated with a conceptually unlimited number of agents. Like the cells,
agents have a behaviour (or state transition function). The behaviour of an agent is based on
its existing state and the state of the cell it resides at as well as all other agents and cells in
the neighbourhood as described above. In addition to updating its internal state, an agent
(unlike a cell) may decide to move to a neighbouring cell. Conceptually, this is nothing but an
update of the special attribute location. Agents also have a life time, i.e. rather than moving
to another cell, agents may decide to die and agents may create new agents. Agents are not
implemented in the current version of CAOS but are planned for the next release.

3. The CAOS tool-chain

We have implemented a fully fledged CAOS compiler1 that generates sequential C code.
On demand, the grid is automatically partitioned for multiple MPI processes. The process
topology including the choice and number of partitioned grid axes are fully user-defined.
A default process topology provided at compiler time may be overwritten at program
startup. Additionally, each MPI process may be split either statically or dynamically into a

1 The current version does not yet support agents.
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user-defined number of OPENMP threads, provided that the available MPI implementation
is thread-safe. Proper and efficient communication between MPI processes including the
organisation of halo or ghost cells at partition boundaries is taken care of by the compiler
without any user interaction.
The compilation of a CAOS simulation into an executable binary is based on the CAOS
compiler caosC. Invocation of the compiler is done indirectly via a generic Makefile that
implements all required stages from translating CAOS source code to C, choosing an
appropriate C compiler and calling the desired compiler with all required options to generate
binary code.
The compilation process is parametrised over several options that determine what kind of
parallelisation is applied and how many time steps are executed by default. If make is called
without any options, an extensive help screen is displayed.
The resulting program carries out the simulation steps as shown in Fig. 16. As with

Startup

Allocation and
Initialization of the grid

Initialization of
Observer

Timestep <

Max_Timestep?

State Transition

Update Halocells

Observer in this
Timestep?

Execute Observer

Swap Grids

Timestep =

Timestep+1

Clean Up

End

YES

NO

YES

NO

Fig. 16. Program flow chart of a CAOS simulation run

the compilation process, the executable file supports several options too. The parameters
influence the runtime behaviour of the program and are as follows:

• -help displays a list of all supported parameters

• -timesteps=n sets the number of simulation time steps to n. If this parameter is not
given, the compiled-in default number of time steps is executed.

• -show-progress shows a visual progress indicator during execution.

• -infile=filename if this option is present, the initial state of the cell grid is read in from
a file filename. The init block of the CAOS program has no effect in this case.

• -dimsizes=N this option overrides the compiled-in grid size of the simulation. When
using this option, the sizes of all dimensions of the grid have to be specified. Sizes are
separated by a lower-case x, for example 128 x 128.

• -psizes=P defines the distribution of the grid for each dimension. With this parameter
each dimension is divided into as many parts as defined by P.Sizes are separated by a

556 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com



lower-case x, for example 2 x 2. If a dimension is given a size of 1 no distribution along
that dimension is applied. See Fig. 17 for examples.

• -mpi-psizes=P for simulations that have been compiled into mixed-mode binaries, i.e.
simultaneous usage of OpenMP and MPI, this parameter defines the distribution of the
grid across MPI processes for each dimension. Each dimension is divided into as many
parts as defined by P.Sizes are separated by a lower-case x, for example 2 x 2. If a
dimension is given a size of 1 no distribution along that dimension is applied.

• -omp-psizes=P for simulations that have been compiled into mixed-mode binaries, i.e.
simultaneous usage of OpenMP and MPI, this parameter defines the distribution of the
grid across OpenMP threads per MPI process for each dimension. Each dimension is
divided into as many parts as defined by P.Sizes are separated by a lower-case x, for
example 2 x 2. If a dimension is given a size of 1 no distribution along that dimension is
applied.

• -print-defaults print compiled-in defaults of all settings

• -setparam:Q=v initializes parameter Q with value v. The parameters that can be set here
are those that have been specified in the CAOS source code using the param keywork. A
list of all compiled-in parameters is displayed within the help text of the binary (-help
option).
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Fig. 17. Examples of possible distributions of a two-dimensional grid using the -psizes
parameter

For a more detailed treatment of the semantics of these parameters and for an in-depth
discussion of all implementation details, please see Grelck & Penczek (2007).

4. Selected implementation aspects

The main component of the CAOS tool-chain is the compiler that infers all static information
of a CAOS program and compiles many default settings into the binary file. Still, certain
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dynamic aspects of a simulation are determined at runtime when a simulation is run
with values other than the compile-time defaults. For parallel execution, this includes the
distribution of the cell grid and appropriate communication patterns. An overview of the
general execution of a parallel CAOS program is shown in Fig. 18. We will describe a few
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Fig. 18. Program flow plan of a parallel CAOS program

selected aspects of this process in more detail in the following sections.
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4.1 Halo-cells: Inference, distribution and communication

In an implementation of a cellular automata simulation the cell grid is inevitably bounded in
size, i.e. there will be certain cells that live on the boundary of the grid. If a dimension is
defined as being cyclic, the neighbouring cell at the boundary lies at the other end of the grid.
If the boundary is a static one the cells does not have a real neighbour. To avoid out-of-bounds
errors without changing the access pattern of boundary cells the grid has to be padded as
shown in Fig. 19 so that accesses to all neighbours can succeed.

halo cell halo cell

Fig. 19. Access to adjacent cells at cyclic (top) and static boundaries (bottom). At static
boundaries halo-cells are automatically introduced.

The padding of the original cell grid introduces a frame of halo cells. This frame extends
the original cell grid on each side by as many cells as are required for all accesses within
a behavior to stay within the framed grid. An automatic inference mechanism analyses
access patterns and determines the minimum size of the halo frame. Generally, this will lead
to different extensions of dimensions as shown in Fig. 20. Halo cells are built from the same
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grid X:20:left<.>right:static, Y:10:up<.>down:cyclic;{...}

init{...}behaviour{...}init[left]{...}

Fig. 20. Automatic embedding of the cell grid into a frame of halo cells. The extend of the
frame is automatically inferred.

constituents as standard cells as defined in the cell block of a CAOS program. Consequently,
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the initial values of halo cells are set by the init block. However, if more control over these
initial values is required, init blocks for all or some of the halo frames may be given in
additional init blocks. Fig. 20 shows this for a two-dimensional grid where the left side of
the halo frame is initialised with special values.
Halo cells do not perform state transitions, they remain static during the entire simulation. If
a grid dimension is defined as being cyclic, however, the halo cells are automatically updated
after each time step so that cells on boundaries access the correct values of cells that are located
on the other end of the grid. Because of the halo cell frame, these accesses are just applications
of the standard access pattern and do not require complex index transformations.
In a parallel setting, where the global grid is divided up into several smaller grids, the halo
frames extend each local grid. Along dimensions that are not distributed the halo cells serve
the same purpose as before. Along dimensions that are distributed, however, the halo cells
are used to represent cells of neighbouring local grids. This ensures that distribution is
completely transparent for the rest of the implementation, especially the implementation of
the state transition function. During each time step of the simulation the values of halo cells
are exchanged with the appropriate adjacent neighbour of a distributed dimension as shown
on Fig. 21.
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Fig. 21. Halo cells serve a dual purpose on a distributed grid. Along distributed axises the
halo frame keeps copies of boundary cells of neighbouring local grids.

4.2 Parallel I/O

Writing data during the execution of observers poses a challenge when a simulation is
executed in parallel. As the global grid does not exist as a whole, but is distributed over
several processes, several concurrent write operations have to be carried out to the same file.
Of course, this could be avoided by collecting all local grids in one process and then executing
the observer code on a completely reassembled grid. Obviously, this procedure requires a
considerable amount of data to be send and it may also require more memory than a single
process has available to store the grid. The CAOS implementation takes a different approach
where each process writes its local grid directly to the appropriate location within a shared
file.
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Each process uses information about the extent of the global grid and the distribution of the
grid across several processes. From this information a process computes the location of the
part of the global grid that it locally holds. This determines which regions of a file the process
will fill with the contents of its local grid during the execution of an observer.
The MPI standard defines a set of I/O functions that offers high-performance I/O operations
in a distributed setting on a high level of abstractions. For CAOS we make use of the file view
concept Gropp et al. (1999), which uses information about the global grid and the information
about the distribution to organise concurrent access to files into independent tasks. The file
view determines which (not necessarily consecutive) parts of a file are visible to a process.
The remaining parts of the file that belong to other processes are masked out. Using this, each
process may apply its observe blocks in the same way as for sequential execution as the MPI
I/O functions automatically direct file access to the appropriate location of the observer file.
See Fig. 22 for an illustration.

δ0 = 3
δ1 = 1

global grid

local grids for

processes p0,p1,p2

=̂ halo cell

write data of observer

file storing the data of all
processes

=̂ file view of p0

=̂ file view of p1

=̂ file view of p2

Fig. 22. Using MPI’s dedicated high-performance I/O functionality, local file views are created
for each local grid.

5. Evaluation and performance

We use an implementation of a 2-dimensional Jacobi iteration as the basis for performance
evaluation experiments. Fig. 23 shows the complete CAOS code, which also serves as a
reference example for CAOS programs.
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We measured the runtime of this program on several machines to cover multiple common
hardware configurations: a dual-core laptop, a cluster of distributed-memory blade servers
and a 48-core shared-memory computation server.

param i n t atTstep = 1 ;
param i n t s i z e = 1 0 0 ;

gr id 0 . . s i z e : l e f t <.> r i g h t : s t a t i c ,
0 . . s i z e : up <.> down : s t a t i c ;

c e l l s { double s t a t e ; }

i n i t { s t a t e = 0 . 0 ; }

i n i t [down] { s t a t e = 5 0 0 . 0 ; }

behaviour { double a = 0 . 0 ;
foreach ( d i r d in [ up , down, l e f t , r i g h t ] ) {

a = a + s t a t e [ d ] ;
}
s t a t e = a / 4 . 0 ;

}

o b s e r v e a l l ( " j a c o b i . o u t f i l e . a l l " , t imestep==atTstep ) {
double " s t a t e " = s t a t e ;

}

observe ( " j a c o b i . o u t f i l e . reduce " , t imestep==atTstep ) {
double " avgState " = avg ( s t a t e ) ;

}

Fig. 23. Jacobi iteration specified in CAOS

5.1 Performance on consumer-grade hardware

As a representative measurement for consumer-grade hardware, we have measured the Jacobi
iteration on a 4096 × 4096 grid for 1000 timesteps. The laptop runs Mac OS X 10.6.4 on
a 2.4GHz Intel Core 2 Duo and contains 4GB of main memory. The simulation has been
compiled using the OpenMP back-end of the CAOS compiler. The generated code exploited
both cores when run with two threads and achieved a speed-up of almost 1.8 as Fig. 24 shows.

5.2 Performance on distributed memory

The cluster consists of nodes with 2 E5520 Intel Xeon processors with hyperthreading
disabled. Each node contains 24GB of ram, network connections between the nodes are
established via DDR Infiniband. All nodes have access to a shared file system.
The runtimes shown in Fig. 25 are based on the execution of the Jacobi iteration on a 16384 ×
16384 grid for 1000 time steps. Although the effect diminishes with increasing numbers of
MPI processes, the simulation runtimes decrease with the number of available computing
resources.

5.3 Performance on shared memory

The machine we have used for these runs is a 48-core shared-memory system consisting of
4 twelve-core AMD Opteron 6174 processors. The total amount of memory in the system is
256GB to which the cores have non-uniform access.
We ran two series of experiments, both using the Jacobi implementation on a grid of 16384 ×
16384 for 1000 time steps. The first series of experiments used the OpenMP back-end of the
CAOS compiler, the second series was distributed using MPI. As Fig. 26 shows, both versions
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Fig. 24. Runtimes on a standard off-the-shelf laptop.
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Fig. 25. Runtimes on a distributed-memory cluster using MPI

scale for a small number of cores. The OpenMP version is more efficient than the MPI variant
for a small numbers of cores. However, on this machine the OpenMP implementation did not
scale beyond 6 cores for reasons that would require further investigation. The MPI version did
not suffer from this problem and scaled with the number of cores which reduced the runtime
of the simulation considerably.

6. Related work

Mathematica and MatLab are well-known general-purpose systems that are also suitable
for implementing cellular automata on a level of abstraction that exceeds that of standard
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Fig. 26. Runtimes on a 48-core shared-memory machine using MPI and OpenMPI

programming languages. However, when it comes to complex simulations it is often more
convenient to use a domain-specific, high-level language to implement the simulation. A
programmer may choose from a range of languages like CANL Calidonna & Furnari (2004),
CDL Hochberger et al. (1995), TREND Chou et al. (2002) and JCASim Freiwald & Weimar
(2002). These languages offer an instruction set that is specifically tailored towards cellular
automata. The simulations, however, are restricted to two-dimensional automata. Languages
like CARPET/CAMEL Spezzano & Talia (1997a;b) and CELLANG Eckart (1992) overcome
this restriction and offer support for automata with one, two and three dimensions. CAOS
takes the idea even further and supports an arbitrary amount of dimensions.
The parallel execution of simulations is for example supported by CARPET Spezzano &
Talia (1997a) with the CAMEL system Naumov (2004). CAOS supports the multi-threaded
execution on shared memory machines and a distributed execution on clusters. If cluster
nodes are multi-processor, shared-memory machines, CAOS also supports the combination
of both models. Processes are distributed over the cluster nodes where the execution of each
process is multi-threaded.
The regular structure of grids of cellular automata makes them well-suited for a direct
mapping onto reconfigurable hardware. In Halbach et al. (2004) the simulation of cellular
automata on FPGAs is investigated; in Ackermann et al. (2001) the design of a pseudo-random
number generator in hardware on the basis of a CA is described. Compilers that translate
cellular automata programs to these platforms are available, as for example the CDL compiler
Hochberger et al. (1995).

7. Conclusion

CAOS is a new domain-specific programming language for the high-level specification of
numerical simulations based on the well-known concept of cellular automata. CAOS extends
this concept in a number of directions. For instance, grids are not limited to vectors or
matrices, but can actually have any number of dimensions/axes. Communication is not
restricted to nearest neighbours, but may cover any (static) neighbourhood. Cells do not
carry binary information, but aggregate any number of numerical properties or attributes
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as required by the programmer. Last not least, the state transition function is defined by
means of a simple but nevertheless fully-fledged programming language whose design is
geared towards the given purpose and, in particular, features a number of non-deterministic
constructs.
Our CAOS compiler exploits the restricted pattern of communication characteristic for cellular
automata for generating executable code whose runtime performance is highly competitive
on modern computer architectures. Fully automatic parallelisation for shared memory
architectures based on OpenMP as well as for distributed memory architectures based on
MPI provides easy access to high-performance computing infrastructures from state-of-the-art
symmetric multiprocessors to clusters of workstations and supercomputers. All this can be
harnessed with only modest (sequential) programming skills and practically no familiarity
with modern computer architecture or parallel computing issues.
We currently pursue two directions of future work. Firstly, we plan to continue on the
successful route to support compiler-directed parallelisation through a restricted model of
computation and extend the CAOS compiler to support emerging architectures such as
general purpose graphics processors. Secondly, we are working on completing the CAOS
language by support for agents that substantially increase the expressiveness of CAOS for
advanced simulation.
Further information on the CAOS project, including a technical report that covers compilation
in-depth Grelck & Penczek (2007) and a source distribution with demos for download, is
available at

http://www.caos-home.org/ .
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