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Abstract. We present the rationale and design of S-Net, a coordina-
tion language for asynchronous stream processing. The language achieves
a near-complete separation between the application code, written in any
conventional programming language, and the coordination/communica-
tion code written in S-Net. Our approach supports a component tech-
nology with flexible software reuse. No extension of the conventional
language is required. The interface between S-Net and the application
code is in terms of one additional library function.
The application code is componentised and presented to S-Net as a set
of components, called boxes, each encapsulating a single tuple-to-tuple
function. Apart from the boxes defined using an external compute lan-
guage, S-Net features two built-in boxes: one for network housekeeping
and one for data-flow style synchronisation. Streaming network compo-
sition under S-Net is based on four network combinators, which have
both deterministic and nondeterministic versions. Flexible software reuse
is comprehensive, with the box interfaces and even the network struc-
ture being subject to subtyping. We propose an inheritance mechanism,
named flow inheritance, that is specifically geared towards stream pro-
cessing. The paper summarises the essential language constructs and
type concepts and gives a short application example.

1 Introduction

This paper will introduce a coordination language for asynchronous stream pro-
cessing. The concept of coordination language arises wherever an application has
to be presented as a set of concurrent communicating activities, each defined in
application-specific terms as a meaningful program unit, while all together repre-
senting a concurrently executing, parallel (and potentially distributed) applica-
tion. The application program units are presented in an appropriate fully-fledged
programming language, such as C, Java, etc., while the aspects of communica-
tion, concurrency and synchronisation (referred to by the term coordination)
are captured by a separate, coordination, language. The whole idea of coordina-
tion hinges on the principle that the integration between the coordination and



application languages is loose: coordination constructs have little access, if at
all, to the facilities of the application program. A complete separation between
computation and coordination language is always desirable, but rarely achieved
in practice. Nevertheless, there must be a rigorously defined contract between
them. The usefulness of the coordination language comes from the fact that co-
ordination minimally disturbs the application code. In our approach, which is
rather extreme in this sense, the application program units merely use a special
output function (which is in fact part of the coordination/application interface)
instead of a standard function return, and even that is additional to simply using
those units as is, whenever the application language is rich enough for aggregated
return values (e.g., a list of records). Another great advantage of coordination is
that the programmer responsible for concurrency could be a system integrator
without specialist algorithmic knowledge in the application area. This obviously
provides for the wider adoption of distributed and parallel computing in practical
software engineering.

The approach developed in this paper is targeted at stream processing.
This is a well-established area, which is very important in a time when dis-
tributed computing, multimedia and signal processing permeate the computing
and telecommunication sectors. This paper focuses on asynchronous stream pro-
cessing, which on the one hand, enables the philosophy of data-flow synchroni-
sation developed in the 1980s to be taken on board (thanks to the coordination
aspect, which assumes course granularity), whilst on the other hand, develop a
whole host of analysis techniques thanks to the regular nature of stream commu-
nication (as opposed to general message-passing). The result is a very compact
and powerful coordination language, called S-Net which reflects the modern no-
tions of subtyping, encapsulation and inheritance, while completely separating
all communication and concurrency concerns from the application code.

S-Net provides means to describe the orderly behaviour among components,
named boxes and the streaming network used for communication between them.
Boxes are Single Input Single Output (SISO) entities implemented externally
using an appropriate box language. Functional languages are particularly suitable
for this purpose as they naturally adhere to the restrictions imposed by the
interface (i.e. no side-effects and no state sharing). Nevertheless, imperative box
languages may be used as well, but require some discipline by the programmer.

Boxes communicate with each other and with the execution environment
solely by means of data received and sent via their input and output streams,
respectively. S-Net allows boxes to be composed into SISO networks. The input
and output streams of a box or network are typed. Composition of boxes involves
merging their streams and also splitting them depending on types. It is described
using network combinators, that are inspired by Stefanescu’s network algebra [1].

S-Net networks are asynchronous by definition: an entity’s output is as-
sumed to be buffered. When processing is done by several components whose
results must be combined, generally a synchronisation facility is required. It is
introduced in the form of a SISO synchrocell, which is the only kind of “stateful”
box in an S-Net. A synchrocell expects records of several types to appear at its
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input; it combines them into a joint record and outputs the result. The internal
state of a synchrocell is made up by the records waiting to be synchronised. Note
that synchrocells, though “stateful”, have no computation to perform, whereas
boxes have no state, but can compute.

Finally, we propose genericity and specialisation mechanisms on the basis of
static record subtyping. These mechanisms make it possible to statically optimise
streaming networks with generic components. They also enable the component
designer to provide several versions of a box depending on a subtype. Crucially,
S-Net does not require explicit subtype declarations; a subtype inference algo-
rithm is applied to determine the most appropriate subtype.

The remainder of this paper is organised as follows. We will commence with
a brief overview of stream processing in Section 2. The type concepts inherent
to S-Net are presented in Section 3. Sections 4 and 5 introduce the S-Net
approach to box and network definition, respectively. The important issue of
synchronisation in streaming networks is discussed in Section 6. We illustrate
our approach by a small example in Section 7. Section 8 discusses some related
work, and we conclude in Section 10.

2 Background: stream processing

The concept of stream processing has a long history. The view of a program as
a set of processing blocks connected by a static network of channels goes back
at least as far as Kahn’s seminal work [2] and the language Lucid [3]. Kahn
introduced the model of infinite-capacity, deterministic process networks and
proved that it had properties useful for parallel processing. Lucid was apparently
the first language to introduce the basic idea of a block that transforms input
sequences into output sequences. A variable would represent such a sequence,
acting as a stream of values of that variable in time. Ordinary operators in Lucid
acted on variables point-wise, by effectively synchronising streams and applying
the operation across pairs of corresponding stream elements. Additionally there
were also some “temporal” operators, which were intended for altering the order
of elements in a sequence.

Somewhat later, in the 1980s, a whole host of synchronous dataflow languages
sprouted, notably the languages Lustre [4] and Esterel[5], which introduced ex-
plicit recurrence relations over streams and further developed the concept of
synchronous networks. These languages are still being used for programming
reactive systems and signal processing algorithms today, including industrial
applications such as the recent Airbus flight control system and various other
aerospace applications [6]. The authors of Lustre broadened their work towards
what they termed synchronous Kahn’s networks [7, 8], i.e functional programs
where the connection between functions, although expressed as lists, is in fact
‘listless’: as soon as a list element is produced, the consumer of the list is ready
to process it, so that there is no queue and no memory management required.

A nonfunctional interpretation of Kahn’s networks is also receiving attention,
the latest stream processing language of this category being, to the best of our
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knowledge, the MIT’s StreamIt [9]. The latest comprehensive survey of stream
processing and the underlying theory for it can be found in [10]. There is also a
growing activity in database stream processing [11], which concerns itself with the
problem of responding to a database query ”on the fly”, using the same limited-
memory, sliding-window view of processing blocks that started with Lucid and
continued through the aforementioned stream-processing languages. Still, despite
much work having been done in various niche areas, stream processing has yet to
be recognised as a general-purpose paradigm in the same sense as, for instance,
object-oriented or functional programming.

Around the time that Lustre was introduced, David Turner[12] remarked that
streams could be used as software glue for complex parallel software systems,
even operating systems. In his interpretation, streams were lazy lists, which
were produced on demand for their consumers. The lists were seen as an in-
terface between the deterministic parts of a parallel system, which were pure
stream-processing functions3, and the external interleavers/mergers that realise
the inter-process communication and capture its nondeterministic behaviour.

This arrangement is sketched out in Fig. 1. Note that each processing box has
a single input and a single output. This does not lead to a loss of generality due
to the fact that a function requiring multiple input streams can be represented
as a function of a single stream argument where the elements of the multiple
streams are somehow merged into a single sequence of records. Similarly, a single
output stream can be split into any given number of secondary output streams
by picking out records for each of the output sequences. The issue of how exactly
the inputs are merged is a delicate one; an efficient solution would depend on
the properties of the function in question. The merging usually benefits from
being nondeterministic, as this accommodates the delays incurred in receiving
the contributing streams by allowing the first message that arrives to be passed
on to the processing function without waiting for its turn.

box 1

box 2

merger
box 3

Fig. 1. The Turner scheme

Note that a merged stream has no overall order: only records belonging to
a single tributary stream have a precedence relation defined on them. To allow
3 In fact, they could have been any self-contained procedures rather than pure func-

tions as long as the only access they had to each other’s state was via stream com-
munication.
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that order to be recovered from the merged stream, the provenance information
can be preserved by, for example, tagging the ordered records by the same tag.

Overall, the Turner scheme seems very attractive as it neatly separates the
computational aspect of stream processing from the communication aspect; it
confines non-determinism to the part of the system where no value process-
ing takes place (since merging, filtering and splitting only re-package streams
without computing new values of basic types); and it uniformly represents an
application as a set of interconnected, side-effect-free, single-input, single-output
stream functions. The only quality that it seems to lack is satisfactory support
for modularity. The problem is that streams in complex systems tend to be
record-based, and the processing functions expect a certain set of fields to be
present in the records. Moreover, rather than streams having a single record lay-
out, variant records are often required, so that a number of different algorithms
can be carried out by a single block. In addition, certain “control” records can
be used for exception handling, load balancing, etc. The boxes can be usefully
extended by adding more variants and passing the unused fields downstream to
further, perhaps newly inserted, boxes which provide additional functionality.
Those are examples of network structuring, subtyping and inheritance that one
would expect to find in a practical stream-processing paradigm.

Besides these pragmatic considerations, we must mention here equally im-
portant theoretical advances in streaming networks. The key work in this area
has been done by Stefanescu, who has developed several semantic models for
streaming networks starting from flowcharts [13] and recently including models
for nondeterministic stream processing developed collaboratively with Broy [1].
This work aims to provide an algebraic language for denotational semantics of
stream processing and as such is not focused on pragmatic issues. It nevertheless
offers important structuring primitives, which are used as the basis for a network
algebra (see [14]). It is interesting to note that apparently the StreamIt team [9]
as well as ourselves [15] were unaware of those and re-invented them for network
construction.

3 The type system of S-Net

3.1 Record types

The type system of S-Net is based on non-recursive variant records with record
subtyping. As defined in Fig. 2, a type in S-Net is a non-empty set of anony-
mous record variants separated by vertical bars. Each record variant is a possibly
empty set of named record entries, enclosed in curly brackets. We distinguish two
different kinds of record entries: fields and tags. A field is characterised by its field
name (label); it is associated with an opaque value at runtime, i.e., fields can
only be generated, inspected or manipulated by using an appropriate box lan-
guage. A tag is represented by a name enclosed in angular brackets. At runtime
tags are associated with a single integer value each. This value is visible to both
box language code and S-Net. Furthermore, we distinguish between simple tags
and binding tags, the latter being marked with the hash character (“#”). The
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rationale of tags lies in controling the flow of records through a network. They
should not be misused to hold box language data that by chance can be repre-
sented as integer values. Binding tags behave differently from fields and simple
tags with respect to subtyping and provide explicit means to control subtyping
where some restriction is useful. We explain this in detail in Section 3.2.

Type ⇒ RecordType [ | RecordType ]*

RecordType ⇒ { [RecordEntry [ , RecordEntry ]* ] }

RecordEntry ⇒ FieldName | Tag

Tag ⇒ < TagName > | < # BindingTagName >

TypeSignature ⇒ TypeMapping [ , TypeMapping ]*

TypeMapping ⇒ Type -> Type

Fig. 2. Syntax definition of S-Net types and type definitions. The non-terminal sym-
bols FieldName, TagName and BindingTagName uniformly refer to identifiers. We only
distinguish them here for the purpose of illustration.

We illustrate S-Net types by a simple example from 2-dimensional geometry:
For example, we may represent a rectangle by the S-Net type
{x, y, dx, dy}

providing fields for the coordinates of a reference point (x and y) and edge
lengths in both dimensions (dx and dy). Likewise, we may represent a circle by
the center point coordinates and its radius:
{x, y, radius}

Using the S-Net support for variant records we may easily define a type for
geometric bodies in general, encompassing both rectangles and circles:
{x, y, dx, dy} | {x, y, radius}

Often it is convenient to give anonymous variants a name. In S-Net this may
be achieved using tags:
{<rectangle>, x, y, dx, dy} | {<circle>, x, y, radius}

or binding tags:
{<#rectangle>, x, y, dx, dy} | {<#circle>, x, y, radius}

We refer to types that consist of a single variant only as record types because each
record at runtime has an exact type description without variants. S-Net also
supports non-recursive abstractions on types, but coverage of this topic would
exceed the space available. We refer the interested reader to [16] for a complete
treatment of the subject.
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3.2 Record subtyping

S-Net supports structural subtyping on record types. Subtyping essentially is
based on the subset relationship between sets of record entries. Informally, a type
is a subtype of another type if it has additional record entries in the variants or
additional variants. For example, the type
{<circle>, x, y, radius, colour}

representing coloured circles is a subtype of the previously defined type
{<circle>, x, y, radius}

Likewise, we may add another type to represent triangles:
{<rectangle>, x, y, dx, dy}

| {<circle>, x, y, radius}
| {<triangle>, x, y, dx1, dy1, dx2, dy2};

which again is a supertype of
{<rectangle>, x, y, dx, dy} | {<circle>, x, y, radius}

and
{<circle>, x, y, radius, colour}

Our definition of record subtyping coincides with the intuitive understanding
that a subtype is more specific than its supertype(s) while a supertype is more
general than its subtype(s). In the first example, the subtype contains additional
information concerning the geometric body (i.e. its colour) that allows us to
distinguish for instance green circles from blue circles, whereas the more general
supertype identifies all circles regardless of their colour. In our second example,
the supertype is again more general than its subtype as it encompasses all three
different geometric bodies. Subtype {<circle>,x,y,radius,colour} is more
specific than its supertypes because it rules out triangles and rectangles from
the set of geometric bodies covered. Let us give a formal definition of record
subtyping.

Definition 1 (record subtyping).
Let BT (x) denote the set of binding tags in a record type x. Record subtyping is
defined by the following rules:

1. A record type r1 is a subtype of a record type r2, r1 v r2, if

r1 ⊇ r2 ∧BT (r1) = BT (r2) .

2. A type t1 is a subtype of a type t2, t1 v t2, if

(∀r1 ∈ t1∃r2 ∈ t2)r1 v r2 .

Subtype relationship requires both subtype and supertype to have exactly the
same binding tags. This explains our motivation to distinguish between simple
and binding tags: Binding tags provide a means to excercise explicit control
over record subtyping. For instance, the type {x,y} defining the position of a
geometric body is a supertype of all previous types. However, this is contrary
to the intuition. We would rather like to see the position being a part of the
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definition of the geometric body circle than a circle being a specific position.
Changing our type to

{<#rectangle>, x, y, dx, dy}
| {<#circle>, x, y, radius}
| {<#triangle>, x, y, dx1, dy1, dx2, dy2};

using binding tags prevents this and allows us to model our geometric bodies in
a more useful way.

Unlike many object-oriented languages like C++ or Java our definition of
record subtyping allows any type to have multiple supertypes (which are not in
subtype relationship themselves). Without the use of binding tags the type {}
(i.e. the empty record) is the most common supertype. Otherwise, for each set
of binding tags BT, BT itself is the most common supertype.

3.3 Type signatures

Type signatures describe the stream-to-stream transformation performed by a
box or a network. They are similar to function types. As defined in Fig. 2, a type
signature is a non-empty set of type mappings each relating an input type to an
output type. The input type specifies the records a box or network accepts for
processing; the output type characterises the records that the box or network
may produce as as response. For example, the type signature
{a,b} | {c,d} -> {<x>} | {<y>}

describes a box or network that accepts records that either contain fields a and
b or fields c and d. In response, the box or network produces records that either
contain tag x or tag y.

An input type that consists of multiple variants like in the previous example
is nothing but syntactic sugar for a set of type mappings each relating one of
the variants to the common output type. For example, the type signature above
is equivalent to the type signature
{a,b} -> {<x>} | {<y>},
{c,d} -> {<x>} | {<y>}

Therefore, we assume (single variant) record types as input types from here on,
we call these type signatures normalised. A multi-variant output type means
that a box or network may produce any of the records specified in response
to receiving an input record that fits the associated input type. However, it is
important to note that S-Net boxes may produce as many output records in
response to a single input record as they like, including none at all. Multiple
output records may follow the same output variant or be all different from each
other. In analogy to types, S-Net supports abstractions on type signatures;
see [16] for details.

3.4 Type coercion

As explained earlier, an S-Net box or network accepts any record whose type
is a subtype of the type signature’s input type. In general, this requires an up-
coercion to the most appropriate supertype. As an example, let us assume
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{<#rectangle>, x, y, dx, dy}
| {<#circle>, x, y, radius}
| {<#triangle>, x, y, dx1, dy1, dx2, dy2};

as input type of some network. The necessary up-coercion of a record type
{<#circle>, x, y, radius, colour}

of coloured circles is simply done by eliminating the additional colour field.
We always coerce to the least common supertype. In other words, we aim at
disposing of as few record entries as possible. If we would enrich our input type
by an additional variant for coloured circles as in

{<#rectangle>, x, y, dx, dy}
| {<#circle>, x, y, radius}
| {<#circle>, x, y, radius, colour}
| {<#triangle>, x, y, dx1, dy1, dx2, dy2};

we would choose that more specific mapping for whenever we deal with coloured
circles.

Unlike in single-inheritance object-oriented languages up-coercion may be
ambiguous. Consider
{x, y} | {dx, dy}

as another example of an input type. An incoming record of type
{<rectangle>, x, y, dx, dy}

would match both variants equally well. Only some targets for coercion can cause
such ambiguities; the following definition introduces a uniqueness condition for
type coercions:

Definition 2 (complete record type).
A record type τ is called complete iff

∀v, w ∈ τ : BT (v) = BT (w) =⇒ v ∪ w ∈ τ .

As in the definition of record subtyping, BT (x) denotes the set of binding
tags of a type x. For any pair of variants with the same set of binding tags a com-
plete record type must have a third variant combining their fields. Consequently,
(non-variant) record types are automatically complete. In order to disambiguate
coercion we require type signatures to have complete input types.

3.5 Flow inheritance

Up-coercion of records upon entry to a certain box or network creates a subtle
problem in the stream-processing context of S-Net. In an object-oriented setting
the control flow eventually returns from a method invocation that causes an up-
coercion. While during the execution of the specific method the object is treated
as being one of the respective superclass, it always retains its former state in the
calling context. In a stream-processing network, however, records enter a box or
network through its input stream and leave it through its output stream, which
are both connected to different parts of the whole network. If an up-coercion
results in a loss of record entries, this loss is not temporary but permanent.
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Unfortunately, the permanent loss of record entries is hardly useful or desir-
able. For example, we may have a box that manipulates the position of a geomet-
ric body which could be a rectangle {x, y, dx, dy}, a circle {x, y, radius}
or a ray {x, y, phi}. The associated type signature of such a box could be
just {x, y}->{x, y}. Using simple tags instead of binding tags for variant iden-
tification, this box would accept circles, rectangles and rays focussing on their
common data (i.e. the position) and ignoring their specific record entries.

Unfortunately, such a box would be completely useless because following the
necessary up-coercion to type {x, y} we lose all specific information on the
geometric bodies. What is intended to be a pure position manipulation, effec-
tively destroys the record. To remedy this unfortunate behaviour, we introduce
the following type rule that complements the up-coercion with an automatic
down-coercion.

Definition 3 (flow inheritance).
Let v[i] → τ [i], i ∈ [1, . . . , n], be the type signature of a box X. Furthermore, let
each output type τ [i] have mi variants τ [i] = {w[i]

1 , . . . , w
[i]
mi}. Then for any k ≤ n

and any field or non-binding tag φ 6∈ v[k] such that

(∀i 6= k)BT (v[k]) 6= BT (v[i]) ∨ v[k] ∪ {φ} 6⊆ v[i] ,

the box X can be subtyped by flow inheritance to the type X
′

: V [i] → T [i], where

V [i] =
{
v[i] if i 6= k,
v[k] ∪ {φ} otherwise;

and

T [i] =
{
τ [i] if i 6= k,
τ∗ otherwise.

Here τ∗ = {V1, . . . , Vmk
} and each Vi = w

[k]
i ∪ {φ}.

Informally, an input variant can be extended with a new field or simple tag
(but not binding tag) φ, if it does not clash with any other variant. The output
type associated with this input variant is extended with the field named φ in each
of its variants unless it is present there already. Any number of flow inheritance
extensions can be applied to a box, resulting in several fields being added. Value-
wise, the extension is in terms of copying the value of the input record field φ over
to the output record field with the same name. If the output already contains
an identically named field, then that field’s value supersedes the inherited one.

4 Boxes

4.1 User-defined boxes

From the perspective of S-Net boxes are the atomic building blocks of streaming
networks. The boxes themselves are implemented using a box language differ-
ent from S-Net. A single S-Net network may well combine boxes implemented
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using different box languages. Interoperability between different languages re-
quires a careful interface design whose proper description goes well beyond the
scope and size of this paper. Therefore, we restrict ourselves to sketch out the
principles.

BoxDef ⇒ box BoxName ( BoxSignature ) ;

BoxSignature ⇒ BoxType -> BoxType [ | BoxType ]*

BoxType ⇒ ( [RecordEntry [ , RecordEntry ]* ] )

Fig. 3. Grammar of S-Net box declarations

Fig. 3 shows the S-Net syntax for declaring user-defined boxes. Boxes are
declared in S-Net using the key word box followed by a box name as unique
identifier and a box signature enclosed in round brackets. The box signature very
much resembles a type signature with two exceptions: we use round brackets
instead of curly brackets and we have exactly one type mapping that has a
single-variant input type. For example, the following line of code
box foo ((a,b,<t>) -> (a,b) | (<t>));

declares a box named foo, which accepts records containing (at least) fields a
and b plus a tag t and in response produces records that either contain fields
a and b or a tag t. It is entirely up to the box implementation to decide how
many output records it actually emits and of which of the output variants they
are. This may well depend on the values of the input record entries and, hence,
can only be determined at runtime.

snet_handle_t *foo( snet_handle_t *handle, int *a, mytype_t *b, int t)
{
/* some computation on a, b and t */

snetout( handle, 1, a, b);

/* some computation */

snetout( handle, 2, t);

return( handle);
}

Fig. 4. Example box function implementation in C

As mentioned earlier, box signatures differ from regular type signatures in
the restriction to a single type mapping and the use of round brackets instead

11



of curly brackets. The latter emphasises the fact that in box signatures sequence
does matter, whereas type signatures are true sets of mappings between true
sets of record entries. Sequence is essential to support a mapping to function
parameters of some box language implementation rather than using inefficient
means such as string matching of field and tag names. For example, we may want
to associate the above box declaration foo with a C language implementation
in the form of the C function foo shown in Fig. 4.

The entries of the input record type are effectively mapped to the function pa-
rameters in their order of appearance in the box signature. We implement record
fields as opaque pointers to some data structure and tags as integer parameters.
In addition to the box-specific parameters the box function implementation al-
ways receives an opaque S-Net handle, which provides access to S-Net inter-
nal data. Since boxes in S-Net generally produce a variable number of output
records in response to a single input record, we cannot exploit the function’s re-
turn value to determine the output record. Instead, we provide a special function
snetout that allows us to produce and send output records dynamically during
the execution of the box function. The first argument to snetout again is the
internal handle that establishes the necessary link to the execution environment.
The second argument to snetout is a number that determines the output type
variant used. So, the first call to snetout in the above example refers to the first
output type variant. Consequently, the following arguments are two pointers.
The second call to snetout refers to the second output type variant and, hence,
a single integer value follows. Eventually, the box function implementation must
return the internal handle to signal completion to the S-Net context.

This is just a raw sketch of box language interfacing. Concrete interface
implementations may look differently to accommodate characteristics of certain
box languages, and even the same box language may actually feature several
interface implementations with varying properties. For a detailed description of
available box language interface implementations see [16].

4.2 The filter box

The primitive filter box in S-Net is devoted to all kinds of housekeeping opera-
tions. Effectively, any operation that does not require knowledge of field values
can be expressed by this versatile built-in box in a simpler and more elegant way
than using an atomic box and a box language implementation. Among these op-
erations are

– elimination of fields and tags from records,
– copying fields and tags,
– adding tags,
– duplicating record fields,
– splitting records,
– simple computations on tag values.

Syntactically, a filter box is enclosed in square brackets and consists of a type
pattern to the left of an arrow symbol and a semicolon-separated sequence of
filter actions to the right of the arrow symbol, for example:
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anyway, so having to cascade messages through a chain of routers may not be
an extra burden.

9.2 Cyclicity

Practical networks tend to be cyclic. Indeed any network solution that involves
iteration must apply the same algorithm to data several times, and in an acyclic
network that would result in node duplication along with the undesirable dupli-
cation of the components placed at the nodes. Yet, for reasons mentioned earlier,
it would be beneficial to avoid cyclic configurations in a coordination language.
Under normal circumstances these requirements would seem irreconcilable; how-
ever for streaming networks there is at least a compromise solution, which we
will consider next.

Fig. 14. Unrolling a cyclic SISO network (top) into an infinite regular graph (bottom).
Circles ◦ represent splitters by message type and bullets • represent mergers.

It is true that a cyclic network is not equivalent to any finite acyclic network.
However, if we allow for infinite networks then cyclicity is quite avoidable. In-
deed, a cyclic graph can be unrolled by repeatedly following the edges that form
a cycle and duplicating the vertices that have already been visited ad infinitum.
Doing this for every cycle that occurs in the graph will convert it to an infinite
regular, acyclic graph. Informally, a feedback loop is being replaced by a feed-
forward infinite pipeline, see Fig. 14. Vertex duplication is, of course, predicated
on the fact that the components located at the original and copy vertices can
be made identical. This, in turn, requires them to be stateless, since otherwise
it would be possible to find the original component and its copy in different
states and detect the difference between the cyclic and unrolled configurations.
Feed-forward networks are a useful abstraction in its own right: they can repre-
sent finite, repetitive, pipelined computations even of a stateful network, if the
amount of unrolling is limited (cf. loop unrolling in code optimisation) and if
the state information can be decoupled from the component and communicated
over the pipeline alongside other data. If a feed-forward structure is used to
represent cyclicity, the key difference between them, as made clear in Fig. 14, is
the delivery of the input stream. In the cyclic configuration the input messages
and the feedback stream arrive at the input of a single subnet A, while in the
unrolled version the input stream has to be forwarded to the kth generation

28



replica, with ever increasing k. The forwarding should be the responsibility of A;
however, to avoid the potentially inefficient cascade it is best to use the coordi-
nation language facilities that are required already for bypassing messages in an
acyclic network, as shown in Fig. 13. The coordination language compiler will
then have a chance to recognise cascaded forwarding and to generate manage-
ment code that eliminates it. Another optimisation the compiler or the run-time
system may need to support is the management of the chain length. Indeed, as
new messages enter the chain, the replicas of A will generally produce records
that are diverted down to the output stream and records that continue to the
next replica. It is reasonable to assume that at some point k = kt the replica ckt

will not produce any output for the next one and so the chain will stop expand-
ing. For each new message entering the chain the value of t will generally be
different, but when t decreases, ut may be expedient to collect the tail replicas
as garbage (assuming that any persistent state that they may have accumulated
has been used up and destroyed4.)

Consequently, to represent network cycles and repeatable computations, S-Net
introduces a feed-forward combinator A∗ whereby a single subnet A is replicated
conceptually infinitely, with only a finite part being used at any given time. Out-
put is achieved by flowing messages of the output type of A into a single stream
as shown in Fig. 14 and the input can either be consumed by the first replica
or cascaded by replicas together with other continuation data. The coordination
compiler and its runtime system must strive to recognise and eliminate cascades
and inactive replicas to make this efficient in the general case, and it has all the
information it needs to be able to do so.

The reader will now see that the S-Net coordination solution is fairly gen-
eral. The constraints that S-Net imposes on applications can be summarised as
follows:

1. Either the environment or the application code itself must ensure that streams
flowing through parallel compositions of networks are reasonably balanced,
i.e. the record rates should be similar enough for any instantaneous im-
balances to be mitigated by the available buffer space. For static dataflow
networks these rates are also statically known, which makes the balanc-
ing feasible statically; in a more dynamic case, characteristic of a typical
S-Net environment, care must be taken not to overload the buffer space.
The compiler/runtime system can and should introduce back pressure to
block overactive producers.

2. The application should require a limited degree of loop unrolling. This means
that any ∗-networks must have a limited depth, which can be achieved by ei-
ther the run-time system (via back pressure) or the programmer, by control-
ling the split between component-level and network level iteration. Generally
speaking, this is the old problem of throttling concurrency in a possibly more
pleasing guise.

4 It should be noted that although application components in our approach have no
persistent state, coordination objects generally do, but that state is visible to the
coordination layer.
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3. Last, but not least, the efficiency of the S-Net coordination crucially de-
pends on the adaptivity of its implementation. If the latter is capable of com-
piling subnetworks into a single conventional program (or a multithreaded
program as the case may be) on the fly, then the design principle for the pro-
grammer would be aggressive decomposition down to very light and compact
components. Any excessive concurrency could be absorbed dynamically by
switching to the co-compiled version of a hot spot. If an implementation of
S-Net has no such adaptivity, the feasibility of coordination would critically
depend on the granularity of component algorithms.

10 Conclusions and future work

We have presented the design of S-Net, a declarative language for describing
streaming networks of asynchronous components. Several features distinguish
S-Net from existing stream processing approaches:

– S-Net boxes are fully asynchronous components communicating over buffered
streams.

– S-Net thoroughly separates coordination aspects from computations, which
are described in a separate compute language.

– The restriction to SISO (single input, single output) components allows us
to describe complex streaming networks by algebraic formulae rather than
by using error-prone wiring lists.

– We utilise a type system with record sybtyping to guarantee basic integrity
properties of streaming networks.

– Data items are routed through networks in a type-directed way making the
concrete network topology a type system issue.

– Record subtyping and flow inheritance make S-Net components adapt to
their environment, which facilitates composition of components developed
in isolation.

S-Net has been fully implemented and is now available for download from
the project homepage at http://www.snet-home.org/. The implementation
consists of a compiler including a type inference system [23], a multithreaded
runtime system for shared memory architectures [24] and on top of that an
MPI-based runtime system extension for distributed and hybrid memory archi-
tectures [25].

We are currently working on an application suite to demonstrate the suitabil-
ity of S-Net to coordinate concurrent activities on a representative scale. These
applications are drawn from a variety of domains including plasma physics and
radar imaging. A smaller scale case study on the interplay between S-Net and
the functional array language SaC [26] as component implementation language
can be found in [17]. The theme here is the concurrent solving of Sudoku puzzles,
which we deem representative for a relevant class of search problems.
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