
Comparison of Post-Quantum Cryptography and
Quantum Key Distribution

Emiel Wiedijk

24 June 2022

Bachelor thesis Mathematics and Computer Science

Supervisor: Prof. Dr. Christian Schaffner, Dr. Jeroen Zuiddam

Informatics Institute &
Korteweg-de Vries Institute for Mathematics

Faculty of Sciences
University of Amsterdam

Abstract

The security of the current generation of cryptographic algorithms, called computational
security, is based on hardness assumptions: the assumption that it is hard to solve
a certain type of problem. Unfortunately, the current hardness assumptions will be
broken by quantum computers, making the current algorithms insecure. Therefore, new
cryptographic algorithms need to be developed that are secure even against quantum
computers.
There are two approaches for these new algorithms. The first approach is post-quantum
cryptography (PQC): a set of algorithms that switch to a new hardness assumption that
holds against quantum computers. The second approach is quantum key distribution,
an algorithm based on quantum communication that provides information-theoretical
security. Information-theoretical security does not rely on any hardness assumptions,
and instead provides unconditional security.
In this thesis we give an introduction to post-quantum cryptography and quantum key
distribution. Classical algorithms that provide information-theoretical security are lim-
ited by the pre-shared mutual information of the honest parties. Quantum key dis-
tribution (QKD) can be used to simulate unlimited correlated pre-shared information.
Thereby QKD can provide more information-theoretical security than classical algo-
rithms.

Title: Comparison of Post-Quantum Cryptography and Quantum Key Distribution
Author: Emiel Wiedijk, emiel.wiedijk@student.uva.nl, 12699373
Supervisors: Prof. Dr. Christian Schaffner, Dr. Jeroen Zuiddam
End date: 24 June 2022

Informatics Institute &
University of Amsterdam
Science Park 904, 1098 XH Amsterdam
http://www.ivi.uva.nl

Korteweg-de Vries Institute for Mathematics
University of Amsterdam
Science Park 904, 1098 XH Amsterdam
http://www.kdvi.uva.nl

2

http://www.ivi.uva.nl
http://www.kdvi.uva.nl

Contents

1 Introduction 4

2 Post-Quantum Cryptography: security guarantees 6
2.1 Lattice-based cryptography . 9
2.2 Code-based cryptography . 11

3 Classical Information Theoretic Security 13
3.1 Entropy . 13
3.2 Security: statistical distance . 18
3.3 Required key strength: Shannon’s theorem 20
3.4 Key-exchange protocols: independent private randomness 22

3.4.1 Impossibility of classical security 23
3.5 Key-exchange protocols: correlated private randomness 26

3.5.1 Special case: pre-shared key . 27

4 Quantum states 28
4.1 Qubits . 28
4.2 Measurements . 29
4.3 Density matrix . 32
4.4 Tensor product . 35
4.5 Operations . 36
4.6 Partial trace . 36

5 Quantum Key Distribution 37
5.1 Protocol . 37

5.1.1 Quantum channel . 37
5.1.2 Parameter estimation . 38
5.1.3 Error correction . 39
5.1.4 Privacy amplification . 39

5.2 Security definition . 39
5.2.1 Trace distance . 40

6 Conclusion 45

Bibliography 46

3

1 Introduction

Cryptography is a ubiquitous part of everyone’s life. For example, cryptographic pro-
tocols protect the content of our messages in WhatsApp or Signal from eavesdroppers.
It is also essential for our payment infrastructure as it allows us to securely communi-
cate with our banks online. Cryptography is even used offline for payments by card to
authorize payments on a bank account, while making it nearly impossible to copy the
card.
The two main goals of cryptography are providing secrecy, and authenticity. Secrecy
guarantees that two parties can communicate while the content of communication re-
mains unknown for any third party eavesdropper. The sender achieves secrecy by en-
crypting a message. On the other hand authenticity guarantees that a message was sent
by a specific party, and was not altered in any way. To achieve authenticity, the sender
adds a tag or signature to the message, that can only be generated by a specific party.
A central part of cryptography is the notion of a key. A key is a (partially) secret bit
string that gives an advantage to the legitimate party. For example, only the party that
has the correct key can decrypt the message. Or only with the correct key is it possible
to authorize a payment on a bank account.
There are two main types of cryptography: symmetric cryptography and asymmetric
cryptography. In symmetric cryptography, both parties use the same key. For example,
the same key is used to encrypt and decrypt a message. In asymmetric cryptography,
different parties use different keys: the key for encryption can be different from the key
for decryption. The advantage of using different keys is that the key used for encryption
can be made public, while decryption requires a secret key, which remains secret.
Often asymmetric cryptography is used indirectly. Instead of encrypting a message
directly, an asymmetric cryptographic protocol can be used to securely exchange a com-
mon key, that is unknown to any eavesdropper. This key can be used in a symmetric
encryption algorithm.
In this thesis we will focus on the problem of key exchange, a form of asymmetric
cryptography. In key exchange two honest parties, commonly called Alice and Bob, try
to establish a common key k. To establish this k Alice and Bob exchange messages on a
public channel that can be eavesdropped upon by a third party, commonly called Eve.
The cryptographic protocols in use today all have one caveat: they can be broken given
enough time and resources. Current cryptography relies on computational security: on
average, it takes an unreasonable amount of time to break the protocol. For encryption,
computational security means that, while decrypting a message with access to a key is

4

easy, decrypting without access to the key is hard.
Computational security is based on hardness assumptions: some problem is assumed
to be hard. Then it is proven that a cryptographic algorithm is at least as hard to
break as the hardness assumption. A common hardness assumption is that factoring of
(particular types of) large integers is hard.
This computational security works as long as the hardness assumptions hold. Unfortu-
nately, factoring of integers may not be a hard problem anymore. Shor has developed
an algorithm to factor integers in polynomial-time on a quantum computer [21]. Shor’s
algorithm also breaks the discrete logarithm problem, one of the other hardness assump-
tions that the current generation of asymmetric cryptographic algorithms use. On the
other hand, symmetric cryptographic algorithms remain largely secure against quantum
computers [11].
As of the time of writing, no one has yet built a quantum computer large enough to break
cryptographic algorithms. A quantum computer that would break the current hardness
assumptions and leave most of the current cryptography algorithms vulnerable, may be
built already in the next decades.
To counter the threat of these quantum algorithms we need a new generation of cryp-
tographical algorithms. There are two approaches: the first approach is post-quantum
cryptography (PQC), a set of cryptography algorithms designed to be resistant against
attackers with access to a quantum computer. Post-quantum cryptography algorithms
are classical algorithms. Similar to the current algorithms, they provide computational
security but based on a different hardness assumption.
The second approach to counter the quantum computer is quantum key distribution
(QKD). Unlike post-quantum cryptography, quantum key distribution is based on quan-
tum communication. Unlike post-quantum cryptography, quantum key distribution does
not rely on any computational assumptions, but instead claims to provide information-
theoretical security. QKD is provably secure without computational assumptions against
any attacker. The key is nearly indistinguishable from a perfect uniformly random key,
even with unlimited time and resources.
In this thesis we will compare post-quantum cryptography with quantum key distribu-
tion, with a focus on the security guarantees they provide. We will also compare the
limits of information-theoretical security between the classical and quantum protocols.
We will start describing the security guarantees of post-quantum cryptography, with a
focus on the new hardness assumptions. In the third chapter we will investigate the limit
of information-theoretical security for classical protocols. As a prerequisite for explain-
ing quantum key distribution, we will describe how quantum systems work in the fourth
chapter. Finally, in the fifth chapter, we describe the workings and security guarantees
of quantum key distribution. In general the contribution of this thesis is to provide an
introduction into the limits of information-theoretical security, and the additional ben-
efit of quantum protocols. It has been written for people with a basic understanding of
cryptography, but no previous knowledge of quantum information.

5

2 Post-Quantum Cryptography:
security guarantees

Post-quantum cryptography is a set of cryptography schemes. Their goal is to achieve
a type of security that is “secure” against attackers that have access to a quantum com-
puter. The definition of “secure” depends on the precise goal of the scheme. These
schemes are only allowed to use classical/non-quantum keys and communication. The
word “quantum” in their name solely refers to the quantum capabilities of an attacker
trying to break the scheme. More uncommon, but more descriptive names for post-
quantum cryptography are quantum-resistant cryptography and quantum-safe cryptog-
raphy. We contrast post-quantum cryptography with pre-quantum cryptography, the
existing public-key infrastructure, designed without the currently known quantum at-
tacks in mind.
Post-quantum cryptography usually refers to asymmetrical cryptography schemes. As
pre-quantum symmetrical encryption schemes with an increased key size are considered
secure against a quantum attacker [11], they do not require new algorithms.
There are three main types of asymmetrical cryptography schemes:

1. Public key encryption: the encryption of arbitrary messages.
2. Key encapsulation mechanism: facilitating the exchange of a key.
3. Signature schemes: allowing communicating parties to verify that messages were

sent by a certain party, and that the messages arrived unaltered.
We use the definition of a public-key encryption scheme from Katz and Lindell.

Definition 2.1. A public-key encryption schemes is a triple of functions (Gen,Enc,Dec).
Let n ≥ 1 a security parameter, m the plaintext. Let sg, se ∈ {0, 1}n be seeds for key
generation, uniformly sampled on every function call. The functions Gen and Enc behave
as

(sk, pk) = Gen(1n; sg)
c = Encpk(m; se)

m′ = Decsk(c).

The decryption function Decsk is the inverse of Encpk, but may fail with negligible
probability. Formally, for Sg and Se uniformly distributed over {0, 1}n. Let

(SK,PK) = Gen(1n;Sg)

6

be the distributions of the matching key pairs. Then correctness guarantees that with
randomness over (SK,PK) and Se that

Pr[m ̸= DecSK(EncP K(m;Se))] ≤ negl(n). (2.1)

Public-key encryption schemes have many advantages. For example, they can be easily
implemented since they are more similar to the pre-quantum schemes. However, a public-
key encryption scheme can never accomplish information-theoretical security, also known
as unconditional security, since it is almost always possible to recover a plaintext message
from the cipher text and the public key.

Theorem 2.2. Let (Gen,Enc,Dec) a public-key encryption scheme. An adversary with
unbounded computational power, who has access to the public key pk and ciphertext c
can recover the original message m up to negligible probability.

Proof. Let m be a plaintext message, let c be the corresponding ciphertext, (sk, pk) the
original key pair, n the security parameter and m a plaintext message.
The adversary samples (pksg , sksg) = Gen(sg) and seeds se for all sg, se ∈ {0, 1}n. The
adversary picks a key pair (sksg , pksg) such that

pksg = pk.

Since the public keys are the same there exists a seed se such that

c = Encpksg
(m, se).

The attacker recovers the message by calculating

m′ = Decsksg
(c).

By correctness (Equation 2.1), we have

Pr
[
m = m′] = Pr

[
m = Decsksg

(c)
]

= Pr
[
m = Decsksg

(Encpksg
(m, se))

]
≥ 1− negl(n).

We conclude up that to negligible probability, it is possible to recover the plaintext
m.

Because information-theoretical security is impossible, post-quantum cryptography schemes
rely on computational security instead. Computational security relies on hardness as-
sumptions. Some problem P is assumed to be hard to solve for a polynomial time
attacker, the hardness assumption. The security of a cryptography system C relies on
that an attacker who can break a cryptography scheme C in polynomial time can also
solve P in polynomial time, which is assumed to be hard.

7

Unfortunately, these hardness assumptions do not necessarily hold. Examples of common
pre-quantum public key schemes are RSA and Diffie-Hellman. The security of RSA relies
on the hardness of factoring certain large integers. Diffie-Hellman relies on the hardness
of the discrete-logarithm problem. Both these problems can be solved efficiently by a
quantum computer using Shor’s algorithm [21]. As the hardness assumption fails to
hold, RSA and Diffie-Hellman turn out to be insecure against attackers with access to
quantum computers.
As factoring and the discrete-logarithm problem are no longer hard for computers, post-
quantum cryptography algorithms switch to different computational hardness assump-
tions based on other problems. These problems are thought to have no efficient algo-
rithms to solve them, even on quantum computers. The model of computational security
remains unchanged: the security model only protects against polynomial-time attackers,
for whom the hardness assumption holds.
There are several problems that can be used as hardness assumption in post-quantum
cryptography. The NIST currently holds a competition for the best post-quantum cryp-
tography systems. At the time of writing (June 2022), the competition is in its 3rd
round [15]. Most submissions use one of the following hardness assumptions:

1. Lattice-based problems
2. Code problems

In the next sections we discuss the hardness assumptions for both of these problems.

8

2.1 Lattice-based cryptography

Lattices are algebraic structure. In lattices certain hard problems can be defined that
can be used in cryptography.

Definition 2.3. [16] We call any subset L ⊆ Rn a lattice when

L =
{

n∑
i=1

kixi | k1, . . . , kn ∈ Z
}
,

for some linearly independent {x1, . . . , xk}. The set {x1, . . . , xk} ⊆ Rn is called the basis
of the lattice.

There are several computational hardness assumptions in lattices. The most founda-
tional one is the Shortest-Independent-Vector Problem, or SIVP for short.

Definition 2.4. [16] For a lattice L let λ1 be the shortest non-zero vector in a lattice,

λ1(L) = min
ℓ∈L
ℓ̸=0

∥ℓ∥.

Let λd be the shortest possible maximum length of a set of d linearly independent vectors

λd(L) = min
ℓ1,...,ℓn∈L

ℓ1 ̸=0,...,ℓd ̸=0
linearly independent

max(∥ℓ1∥, . . . , ∥ℓd∥)

Then the problem is to find some vector that finds a set of vectors that

Definition 2.5. [16] The SIVP problem is, given an n-dimensional lattice L, to find a
basis ℓ1, . . . , ℓn such that

max(∥ℓ1∥, . . . , ∥ℓd∥) ≤ γ(n) · λn(L)

for some approximation factor γ(n).

The computational hardness of SIVP depends on the hardness factor γ(n). Assuming
that RP ̸= NP1, for small γ(n) it is impossible to solve SIVP in polynomial time, but
for large γ(n) polynomial-time algorithms are known, specifically

1. For γ(n) = c for some fixed constant c ≥ 1 SIVP is NP-hard. [3]

2. For γ(n) = 2log(n)1−ϵ for some fixed constant ϵ > 0 SIVP is NP-hard.

1The assumption RP ̸= NP is the probabilistic version of P ̸= NP where a negligible error probability
is allowed.

9

3. For γ(n) = n√
log(n)

SIVP is probably not NP-hard, but still no known polynomial-
time algorithms exist.

4. For large γ(n) more efficient algorithms are known. For example, the LLL-algorithm
[8] (named after its inventors Lenstra, Lenstra and Lovasz) solves SIVP with
γ(n) = 2n−1 in polynomial-time. Schnorr has developed an algorithm with a
tighter, but still exponential bound. [18].

Typically, SIVP is not used directly in cryptography systems. Instead, in a 2005 paper
by Regev [16], he introduced the Learning With Errors (LWE) problem.

Definition 2.6. Let p ≥ 1 be prime and let χ be a probability distribution on Zn
p the

inputs for the problem. Then let s ∈ Zn
p be a uniformly random vector. Define the

distribution As,χ that provides samples

(a, ⟨a|s⟩+ e)

with a ∈ Zn
p uniformly distributed, and e ∼ χ. The problem of LWEp,χ is to find s given

the samples.

As LWE is a relatively new problem (2005), we would like to have some assurance of its
hardness. Regev showed that if it is possible to solve LWE with negligible failure rate
with a polynomial number of samples, it is possible to solve SIVP efficiently with an
approximation factor of γ(n) = n

α for an arbitrary fixed α ∈ (0, 1).
There are other lattice-problems that can be reduced to SIVP with a certain approxima-
tion factor that can be used in cryptography. A slight variation of LWE is Ring-LWE [9].
In Ring-LWE the vectors in Zn

p are replaced by elements of Zp[x]/(xn +1) to increase ef-
ficiency. Another variation is Learning With Rounding (LWR), where the random error
is replaced by rounding to avoid the required (pseudo-)randomness [1].

10

2.2 Code-based cryptography

Error-correcting codes can be used to add redundancy to data by encoding that data into
code words. Even if a code word gets corrupted, it is possible to detect and correct the
corruption, as long as the number of errors remains limited. Some operations on error-
correcting codes are hard, which can be used as hardness assumption in cryptography.
The usual metric for the number of errors is the Hamming distance.

Definition 2.7. Let V be an n-dimensional vector space. For x, y ∈ V the Hamming
distance is defined as

d(x, y) =
n∑

i=1
δxiyi .

Here δ is the Kronecker delta

δij :=
{

1 i = j

0 i ̸= j

The code word can then be used to reconstruct the original data. We restrict ourselves
to linear error-correcting code, where linear combinations of code words are also a code
word. Thus, an error-correcting code generates a k-dimensional subspace of code words.
The subspace has the property that distinct code words differ in at least t indices.

Definition 2.8. Let p be the size of a finite field Fp. An [n, k, t] error-correcting code is
a right-invertible matrix G ∈ (Fp)k×n with the property that

min
x,y∈(Fp)k

x̸=y

d(xG, yG) ≥ t

The rows of G form a basis for a k-dimensional subspace C ⊆ (Fp)n.

An error-correcting code G can encode a message m ∈ (Fp)k into a code word c ∈ (Fp)n

by calculating
c = mG.

Some errors may be introduced to c, for example due to noise during the transmission.
So instead of c the code word is received as cerr. We can correct for these errors by
finding the vector ccor ∈ (Fp)n that minimizes

d(cerr, ccor).

Finding this ccor is called solving or decoding the linear code. As long as d(c, cerr) is low,
we have that c = ccor.
Solving a general linear code G is an NP-complete problem [2]. As P = NP is still
an open question, no polynomial time algorithms for solving a general linear code are

11

known. It is of course possible to brute-force by trying all pk code words in C, and
finding the closest one, but this brute-forcing is computationally expensive.
However, there are specific classes of linear codes for which efficient error-correcting
algorithms are known, for example the Goppa linear codes. These Goppa codes can be
decoded significantly more efficiently in only O(n log(n)2) using Patterson’s algorithm
[17].
For computational security we want decryption with the (private) key to be easy, while
decryption without the (private) key should be hard. In 1978 Robert McEliece intro-
duced a cryptography system based on error-correcting codes as part of his work for
NASA [12]. The McEliece system uses the fact that while solving a general linear code
is hard, a Goppa code can be solved in polynomial time. McEliece starts with a ran-
domly generated binary Goppa linear code. The generator matrix of this Goppa code is
scrambled to form a more or less random general linear code. The Goppa code and the
way it is scrambled form the private key, while the resulting scrambled generator matrix
forms the public key.
To encrypt a message it is possible to encode a message using the scrambled generator
matrix and add some errors to it. With access to the private key, it is possible to
undo the scrambling and decode the Goppa code using Patterson’s algorithm, which
is efficient. Without the private key it becomes necessary to either solve the arbitrary
linear code, which is NP-hard or undo some unknown scrambling. Both of these options
are expected to be hard.

Remark 2.9. The assumption P ̸= NP is a necessary but not sufficient condition for
the security of McEliece. The scrambled Goppa codes might form another category of
“easy” linear codes, or it might be possible to undo the scrambling.

12

3 Classical Information Theoretic
Security

There are cryptographic protocols that provide a form of security, called information-
theoretical security. This security is provided even against unbounded attackers. As the
attackers may be unbounded, it does not rely on any computational assumption.
For key-exchange protocols, this means that the generated key should be “secure”. To
quantify this security, we need some information-theoretical measure of key strength.
From the perspective of an adversary, we model a key as a random variable. We will
introduce two concepts in this chapter: entropy and the statistical distance. For classical
key-exchange protocols we will find limits on the entropy of generated keys.

3.1 Entropy

When we design a key-exchange protocol, we want the adversary to have as much un-
certainty of the key as possible. One possible measure of uncertainty is the Shannon
entropy. Entropy was introduced by the American mathematician Claude Shannon in a
seminal paper in 1948 [19]. With his paper, he was one of the founding fathers of the field
of information theory. Another, equivalent interpretation of the entropy is how much
information an observer gets when they observe the outcome of the random variable.
We can use the entropy as measure of a strength of a generated key.
Let X be a discrete random variable, with PX = (p1, p2, . . . , pn) its discrete probability
distribution, where the outcome i has probability pi. Shannon showed that following
three properties of a function H(PX), uniquely define the entropy.

Theorem 3.1. [19] Let H : Rn 7→ R satisfy following properties

1. H(PX) is continuous.

2. The function H(1
n , . . . ,

1
n) is monotonically increasing in n.

3. If one outcome i of the random variable X = (p1, . . . , pn) is replaced by the outcome
of Y = (q1, . . . , qn) in X ′ then

H(PX′) = H(PX) + piH(PY).

Then H(p1, p2, . . . , pn) = −∑n
i=1 pi log2(pi) up to a constant factor.

13

Remark 3.2. The base of the log in the formula for the entropy is a constant factor,
which defines the unit of the entropy. When log2 is used the unit is called bits.

There are several possible log bases, which all behave the same up to a constant factor.
Unless defined otherwise, we pick base 2 for our log function, which gives as unit bits.
A random variable which has n bits entropy, has as much uncertainty as n independent,
perfect coin tosses.
We use the shorthand H(X) = H(PX), even though the entropy is a function of the
distribution, not the outcome of a random variable.

Example 3.3. Let PX be the uniform distribution over bit strings of length n. As every
single bit string has probability 2−n, the entropy is equal to

H(X) = −
2n∑
i=1

2−n log
(
2−n) = −2n · 2−n log

(
2−n)

= n.

Random variables X and Y with probability distributions PX and PY can be combined,
creating the joint distribution PXY . The entropy of the joint distribution is defined just
like the univariate case.

Definition 3.4. [5, p. 15] The definition of the entropy of a joint distribution PXY with
outcome X = i and Y = j with probability pi,j is

H(X,Y) = −
n∑

i=1

m∑
j=1

pi,j log(pi,j).

Based on the joint distribution we can more precisely describe the interaction between
X and Y

Definition 3.5. [5, p. 16] The conditional entropy is defined as

H(X | Y) = H(X,Y)−H(Y).

The conditional entropy H(X | Y) can be interpreted as a measure of uncertainty on the
outcome of X when the outcome of Y is known. Namely, if H(X | Y) is small compared
to H(X), then knowing the outcome of Y lowers the uncertainty about the value of X.
On the other hand, if H(X | Y) is still large, then knowing the value of Y does not
predict much about X.
The conditional entropies H(X | Y) and H(Y | X) give information about the overlap-
ping information between X and Y . However, the size of the overlapping information is
dependent on H(X) and H(Y). Furthermore, the conditional entropy is asymmetrical.
As a measure for the information that is common between X and Y we define the mutual
information

14

H(A) H(B)

I(A : B)H(A | B) H(B | A)

Figure 3.1: Information diagram of two variables [24]

Definition 3.6. [5, p. 19] For random variables X and Y , the mutual information
between X and Y is defined as

I(X : Y) = H(X) +H(Y)−H(X,Y).

From these definitions, we can see that the entropy behaves similar to the classical set
operations where

1. H(X,Y) ≈ X ∪ Y
2. I(X : Y) ≈ X ∩ Y
3. H(X | Y) ≈ X \ Y .

Therefore, these definitions can be summarized in the following information diagram as
seen in Figure 3.1

Lemma 3.7. [5] For random variables X and Y the following properties hold:

1. H(X,Y) ≤ H(X) +H(Y) with equality if only if X and Y are independent.

2. H(X | Y) ≥ 0, with equality if only if X is a function of Y .

3. I(X : Y) ≥ 0, with equality if and if only if X and Y are independent.

We can extend these definitions to interactions with an arbitrary number of variables.
For the (conditional) entropy this extension is relatively straightforward.

15

Definition 3.8. [5] Let (X1, . . . , Xn) be a tuple of n discrete random variables. The
entropy is defined as

H(X1, . . . , Xn) = −
∑

i1∈X∞
i2∈X∈

...
in∈X\

pi1,i2,...,in log2(pi1,i2,...,in)

Definition 3.9. [5] The conditional entropy is defined as

H(X1, . . . , Xn | Y1, . . . , Ym) = H(X1, . . . , Xn, Y1, . . . , Ym)−H(Y1, . . . , Ym)

We can also extend the mutual information for an arbitrary number of variables, called
information interaction.

Definition 3.10. Let X1, . . . , Xn be random variables. Define the conditional informa-
tion interaction as defined as

I(X1 : . . . : Xn−1 | Xn) =
∑
xn

Pr(Xn = Xn)I(X1 : . . . : Xn−1 | Xn = xn)

with the information interaction defined as

I(X1 : . . . : Xn) = I(X1 : . . . : Xn−1 | Xn)− I(X1 : . . . : Xn−1).

Therefore, we can define entropy diagrams with an arbitrary number of random variables.
[13] [24] We give the entropy diagram for 3 random variables here.

16

H(A) H(B)

H(C)

H(A | BC) H(B | AC)

H(C | AB)

I(A : B | C)

I(A : C | B) I(B : C | A)

I(A : B : C)

Figure 3.2: Information diagram of three variables
[24]

Finally, the entropy of a Bernoulli distribution with parameter p is called the binary
entropy.

Definition 3.11. [5] Let p ∈ [0, 1], then the binary entropy is defined as

H2(p) = −p log(p)− (1− p) log(1− p),

with the convention that 0 log(0) = 0.

17

3.2 Security: statistical distance

While the entropy is a useful measure of uncertainty, it usually not directly used as
measure of a key strength. Instead, we use the statistical distance

Definition 3.12. [14] We define the statistical distance between distributions P =
(p1, . . . , pn) and Q = (q1, . . . , qn) as

d(P,Q) = 1
2

n∑
i=1
|pi − qi|.

We want an adversary to know nothing about a key. Therefore, it should behave similar
to a uniform key. So the statistical distance between the distribution key K and a
uniform key U should be low. We want to find the relation between the statistical
distance to a uniform key d(H,U), and the entropy H(K). The second definition is the
entropy H(K).
Intuitively, a key with a lower entropy should have a higher statistical distance to the
uniform distribution. To make this relation more concrete, we give a lower bound for the
entropy given the statistical distance δ. We do this by finding the distribution with the
lowest entropy for the statistical distance δ. This is the distribution where one outcome
is more likely than uniform, and one outcome is less likely than uniform. Any other
distribution can be forced to have a lower entropy.

Theorem 3.13. Let K = (p1, . . . , pn) and U = (1
n , . . . ,

1
n). Let δ := d(K,U), and

ϵ = ⌈δn⌉ · 1
n − δ, then

H(K) ≥ (1− ϵ) ·H2

(1
n + δ

1− ϵ

)
+
(

1− ϵ− 1
n
− δ

)
· log(⌊n(1− δ)⌋) +H2(ϵ)

Proof. Let P = (ϵ, 0, . . . , 0, 1
n , . . . ,

1
n ,

1
n + δ). Trivially d(P,U) = δ. Then it follows that

H(P) = H

(
ϵ, 0, . . . , 0, 1

n
, . . . ,

1
n
,

1
n

+ δ

)
= H2(ϵ) + (1− ϵ) ·H

(
0, . . . , 0, 1

1− ϵ ·
1
n
, . . . ,

1
1− ϵ ·

1
n
,

1
n + δ

1− ϵ

)

= H2(ϵ) + (1− ϵ) ·
(
H2

(
δ + 1

n

1− ϵ

)
+
(

1−
1
n + δ

1− ϵ

)
·H

(1
n + δ

1− ϵ ·
1
n
, . . . ,

))

= H2(ϵ) + (1− ϵ) ·
(
H2

(
δ + 1

n

1− ϵ

)
+
(

1−
1
n + δ

1− ϵ

)
· log(⌊n(1− δ)⌋)

)

= H2(ϵ) + (1− ϵ) ·H2

(
δ + 1

n

1− ϵ

)
+
(

1− ϵ− 1
n
− δ

)
· log(⌊n(1− δ)⌋)

18

Suppose that Q = (q1, q2, q3, . . . , qn), with d(Q,U) = δ, then there are either two out-
comes more probable than uniform, or less probable than uniform, but still possible.
Therefore, without loss of generality either 1

n < q1 ≤ q2 or 0 < q1 ≤ q2 < 1
n . The

entropy is equal to

H(Q) = H2(q1 + q2) + (q1 + q2)H2

(
q1

q1 + q2

)
+ (1− q1 − q2)H(q3, . . . , qn).

If 1
n < q1 ≤ q2 then define Q′ = (1

n , q1 + q2 − 1
n , q3, . . . , qn). Then it still holds that

d(Q,U) = δ, and

H(Q′) = H2(q1 + q2) + (q1 + q2)H2

(1
n

q1 + q2

)
+ (1− q1 − q2)H(q3, . . . , qn)

< H2(q1 + q2) + (q1 + q2)H2

(
q1

q1 + q2

)
+ (1− q1 − q2)H(q3, . . . , qn)

In the case 0 < q1 ≤ q2 define Q′ = (0, q1 + q2, q3, . . . , qn), then

H(Q′) = H2(q1 + q2) + (1− q1 − q2)H(q3, . . . , qn) < H(Q).

Then proceed inductively until Q′ becomes equal to P .

Most of these terms are negligible, as ϵ ≤ 1
n , so the term H2(ϵ) becomes small. Similarly,

we have
(1− ϵ) ·H2

(1
n + δ

1− ϵ

)
≤ 1.

Therefore, we can approximate that a key K that has statistical distance to the uniform
key d(K,U) = δ that

H(K) ≈ (1− δ) · log(⌊n(1− δ)⌋).

On the other hand, by the contrapositive if the entropy of the key is lower

H(K) < (1− ⌈δn⌉) · log(⌊n(1− δ)⌋),

then the statistical distance to a uniform key should be higher. Therefore, a key with
low entropy, has a high statistical distance to the uniform distribution and be a bad key.

19

3.3 Required key strength: Shannon’s theorem

We have described measures for the key strength. One of the main uses of cryptographic
keys is in symmetric encryption protocols. How strong the key needs to be depends on
the distribution of messages that needs to be encrypted. For perfect secrecy, symmetric
encryption algorithms need guarantee that it is impossible to recover any information
from the encrypted message, called the ciphertext. Shannon’s theorem provides a lower
bound on the required key strength.
For a symmetric encryption system, we encrypt the plaintext m using a key k such that
any eavesdropper can extract as little information as possible from the ciphertext c, such
that

c = Enck(m)
m = Deck(c)

For perfect security, we have two requirements:
1. Correctness: we can recover the message from the key and the ciphertext. There-

fore, there should be no uncertainty about m given c and k. In entropy terms
H(M | CK) = 0.

2. Security: without any knowledge of the value of key K, the variables M and C
should be completely independent. Therefore, I(M : C) = 0.

Shannon’s theorem shows that these are difficult requirements to fulfill together. It gives
a rather strict requirement on the entropy of the key.

Theorem 3.14. (Shannon’s theorem) [20] For any perfectly secure cryptography system,
we have H(K) ≥ H(M).

Proof. We assume that the key and the message are independent, as we would like to
combine arbitrary keys and messages that can be generated independently. Therefore,
I(M : K) = 0. Since H(M | CK) = 0 we have H(M) = H(M : CK). Let
n = H(M)

= H(M)−H(M | CK) H(M | CK) = 0 by correctness
= I(M : CK) definition of I
= I(M : C) + I(M : K)− I(M : C : K)
= −I(M : C : K) assumption I(M : C) = I(M : K) = 0.

Then
I(K : CM) = I(K : C) + I(K : M)− I(M : C : K)

≥ I(K : M)− I(M : C : K)
= −I(M : C : K)
= n.

20

Finally, we have

H(K) = I(K : CM) +H(K | CM) ≥ I(K : CM) ≥ n.

On the other hand, Quantum Key Distribution claims to achieve statistical security,
without any pre-shared key. Therefore, it could be an indication that Shannon’s theorem
does not hold in the quantum case.
We will not explicitly describe a quantum cryptography protocol that uses small key
sizes. However, we will describe the Quantum Key Distribution protocol that can be
used to increase the entropy of the key. Theoretically, QKD can then be used as part of
a larger protocol, that then uses the key generated by QKD to achieve perfect security.
The requirements of Shannon’s theorem may be much more strict than they look at a
first glance. It assumes that Bob and Eve always receive exactly the same ciphertext. If
Eve receives the bits with at least some error, then it is possible to find protocols that
provide more security than Shannon’s theorem would seem to imply. [10]

21

3.4 Key-exchange protocols: independent private
randomness

Shannon’s theorem is about symmetric encryption systems, where the honest parties
share an existing key. On the other hand, as the name implies, Quantum Key Dis-
tribution is about exchanging information-theoretically secure keys over a public chan-
nel. Therefore, we want to find the limits of information-theoretical key-exchange using
purely classical channels.
First we have to define a key-exchange protocol more precisely. Two honest parties. Alice
and Bob send each other messages over a public channel, which can be eavesdropped on
by Eve. Then Alice and Bob use these messages to derive a key.
Key-exchange protocols cannot be deterministic, since it should not yield the same key
every time the protocol is run. Alice and Bob should both have access to some form
of private randomness. To make it easier to reason about the protocol, we define the
protocol as deterministic functions. These functions have the private randomness as
explicit inputs. First, we look at the case where the local randomness of Alice and Bob
is independent.

Definition 3.15. A key-exchange protocol is a tuple

(PA, PB,KeyA,KeyB,Mesga,Mesgb),

with PA and PB probability distributions for the private randomness A and B. Alice
and Bob sample their randomness PA and PB independently. Then MesgA, MesgB are
functions that define the messages that Alice and Bob send each other such that

Ma0 = Mesga(0, A)
Mb0 = Mesgb(0, B, a0)

Mai+1 = Mesga(i+ 1, A,Ma0 ,Mb0 ,Ma1 ,Mb1 , . . . ,Mai ,Mbi
)

Mbi+1 = Mesgb(i+ 1, B,Ma0 ,Mb0 ,Ma1 ,Mb1 , . . . ,Mai ,Mbi
,Mai+1).

Without loss of generality, Alice and Bob take turns sending messages. Every message
Mai , Mbi

is either a bit string or the symbol ⊥ to denote that the protocol has finished.
If Alice sends a ⊥ then without loss of generality Bob repeats the message. The messages
from Alice, combined with the messages from Bob form a public transcript T . This T is
only dependent on the private randomness A, B, and the message functions. For a given
key-exchange protocol, we can interpret T as a function of the private randomness.

T = (Ma0 ,Mb0 , . . . ,Man ,Mbn) = Trans(A,B)

Although we reason about the public transcript as a function of the private randomness,
neither Alice nor Bob have access to both A and B. Alice and Bob can derive their key

22

based on their private randomness, and the public messages.

KA = KeyA(A,Trans(A,B))
KB = KeyB(B,Trans(A,B))

Of course, reasonable key-exchange protocols should conform to a few properties, similar
to the symmetric case, namely

1. Correctness: Alice and Bob should end up with the same key, therefore we want
the probability Pr(KA = KB) as high as possible.

2. Security: Based on the public transcript T , Eve should have as little knowledge
about the key as possible. There are different security notions to define what “little
knowledge” means.

For information-theoretical security, we want Eve to have as much uncertainty as possible
about the key. Unlike computational security, we do not care about the complexity of
the attack that Eve has to perform to deduce the key. Even an unbounded eavesdropper
should not be able to get much information about the key from the transcript T .

3.4.1 Impossibility of classical security

Unfortunately, for classical protocols it turns out that information-theoretical security
is more or less impossible. First we focus on the case that the key is always correct, that
is Pr(KA = KB) = 1.

Definition 3.16. A key-exchange protocol (PA, PB,KeyA,KeyB,Mesga,Mesgb) with tran-
scription function Trans is called perfectly correct if

Key(a,Trans(a, b)) = Key(b,Trans(a, b))

for all a, b. For these protocols we can define K := Ka = Kb.

In that case, Eve can always perfectly recover the key based on the transcript. Intuitively,
Eve can brute-force the private randomnesses of Alice and Bob. Based on the private
randomness, Eve can simulate the protocol and check if the generated transcript matches
the intercepted transcript. Then Alice can derive the key using the private randomness
of Alice or Bob to derive the key.

Lemma 3.17. Let Trans be the transcript function of a key-exchange protocol. If

Trans(a, b) = Trans(a′, b′)

then
Trans(a, b) = Trans(a′, b) = Trans(a, b′) = Trans(a′, b′)

23

Proof. Suppose

t = (ma0 ,mb0 , . . . ,man ,mbn) = Trans(a, b) = Trans(a′, b′),

Define
t′ = (m′

a0 ,m
′
b0 , . . . ,m

′
am
,m′

bm
) = Trans(a′, b).

We prove by induction that m = n and

mai = m′
ai

mbi
= m′

bi

Since Trans(a, b) = Trans(a′, b′), we know that

mai = Mesga(i, a,ma0 ,mb0 , . . . ,mai−1 ,mbi−1)
= Mesga(i, a′,ma0 ,mb0 , . . . ,mai−1 ,mbi−1)

mbi
= Mesgb(i, b,ma0 ,mb0 , . . . ,mai−1 ,mbi−1 , ai)
= Mesgb(i, b′,ma0 ,mb0 , . . . ,mai−1 ,mbi−1 , ai).

Then we can easily see with induction that all messages are equal. For i = 0 we know
that

ma0 = Mesga(0, a) = Mesga(0, a′) = m′
a0

and
mb0 = Mesgb(0, b,ma0) = Mesgb(0, b,m′

a0).
Suppose for i < k it holds that

mai = m′
ai

mbi
= m′

bi

then it holds that

mak
= Mesga(k, a,ma0 ,mb0 , . . . ,mak−1 ,mbk−1)
= Mesga(k, a′,m′

a0 ,m
′
b0 , . . . ,m

′
ak−1 ,m

′
bk−1)

= m′
ak

mbk
= Mesgb(k, b,ma0 ,mb0 , . . . ,mak−1 ,mbk−1 ,mak

)
= Mesgb(k, b,m′

a0 ,m
′
b0 , . . . ,m

′
ak−1 ,m

′
bk−1 ,m

′
ak

)
= m′

bk

The protocol runs until mbk
= ⊥ for some k. Since all the messages are the same, we

know that the length of the protocol also stays the same. Therefore, we conclude

Trans(a, b) = Trans(a′, b).

The case
Trans(a, b) = Trans(a, b′)

works similar.

24

Now we can prove that perfectly correct key-exchange protocols are information theo-
retically insecure.

Theorem 3.18. Let (PA, PB,KeyA,KeyB,Mesga,Mesgb) be a perfectly correct exchange
protocol with transcription function Trans. Let (A,B) be private randomness used to
generate a transcript T = Trans(A,B) and keys Ka = Keya(A, T) and Kb = Keyb(B, T).
Then Eve can generate a key K ′ with H(K ′ | T) = 0 and

Pr
(
Ka = K ′) = Pr(Ka = Kb).

Proof. An attacker Eve with access to a transcript T can iterate over all (A′, B′) ∈ Pa×Pb

until
Trans(A′, B′) = T

Then, Eve can use the key derivation function to calculate

K ′ = Keyb(B′,Trans(A′, B′))

Then by applying Lemma 3.17 multiple times we have since B and B′ are identically
distributed

Pr
(
Ka = K ′) = Pr

(
Keya(A,Trans(A,B)) = Keyb(B′,Trans(A′, B′))

)
= Pr

(
Keya(A,Trans(A,B′)) = Keyb(B′,Trans(A,B′))

)
= Pr(Keya(A,Trans(A,B)) = Keyb(B,Trans(A,B)))
= Pr(Ka = Kb)

Corollary 3.19. For a perfectly correct key-exchange protocol (PA, PB,KeyA,KeyB,Mesga,Mesgb)
with key K and transcript T we have

H(K | T) = 0

Proof. In a perfectly correct key-exchange protocol we have

Pr(Ka = Kb) = 1.

By Theorem 3.18 we know that Eve can generate a key K ′ with H(K ′ | T) = 0 with

Pr
(
Ka = K ′) = Pr(Ka = Kb) = 1

Therefore H(Ka | T) = H(K ′ | T) = 0.

25

3.5 Key-exchange protocols: correlated private
randomness

For key-exchange protocols we have made the assumption that the private randomness
of Alice A and Bob B are completely independent. In practice, there might be some
correlation between A and B. For example Alice and Bob might have access to some pre-
shared secret string. Even some correlated bits can be used to extract a key. Therefore,
we now extend our focus to the case where the private randomness of Alice and Bob are
jointly distributed as PAB.
Note that this correlation between A and B breaks the proof of Lemma 3.18. If Alice
has sampled private randomness a, the distribution of Bob from Alice’s perspective is
PB|A=a while Eve only has access to PB.
However, there is still a limit on the entropy that can be extracted from PAB. We can
extract this limit from an entropy diagram.

Theorem 3.20. For a key purification protocol we have

H(K | T) ≤ I(A : B | T).

Proof. In this proof we use an information diagram of four variables: A, B, K, T . First
we simplify the diagram by noting that, since the entire protocol is dependent on the
private randomness A and B, we have

H(T | AB) = H(K | AB) = 0.

Therefore, we can write the circles of T and K inside AB.

H(A) H(B)

H(T)

H(K)

a

0 0

26

Since Alice can calculate the key based on the transcript T and her private randomness
A we have

H(K | AT) = 0

3.5.1 Special case: pre-shared key

A very simple case would be where A and B are perfectly correlated, that is Pr(A = B) =
1. This perfect correlation happens when Alice and Bob have access to a pre-shared ran-
domly sampled bit string. Then Alice and Bob could directly use their private random-
ness as key without any communication. Then it holds that H(AB) = H(A) = H(B).

I(A : B) = H(A) +H(B)−H(AB) = H(A) +H(B)−H(B) = H(A).

Entropy-wise, any generated key can only have as much entropy as the pre-shared secret.
We could extend this case by adding private randomness to a pre-shared key. We can
describe this combination as A = (AP , S) and B = (BP , S), with AP , BP private
randomness and S a pre-shared secret. Then AP , BP and S are pairwise independent.
Then we have

I(A : B) = H(A) +H(B)−H(AB) = H(APS) +H(BPS)−H(APBPS)
= H(AP) +H(S) +H(BP) +H(S)− (H(AP) +H(BP) +H(S))
= H(S).

If the pre-shared key S has entropy H(S) = n, then we know by Theorem 3.20 that the
entropy of any generated key K must be less than the entropy of the pre-shared secret
S. Therefore, entropy-wise it is optimal to just use the pre-shared secret as key.
In this chapter we have limited the entropy of the key based on the amount of pre-shared
information available to Alice and Bob. We also conclude that if the entropy of the key
is low, the statistical distance to a uniform key is high, and the quality of the key is not
good.

27

4 Quantum states

4.1 Qubits

Quantum Cryptography is based on communicating using quantum systems. In this sec-
tion, we introduce the necessary axioms and notation to reason about quantum systems.
We represent quantum systems using linear algebra, which is the standard in theoretical
computer science. A quantum state is an element of a vector space. In general, this
vector space can be an arbitrary Hilbert space, which is potentially infinite-dimensional.
However, as all the states are finite-dimensional, we limit ourselves to elements of Cn.

Remark 4.1. Unless otherwise specified, for vectors x, y ∈ Cn we use the standard
inner product ⟨·, ·⟩ with the induced ∥2 norm.
Defined as

⟨v, w⟩ =
n∑

i=1
viwi

and the induced norm

∥v∥2 =

√√√√ n∑
i=1
|vi|2 =

√
⟨v, v⟩

For communication, we need to store data in a quantum state. We can define a quantum
state as follows:

Definition 4.2. A quantum state is a vector v ∈ Cn with ∥|v⟩∥ = 1.

When we manipulate quantum states, we often write down products of row vectors,
column vectors, and matrices. To make it easy to see the type of the object, we use the
bra-ket notation for these vectors.

Definition 4.3. We notate a column vector ϕ ∈ Cn as |ϕ⟩ called a ket vector. We notate
the bra vector as ⟨ϕ| = ϕ∗ = ϕ

⊤.

The quantum state is equivalent of a classical bit string, a sequence of bits. A classical bit
can have two discrete values, usually represented by the numbers 0 and 1. The quantum
equivalent of a bit is called a qubit. A single qubit is a relatively simple instance of a
quantum system.

28

Definition 4.4. A qubit is a vector v ∈ C2 with ∥v∥ = 1.

The simplest way to use a qubit is to let it store a classical bit either 0 or 1.

Definition 4.5. The quantum representations of the classical bits are defined as

|0⟩ =
(

1
0

)
, |1⟩ =

(
0
1

)

But qubits can do more than just representing a classical bit. Qubits can also be in
superposition, simultaneously being 0 and 1. Let a qubit

|ϕ⟩ =
[
a0
a1

]
= a0 |0⟩+ a1 |1⟩ ,

can be interpreted as a state that is 0 with probability |a0|2 and is 1 with probabilities
|a1|2.

Remark 4.6. For vectors ϕ, ψ ∈ Cn,

⟨ϕ|ψ⟩ ∈ C

represents the standard inner product, while

|ϕ⟩⟨ψ| ∈ Cn×n

represents the outer product, generating a rank-1 matrix. Unlike the inner product, the
outer product is well-defined on vectors of different sizes.

4.2 Measurements

In theory, qubits exist in a continuous domain, and it is possible to manipulate them
as such. However, to get any information from the qubit, it is necessary to perform a
measurement. There are many possible measurements. But compared to measuring clas-
sical bits, there are three counter-intuitive differences. These differences are fundamental
when designing quantum cryptography systems.

• A measurement is probabilistic: the same measurement performed on identical
qubits may yield different results.

• A measurement is destructive: the state of the qubit is changed after the measure-
ment.

• A measurement does not fully quantify the qubit: it is impossible to get the exact
state of an unknown qubit that can have arbitrary value using a measurement.

29

By quantum mechanics, measurements, like operations, have to be linear. Therefore,
operations can be represented as matrices. We have seen that operations in a closed
quantum system are represented by unitary matrices, which are by definition invertible.
Measurements do not happen in closed quantum systems, therefore they can be destruc-
tive. However, there are some other constraints to ensure that the measurement results
are valid.
For a measurement, measurements results can occur, which are all represented by a
matrix. Therefore, a measurement is represented by a set of matrices. We have to define
two things: the state of the quantum system after the measurement, and the probability
that we measure a certain result. Since the probabilities should sum up to one, there
are constraints on the set of matrices that define a valid measurement.

Definition 4.7. A matrix A in Cn×n is positive semi-definite if for all |ϕ⟩ ∈ Cn it holds
that

⟨ϕ|A |ϕ⟩ ≥ 0.

Definition 4.8. A positive-operator-valued measure (POVM) is a set positive semi-
definite operators/matrices {Mi} ⊆ Cn×n such that∑

i

M∗
i Mi = I

Definition 4.9. Let {Mi}i be a POVM, and let |ϕ⟩ ∈ Cn a (normalized) quantum state.
Then the probability of the measurement {Mi} is

p(i) = ∥Mi |ϕ⟩∥2.

The outcome probabilities sum up to one as∑
i

p(i) = ∥Mi |ϕ⟩∥2 =
∑

i

⟨ϕ|M∗
i Mi |ϕ⟩

= ⟨ϕ|
(∑

i

M∗
i Mi

)
|ϕ⟩

= ⟨ϕ| I |ϕ⟩ by definition of a POVM
= ∥|ϕ⟩∥2 = 1. quantum states are normalized

The resulting state of the quantum system after the measurement is

Mi |ϕ⟩
∥Mi |ϕ⟩∥

.

The post-measurement state is by definition normalized and therefore a quantum state.

The simplest form of measurement is a measurement in an orthogonal basis. We can
define a POVM measurement based on an orthogonal basis.

30

Lemma 4.10. Let |ϕ⟩ ∈ Cn a qubit and {|ψ1⟩ , . . . , |ψn⟩} an orthogonal basis in Cn. Let
Mi = |ψi⟩⟨ψi|. Then {M1, . . . ,Mn} is a POVM. The result of the measurement in the
basis {|ψ1⟩ , . . . , |ψn⟩} is

|ψi⟩

with probability
|⟨ϕ|ψi⟩|

The post-measurement state of the qubit after the measurement outcome i is

|ψi⟩

Proof. First we prove that {|ψ1⟩⟨ψ1| , . . . , |ψn⟩⟨ψn|} is a POVM. Every |ψi⟩ is trivially
Hermitian and positive semi-definite since

⟨ϕ| (|ψi⟩⟨ψi|) |ϕ⟩ = (⟨ϕ|ψi⟩)2 ≥ 0.

Now we aim to show that
n∑

i=1
M∗

i Mi = I,

Equivalently, take an arbitrary |ϕ⟩ ∈ Cn, and we aim to show(
n∑

i=1
M∗

i Mi

)
|ϕ⟩ = |ϕ⟩

First note that
n∑

i=1
M∗

i Mi =
n∑

i=1
(|ψi⟩⟨ψi|)∗ |ψi⟩⟨ψi| =

n∑
i=1
|ψi⟩ ⟨ψi|ψi⟩ ⟨ψi|

=
n∑

i=1
|ψi⟩⟨ψi|

Now let |ϕ⟩ be an arbitrary vector, and decompose it the basis as |ϕ⟩ = ∑
j αj |ψj⟩. Then

(
n∑

i=1
M∗

i Mi

)
|ϕ⟩ =

(
n∑

i=1
|ψi⟩⟨ψi|

) n∑
j=1

αj |ψj⟩


=

n∑
i=1

n∑
j=1

αj |ψi⟩ ⟨ψi|ψj⟩

since |ψi⟩ forms an orthogonal basis, we know that ⟨ψi|ψj⟩ = 0 if i ̸= j and ⟨ψi|ψj⟩ = 1
if i = j. Thus,

n∑
i=1

n∑
j=1

αj |ψi⟩ ⟨ψi|ψj⟩ =
∑

i

αi |ψi⟩ = |ϕ⟩

31

Therefore (
n∑

i=1
M∗

i Mi

)
|ϕ⟩ = |ϕ⟩

Since |ϕ⟩ is arbitrary we conclude that ∑iM
∗
i Mi = I.

We get measurement result i with probability

p(i) = ∥|ϕi⟩ ⟨ϕi|ϕ⟩∥2 = ⟨ϕi|ϕi⟩ ⟨ϕ|ϕ⟩ ⟨ϕi|ϕi⟩
= ⟨ϕi|ϕ⟩2 .

The resulting state of the qubit after measurement result i becomes
|ϕi⟩ ⟨ϕi|ϕ⟩
∥|ϕi⟩ ⟨ϕi|ϕ⟩∥

= |ϕi⟩ ⟨ϕi|ϕ⟩
⟨ϕi|ϕ⟩

= |ϕi⟩ ,

which finishes the proof.

Quantum states can be measures in arbitrary bases. Some bases are commonly used and
have their own name.

Definition 4.11. The computational basis is

{|0⟩ , |1⟩}

Definition 4.12. The Hadamard basis is

{|+⟩ , |−⟩}

where
|+⟩ = |0⟩+ |1⟩√

2
, |−⟩ = |0⟩ − |1⟩√

2
.

4.3 Density matrix

We have described how one can reason about qubits as vectors. However, sometimes the
vector representation of qubits is unsatisfactory. For example, only know the probability
distribution over a set of qubits, and want to reason about it. For example, a qubit |ψ⟩
can be in state |0⟩ with probability 0.5, and in state |1⟩ with probability 0.5. It may be
tempting to model this state as ∣∣ψ′〉 = |0⟩+ |1⟩√

2
.

Though at a first glance similar-looking, |ψ⟩ and |ψ⟩′ are completely different states. We
can always perfectly recognize the state |ψ′⟩ by a measurement in the Hadamard basis.
The result of this measurement is always |ψ′⟩. On the other hand, if we measure |ψ⟩,
the result will always be unpredictable no matter the choice of measurement basis. We
introduce the density matrix to make it easier to reason about probability distributions
of qubits.

32

Definition 4.13. [14] A density matrix is a matrix M ∈ Cn×n such that
1. M is Hermitian, M∗ = M .
2. M is positive semi-definite.
3. tr(M) = 1.

A density matrix can be interpreted as the weighted average of multiple quantum states
using the spectral theorem. First, we introduce some more convenient notation for the
spectral decomposition.

Lemma 4.14. [14] Let M ∈ Cn×n be a Hermitian matrix. Then we can write

M =
∑

i

λi |ϕi⟩⟨ϕi| .

For some scalars λi and {|ϕi⟩}i ∈ H an orthogonal basis, with
∑

i λi = tr(M).

Proof. Since M is Hermitian, we can use the spectral theorem to calculate the eigenvalue
decomposition.

M = UDU∗

where U is unitary and D is diagonal. Let λi := Dii be the diagonal entries. Then since
the trace is invariant under chance of basis ∑i λi = tr(D) = tr(M). Let |ϕ⟩i = Ui the
i’th column of U . Finally, let |i⟩ = ei the unit vector. Then we write can write

U =
∑

i

|ϕi⟩⟨i| , D =
∑

j

λj |j⟩⟨j|

Since ⟨i|j⟩ = 0 if i ̸= j, and ⟨i|i⟩ = 1. This gives desired expression for M , namely

M =
(∑

i

|ϕi⟩⟨i|
)∑

j

λj |j⟩⟨j|

(∑
k

|k⟩⟨ϕk|
)

=
∑
i,j,k

λj |ϕi⟩ ⟨i|j⟩ ⟨j|k⟩ϕk

=
∑

i

λi |ϕi⟩ ⟨i|i⟩ ⟨i|i⟩ ⟨ϕi| =
∑

i

λi |ϕi⟩⟨ϕi| .

This motivates why the trace of the density matrix should be one. It represents a
probability distribution, over multiple qubits. Hence, we can define the density matrix
of a distribution of qubits

Example 4.15. We want to describe a qubit that is in state |ψk⟩ ∈ Cn with probability
pk ∈ [0, 1], such that

∑
k pk = 1. Then, the corresponding density matrix ρ ∈ Cn×n is

ρ :=
∑

k

pk |ψk⟩⟨ψk| .

33

This is indeed a density matrix since ρ∗ = ρ, tr(ρ) = ∑
k pk = 1, and it is positive

semi-definite since for arbitrary |ϕ⟩ ∈ H

⟨ϕ| ρ |ϕ⟩ =
∑

k

pk ⟨ϕ|ψk⟩ ⟨ψk|ϕ⟩ =
∑

k

pk(⟨ϕ|ψk⟩)2 ≥ 0.

Remark 4.16. Note that the decomposition of resulting qubits need not be unique since

1
2I2 = 1

2(|0⟩⟨0|+ |1⟩⟨1|) = 1
2(|+⟩⟨+|+ |−⟩⟨−|).

We now introduce the distinction between a pure state and a mixed state. Some density
matrices consist of one vector, while others are a combination of different vectors.

Definition 4.17. [14] A state with density matrix ρ is called pure if

ρ = |ϕ⟩⟨ϕ|

for some vector |ϕ⟩. Otherwise, the density matrix is called mixed.

On density matrices, we can also apply any POVM measurement. To do this we rewrite
the definitions of POVM measurements for vectors.

Lemma 4.18. The trace operation is cyclic, it holds tr(AB) = tr(BA) for all A,B ∈
Cn×n

Proof. We see that with Ai the i’th column of A

tr(AB) =
∑

i

(AB)ii =
∑

i

(A⊤)iBi =
∑

i

(B⊤)iAi =
∑

i

(BA)ii = tr(BA)

Lemma 4.19. [14] Let {Mi}i ⊆ Cn×n be a POVM, and let |ϕ⟩ ∈ Cn. Then we get the
measurement result i with probability

p(i) = tr(Mi |ϕ⟩⟨ϕ|M∗
i)

and the post-measurement state is

Mi |ϕ⟩√
tr(M∗

i |ϕ⟩⟨ϕ|Mi)

Proof. We see, since
p(i) = ∥Mi |ϕ⟩∥ = ⟨ϕ|M∗

i Mi |ϕ⟩

34

This is number, which is its own trace, here we can use the cyclic property

p(i) = tr(⟨ϕ|M∗
i Mi |ϕ⟩) = tr(Mi |ϕ⟩⟨ϕ|M∗

i)

Then the measurement result is
Mi |ϕ⟩√

pi
= Mi |ϕ⟩√

tr(M∗
i |ϕ⟩⟨ϕ|Mi)

Then using the linearity of matrix multiplication and the trace we see that

Definition 4.20. [14] Let {Mi}i ⊆ Cn×n be a POVM, and let ρ ∈ Cn×n be a density
matrix. Then we get measurement result i with probability

p(i) = tr(MiρM
∗
i)

with the resulting state
MiρM

∗
i

tr(MiρM∗
i) .

4.4 Tensor product

We now know how a single qubit works. Classically we can combine multiple bits simply
by concatenating them. We want to also work with multiple qubits and reason about
how they interact. However, in the quantum case, the interaction between qubits is more
subtle. To model this interaction, we introduce the tensor product

Definition 4.21. Let |ϕ⟩ ∈ Cn and |ψ⟩ ∈ Cm. We define |ϕ⟩ ⊗ |ψ⟩ ∈ Cnm as

|ϕ⟩ ⊗ |ψ⟩ =



|ϕ⟩1 |ψ⟩1
|ϕ⟩1 |ψ⟩2
. . .

|ϕ⟩1 |ψ⟩m
|ϕ⟩2 |ψ⟩1
|ϕ⟩2 |ψ⟩2
. . .

|ϕ⟩n |ψ⟩m .


Notice that the tensor product is not commutative. A simple case of this is

|0⟩ ⊗ |1⟩ =


0
1
0
0



35

while

|1⟩ ⊗ |0⟩ =


0
0
1
0

.
We can reason about the resulting vector |ϕ⟩ ⊗ |ψ⟩ in the usual ways. Performing
measurements, operations in the usual ways.

4.5 Operations

We want to model how to operate on quantum states. It turns out that we can model all
such operation that do not interact with the outside environment, as unitary matrices.
Therefore, the result of an operation U on qubit |ψ⟩ can be described as

U |ϕ⟩

Note that every unitary matrix is invertible. Therefore, unlike quantum measurements,
every quantum operation U can be undone, since

U∗U |ϕ⟩ = |ϕ⟩

4.6 Partial trace

We have seen that we can combine smaller systems into larger systems using the tensor
product. It is also possible to go the other way around: find the impact of an operation
on a big system on a smaller system. This “inverse” is called the partial trace. The
partial trace only works on density matrices, not on vectors.
Let A = Cn×n and B = Cm×m are vector spaces of density matrices describing quantum
systems. The space A⊗B contains vector the combined system. If we want to “ignore”
the B part of the state we have an operation of type:

trB : A⊗B 7→ A.

As the partial trace ignores the B part, for ρA ∈ A and ρB ∈ B it should conform to
trB(ρA ⊗ ρB) = ρA

Definition 4.22. [14] The partial trace is defined for rank-1 matrices as
trB(|a1⟩⟨a2| ⊗ |b1⟩⟨b2|) = |a1⟩⟨a2| tr(|b1⟩⟨b2|)

extend this by linearity to arbitrary matrices.

The partial trace is a linear operation, so it is only the inverse of the tensor product up
to a constant factor. However, in the case of density matrices it is an inverse as tr(ρ) = 1
per definition of a density matrix.

36

5 Quantum Key Distribution

Quantum Key Distribution (QKD) is a family of cryptographic protocols that perform
key-exchange using communication of quantum states. The promise of QKD is that
it generates keys that are provably information-theoretically secure. In other words, it
does not rely on any computational assumptions. But the security of Quantum Key
Distribution does rely on quantum mechanics working as is currently expected. In this
chapter we first describe the working of Quantum Key Distribution, and then describe
the formal security guarantees that QKD aims to provide.
In the limits on information-theoretical security in Chapter 3, we have assumed that Eve
and Bob would receive the exact same messages. Because QKD is based on the transfer
of quantum states this assumption does not hold, because the measurements taken by
Bob and Eve are probably not the same. Therefore, Bob can gain an advantage over
Eve and QKD can provide information-theoretical security.

5.1 Protocol

Quantum Key Distribution is not a single protocol, but rather a family of Key Exchange
Protocols based on quantum communication. In this section we explain the working of
one of these protocols: BB84.
On a high level, BB84 works as follows:

1. Alice generates a uniformly random string, encodes it as a quantum state and sends
it to Bob via an insecure quantum channel. Eve can perform any measurement
or operation on this state. Bob then measures the quantum state, and receives a
string that is correlated with Alice’s original.

2. Similar to classical key-exchange protocols, using error correcting codes Alice and
Bob ensure they have the same string.

3. The resulting string is hashed to a shorter string, to “remove” any correlation with
the measurements Eve may have made. This resulting hash is the key.

5.1.1 Quantum channel

First Alice generates a (classical) secret string a′ ← {0, 1}n. Simply encoding this in a
certain basis does not accomplish anything, since then the bits can be perfectly recovered

37

by a simple measurement. Therefore, Alice encodes every bit randomly in either the
computational basis, or the Hadamard basis. Formally, Alice picks a basis to encode it
in as s(a) ← {0, 1}n. We then define

σ0
0 = |0⟩ , σ0

1 = |1⟩ , σ1
0 = |+⟩ , σ1

1.

Then a bit string can be represented as

ρi =
n⊗

i=1
ρ

(s(a)
i)

ai

Alice sends ρi over an insecure Quantum channel. Eve may perform measurements, or
simply due to noise the state may slightly change. Therefore, Bob receives the (po-
tentially different) state ρ′

i. Ideally Bob would store this ρ′
i. However, it is difficult to

correctly store quantum states. Therefore, in practice Bob immediately measures ρ′
i and

throw away the remaining quantum state. Bob picks a random basis, independently of
Alice, as s(b) ← {0, 1}n (completely independent of Alice). Then for

M
(0)
0 = |0⟩⟨0| , M (0)

1 = |1⟩⟨1| , M (1)
0 = |+⟩⟨+| , M (1)

1 = |−⟩⟨−|

Bob measures every ρi in the basis M (sb
i), stores it in a string b′ ∈ {0, 1}n and acknowl-

edges the reception.
Of course, there is a probability 0.5 that Bob measures in the wrong basis. Therefore,
Alice and Bob publically announce s(a) respectively s(b), and only keep the bits where
s(a) = s(b). Alice and Bob then store their pruned string as a, b ∈ {0, 1}m, where

m =
n∑

i=1
1

s
(a)
i =s

(b)
i

.

5.1.2 Parameter estimation

As far as Alice and Bob are concerned, this ends the quantum part of the protocol. They
have two correlated classical strings and have to reduce them to a secret key.
First they need to find the strength of their correlation. Alice and Bob publically pick a
sample of their bit strings a and b to see how similar they are. Formally they publically
pick a random permutation σ ← Sm such that

a(p) = (aσ(1)aσ(2) . . . , aσ(⌊m
2 ⌋)), a(k) = (aσ(⌊m

2 ⌋+1) . . . , aσ(m))

b(p) = (bσ(1)bσ(2) . . . , bσ(⌊m
2 ⌋)), b(k) = (bσ(⌊m

2 ⌋+1) . . . , bσ(m))

Then they publically announce a(p) and b(p), and calculate the difference

ê =
⌊m

2 ⌋∑
i=1

a
(p)
i ⊕ b

(p)
i .

38

Then if ê > e for some security parameter e the correlation between a and b is found to
be too weak, and the protocol has failed. Otherwise, with a high probability, a((k)) and
b(k) are also similar.

5.1.3 Error correction

Although a(k) and b(k) are correlated they are not exactly the same. Therefore, Alice
and Bob agree on a [n, k, t] linear code C (see section 2.2). They find the nearest code
word of a(k) and b(k). Since there were not many errors with a very high probability

P [d(a(k), b(k)) > t] ≤ ϵ

for some security parameters e1 and ϵ.
Therefore, we can assume that Alice and Bob now share an identical bit string

k = Corr(a(k)) = Corr(b(k)) ∈ {0, 1}.

5.1.4 Privacy amplification

Although the k key is now correct, shared between Alice and Bob with very high prob-
ability, Eve might still have some information about k. For example, she happened to
measure one of the qubits in the same basis as Alice and Bob. While the probability
that this happens for all the qubits is negligibly small, it still may give a significant
amount of information away. On the other hand, Alice and Bob should now share the
exact same bit string.
Therefore, Alice and Bob have to perform privacy amplification. In practice this is
performed by hashing the resulting key with a hash function. This is not a single hash
function, but a family of universal-2 hash functions H with every h ∈ H a function
h : A→ B that follow the following property

Pr
h∈H

(h(x) = h(y)) = 1
|B|

Carter and Wegman have shown that such family of functions exist when |A| and |B|
are powers of two [4].
Then Alice and Bob publically agree on a hash function h ∈ H, based on the amount of
errors and take as final key

h(k).

5.2 Security definition

While we have described the protocol, the security guarantees it provides are not im-
mediately clear. Quantum Key Distribution promises an information theoretical secure

39

key. In the classical case a key Kp generated by a protocol is ϵ-secure if there exists a
uniformly distributed random variable Ku such that

P [Kp = Ku] ≥ 1− ϵ.

Equivalently, the statistical distance between the distribution of Kp and a uniform dis-
tribution is less than ϵ.
In the quantum case, an eavesdropper gets quantum information about the key ρk.
Ideally this should not give any information so the information about ρk should be
similar to that of a uniform key ρu. Therefore, we need some distance metric between
ρk and ρu.
Then QKD guarantees that for this norm

∥ρk − ρu∥ < ϵ

for some arbitrary small ϵ dependent on the security parameters. This proof is out-of-
scope but can be found in [23].
For this to work we need to extend the measure of statistical distance to quantum states.
The quantum case is a bit more subtle because of two reasons.

1. To get any information from the quantum state, an observer needs to perform a
measurement. We do not know in advance which measurement the observer is
going to perform.

2. The measurement changes the quantum state. The post-measurement state should
not increase the distance between states. As a small distance means it is difficult
to distinguish two states, it should not be possible to increase the distance between
states (on average).

5.2.1 Trace distance

The trace distance functions as a distance metric for quantum states with desirable
properties. For this we have to extend some familiar functions on R/C to matrices.

Definition 5.1. Let A ∈ Cn×n be Hermitian, for U∗DU =: A the spectral decomposi-
tion. Define the positive square root as

√
A = U∗√DU

where
√
D is a diagonal matrix with

√
Dii =

√
Dii the positive square root.

It is obvious from the definition that
√
A

2 = A.

Definition 5.2. For A ∈ Cn×n we define

|A| =
√
A∗A

40

Remark 5.3. Let A ∈ Cn×n be Hermitian. Write the spectral decomposition U∗DU =:
A. Then

|A| =
√
A∗A =

√
A2 =

√
U∗D2U = U∗

√
D2U = U∗|D|U

where |D| is a positive diagonal matrix with |D|ii = |Dii|.

Definition 5.4. For A,B ∈ Cn×n we write A ≤ B if and only if

B −A

is positive semi-definite.

Lemma 5.5. Let A,B ∈ Cn×n Hermitian. If A ≤ B then trA ≤ trB.

Proof. We see that
B −A

is positive semi-definite, which means

0 ≤ tr(B −A)⇒ tr(A) ≤ tr(B).

Definition 5.6. [14] For density matrices ρ and σ, the trace metric is defined as

∥ρ∥tr = 1
2 tr |ρ|,

with the implied trace distance

dtr(ρ, σ) = ∥ρ− σ∥tr.

Remark 5.7. If ρ is a density matrix then we can compute the spectral decomposition
ρ as U∗DU with D diagonal.

∥ρ∥tr = ∥D∥tr =
∑

i

|λi|

with λi the eigenvalues of ρ or the diagonal entries of D.

Lemma 5.8. [22] The trace distance dtr(ρ, σ) = ∥ρ− σ∥tr is a distance function.

Proof. We show that the implied distance function dtr(ρ, σ) = ∥ρ− σ∥tr for density
matrices ρ, σ ∈ Cn×n follows all axioms.

1. We see trivially that dtr(ρ, ρ) = 0, and dtr(ρ, σ) ≥ 0 from 5.7.

41

2. We see that for λi the eigenvalues of ρ− σ that

dtr(ρ, σ) = ∥ρ− σ∥tr

=
n∑

i=1
|λi|

=
n∑

i=1
|−λi|

= ∥σ − ρ∥tr
= dtr(σ, ρ).

3. Let ρ1, ρ2, ρ3 ∈ Cn×n density matrices, then

dtr(ρ1, ρ3) ≤ dtr(ρ1, ρ2) + dtr(ρ2, ρ3).

We will proof this as the corollary of the next theorem.

The trace distance has a very nice property, namely that it corresponds to the observers
advantage. If it is known that a quantum system is either in state ρ or in state σ, then
the best measurement can only tell ρ and σ with probability tr{ρ− σ}. Recall that for
a POVM {Mi}i on ρ we have the measurement result i with probability tr(MiρM

∗
i). As

every Mi is positive semi-definite, we also have 0 ≤Mi ≤ I.

Theorem 5.9. [14] Let ρ, σ be density matrices. Then we have

∥ρ− σ∥tr = max
0≤M≤I

tr((ρ− σ)M).

Proof. Since ρ and σ are density matrices, the difference is Hermitian, so we can compute
the spectral decomposition ρ − σ = UDU∗. Since all eigenvalues are real, we can split
the diagonal matrix D into the two positive semi-definite matrices D = DP −DQ, where
DP contains the positive entries and DQ the negative entries in absolute value. Then
let P = UDPU

∗ and Q = UDQU
∗. Since ρ− σ = P −Q we have

∥ρ− σ∥tr = ∥P −Q∥tr = 1
2(trP + trQ).

And since tr(ρ) = tr(σ) = 1 (as a property of density matrices)

tr(P)− tr(Q) = tr(P −Q) = tr(ρ− σ) = tr(ρ)− tr(σ) = 1− 1 = 0

Therefore ∥ρ− σ∥tr = trP . We then get for arbitrary M ≤ I

tr((ρ− σ)M) = tr((P −Q)M) ≤ tr(PM) ≤ tr(P) = ∥ρ− σ∥tr.

42

Now let D′ a diagonal matrix with Dii = 0 if (DP)ii = 0, and Dii = 1 if (DP)ii > 1.
Then let M = UD′U∗, which projects a vector onto the span of P . Note that PM = P
and QM = 0. Then we have

tr((ρ− σ)M) = tr((P −Q)M) = tr(P) = ∥ρ− σ∥tr.

Corollary 5.10. [22] The triangle inequality of the trace distance follows from 5.9.

Proof. Let ρ1, ρ2, ρ3 ∈ Cn×n density matrices. Then

dtr(ρ1, ρ3) = max
0≤M≤I

tr((ρ1 − ρ3)M)

= max
0≤M≤I

(tr((ρ1 − ρ2)M) + tr((ρ2 − ρ3)M))

≤ max
0≤M≤I

tr((ρ1 − ρ2)M) + max
0≤M≤I

tr((ρ2 − ρ3)M)

= dtr(ρ1 − ρ2) + dtr(ρ2 − ρ3).

Note that we do not know the measurement result in advance. But if ∥ρ− σ∥tr is low,
whatever measurement happened, the probability that it happened is more or less similar
for ρ and σ. It seems that this property suffices, but it is important to remember that
quantum measurements are a destructive operation. And we want the post-measurement
state of ρ and σ to be similar as well. Note that this is not necessarily the case. As a
simple example take the pure qubits with a small ϵ > 0

ρ = |0⟩⟨0| , σ = (
√

(1− ϵ2) |0⟩+ ϵ |1⟩)(
√

(1− ϵ2) ⟨0|+ ϵ ⟨1|)

Then the trace distance is as expected small

tr(ρ− σ) = ϵ+ 1−
√

1− ϵ2

We also have that the trace distance functions as a contraction, the trace distance does
not increase by a trace preserving operation. The trace distance, on average, can only
become smaller after a measurement.

Theorem 5.11. [14] Let {Mi}i be a POVM, and let ρ, σ quantum states. Then the
average post-measurement state is

dtr

(∑
i

MiρM
∗
i ,
∑

i

MiσM
∗
i

)
≤ dtr(ρ, σ)

43

Proof. Let ρ − σ = P − Q, and let N be the projection that achieves the maximum as
in the proof of Theorem 5.9. We have

dtr

(∑
i

MiρM
∗
i ,
∑

i

MiσM
∗
i

)
= tr

(
N

(∑
i

MiρM
∗
i −

∑
i

MiσM
∗
i

))

≤ tr
(
N
∑

i

Mi(P −Q)M∗
i

)

≤ tr
(
N
∑

i

MiPM
∗
i

)

≤ tr
(∑

i

MiPM
∗
i

)
= tr(P)
= dtr(ρ, σ).

Now we have shown that the trace distance conforms to the two required properties:
the trace distance represents the observer advantage, and it is a contraction after mea-
surements. Therefore, if a key provided by QKD is similar to a uniform key in the trace
distance. An adversary will not be able to get more information from the received key,
than if the adversary would uniformly sample key themselves.

44

6 Conclusion

In this thesis we have given an introduction to post-quantum cryptography, to classical
protocols that provide information-theoretical security, and to quantum key distribution.
Post-quantum cryptography provides computational security on one of several hardness
assumptions. The protocols that will probably be standardized rely either on lattice-
based cryptography or on code-based cryptography.
For information-theoretical security, we have seen that classical protocols are limited in
what they can do. Classical protocols require some form of pre-shared correlated data,
which is often limited. This pre-shared data limits the entropy of any resulting key.
If the entropy of a key is limited, then we also see that it has a significant statistical
distance to a uniformly distributed bit string.
On the other hand, quantum key distribution does not have this limit on the entropy of
the key, given a channel for quantum communication. Quantum key distribution is able
to exchange this key, because Bob and Eve make different measurements of the quantum
states, with very high probability. Therefore, as there is no classical transcript, Eve is
more limited in what she can do.
For this thesis, we have focussed on key exchange protocols against a passive eavesdrop-
per. We have not considered an active adversary that can modify messages that are
sent between Alice and Bob. Additional security definitions and considerations would
be required to protect against this kind of adversary. To compare QKD and PQC in
this scenario, further work would be required.
Ethical considerations. Cryptography allows people to communicate in secret. Unfor-
tunately, criminals could also use cryptography to plan for, or hide evidence of a crime.
Some governments have proposed to introduce backdoors in encryption algorithms, so
law enforcement can decrypt communication if deemed necessary. On the other hand,
privacy is a fundamental right in a democratic society. Even if the government would
only use the backdoor for legitimate purposes, a backdoor would structurally weaken
cryptography, and limit privacy for ordinary citizens. The consensus of a report writ-
ten for the US government is that the advantages of encryption outweigh the danger
of possible illegitimate use [6]. Therefore, research on cryptography, while potentially
dangerous, can happen in good conscience.

45

Bibliography

[1] Abhishek Banerjee, Chris Peikert, and Alon Rosen. “Pseudorandom Functions
and Lattices”. In: Advances in Cryptology – EUROCRYPT 2012. Springer Berlin
Heidelberg, 2012, pp. 719–737. doi: 10.1007/978-3-642-29011-4_42.

[2] E. Berlekamp, R. McEliece, and H. van Tilborg. “On the inherent intractability of
certain coding problems (Corresp.)” In: IEEE Transactions on Information Theory
24.3 (May 1978), pp. 384–386. doi: 10.1109/tit.1978.1055873.

[3] Johannes Blömer and Jean-Pierre Seifert. “On the complexity of computing short
linearly independent vectors and short bases in a lattice”. In: Proceedings of the
thirty-first annual ACM symposium on Theory of computing - STOC ’99. ACM
Press, 1999, pp. 711–720. doi: 10.1145/301250.301441.

[4] J.Lawrence Carter and Mark N. Wegman. “Universal classes of hash functions”.
In: Journal of Computer and System Sciences 18.2 (Apr. 1979), pp. 143–154. doi:
10.1016/0022-0000(79)90044-8.

[5] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John
Wiley & Sons, Inc., 1991. doi: 10.1002/0471200611.

[6] Kenneth W. Dam and Herbert S. Lin. Cryptography’s Role in Securing the Infor-
mation Society. National Academies Press, Oct. 1996. isbn: 9780309054751. doi:
10.17226/5131.

[7] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Chap-
man & Hall/CRC Cryptography and Network Security Series. Chapman and
Hall/CRC, Dec. 2020, p. 628. isbn: 9781351133012. doi: 10.1201/9781351133036.
url: https://books.google.nl/books?id=RsoOEAAAQBAJ.

[8] A. K. Lenstra, H. W. Lenstra, and L. Lovász. “Factoring polynomials with rational
coefficients”. In: Mathematische Annalen 261.4 (Dec. 1982), pp. 515–534. doi: 10.
1007/bf01457454.

[9] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. “On Ideal Lattices and
Learning with Errors over Rings”. In: Advances in Cryptology – EUROCRYPT
2010. Springer Berlin Heidelberg, 2010, pp. 1–23. doi: 10.1007/978- 3- 642-
13190-5_1.

[10] U.M. Maurer. “Secret key agreement by public discussion from common informa-
tion”. In: IEEE Transactions on Information Theory 39.3 (May 1993), pp. 733–
742. doi: 10.1109/18.256484.

46

https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1109/tit.1978.1055873
https://doi.org/10.1145/301250.301441
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1002/0471200611
https://doi.org/10.17226/5131
https://doi.org/10.1201/9781351133036
https://books.google.nl/books?id=RsoOEAAAQBAJ
https://doi.org/10.1007/bf01457454
https://doi.org/10.1007/bf01457454
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1109/18.256484

[11] Vasileios Mavroeidis et al. “The Impact of Quantum Computing on Present Cryp-
tography”. In: International Journal of Advanced Computer Science and Applica-
tions 9.3 (2018). doi: 10.14569/ijacsa.2018.090354.

[12] Robert J McEliece. “A Public-Key Cryptosystem Based On Algebraic Coding The-
ory”. In: Deep Space Network Progress Report 4244 (Jan. 1978), pp. 114–116. url:
https://www.semanticscholar.org/paper/A- public- key- cryptosystem-
based-on-algebraic-coding-McEliece/14a22cae27878549c1dbcf74bec7d6f39dfcbe2a.

[13] W. McGill. “Multivariate information transmission”. In: Transactions of the IRE
Professional Group on Information Theory 4.4 (Sept. 1954), pp. 93–111. doi: 10.
1109/tit.1954.1057469.

[14] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information. June 2012. doi: 10.1017/cbo9780511976667.

[15] NIST. Post-Quantum Cryptography Round 3 submissions. Accessed: 2022-06-
09. July 2020. url: https : / / csrc . nist . gov / Projects / post - quantum -
cryptography/round-3-submissions.

[16] Oded Regev. “On lattices, learning with errors, random linear codes, and cryp-
tography”. In: Journal of the ACM 56.6 (Sept. 2009), pp. 1–40. doi: 10.1145/
1568318.1568324.

[17] D. Sarwate. “On the complexity of decoding Goppa codes (Corresp.)” In: IEEE
Transactions on Information Theory 23.4 (July 1977), pp. 515–516. doi: 10.1109/
tit.1977.1055732.

[18] C.P. Schnorr. “A hierarchy of polynomial time lattice basis reduction algorithms”.
In: Theoretical Computer Science 53.2-3 (1987), pp. 201–224. doi: 10.1016/0304-
3975(87)90064-8.

[19] C. E. Shannon. “A Mathematical Theory of Communication”. In: Bell System
Technical Journal 27.3 (July 1948), pp. 379–423. doi: 10.1002/j.1538-7305.
1948.tb01338.x.

[20] C. E. Shannon. “Communication Theory of Secrecy Systems”. In: Bell System
Technical Journal 28.4 (Oct. 1949), pp. 656–715. doi: 10.1002/j.1538-7305.
1949.tb00928.x.

[21] P.W. Shor. “Algorithms for quantum computation: discrete logarithms and factor-
ing”. In: Proceedings 35th Annual Symposium on Foundations of Computer Sci-
ence. Ieee. IEEE Comput. Soc. Press, 1994, pp. 124–134. doi: 10.1109/SFCS.
1994.365700.

[22] Mark Tame. “AQI: Advanced Quantum InformationLecture 8 (Module 2): Distance
Measures”. In: (2013).

[23] Marco Tomamichel and Anthony Leverrier. “A largely self-contained and complete
security proof for quantum key distribution”. In: Quantum 1 (July 2017), p. 14.
doi: 10.22331/q-2017-07-14-14.

47

https://doi.org/10.14569/ijacsa.2018.090354
https://www.semanticscholar.org/paper/A-public-key-cryptosystem-based-on-algebraic-coding-McEliece/14a22cae27878549c1dbcf74bec7d6f39dfcbe2a
https://www.semanticscholar.org/paper/A-public-key-cryptosystem-based-on-algebraic-coding-McEliece/14a22cae27878549c1dbcf74bec7d6f39dfcbe2a
https://doi.org/10.1109/tit.1954.1057469
https://doi.org/10.1109/tit.1954.1057469
https://doi.org/10.1017/cbo9780511976667
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1109/tit.1977.1055732
https://doi.org/10.1109/tit.1977.1055732
https://doi.org/10.1016/0304-3975(87)90064-8
https://doi.org/10.1016/0304-3975(87)90064-8
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.22331/q-2017-07-14-14

[24] R.W. Yeung. “A new outlook on Shannon’s information measures”. In: IEEE
Transactions on Information Theory 37.3 (May 1991), pp. 466–474. doi: 10.1109/
18.79902.

48

https://doi.org/10.1109/18.79902
https://doi.org/10.1109/18.79902

Popular summary

Suppose Alice and Bob want to communicate, but a third party, called Eve, is listening
to their conversation. Alice and Bob do not want Eve to know what their conservation is
about, so Alice encrypts her messages before she sends them to Bob. Encryption means
that Alice and Bob scramble their messages such that Alice and Bob can recover the
messages, but Eve cannot. For encryption, Alice and Bob require a key, a bit string
shared between Alice and Bob that Eve does not know about.
Ideally Alice and Bob can share their key without Eve listening. However, this is not
always possible. Luckily, there are ways that Alice and Bob can establish a secret key,
even with Eve listening. These are called key exchange algorithms. In a key exchange
algorithm, Alice and Bob send messages e1, . . . , en to each other in order to establish a
shared key k. On the other hand, Eve who is listening to their communication e1, . . . , en,
should not be able to get information about k.

Alice Bob

Eve

e1

e2

e3

...

en

e1, . . . , en → k e1, . . . , en → k

e1, . . . , en → ?

Figure 6.1: Alice and Bob can derive the key k, but Eve cannot know k.

There are two categories of key exchange protocols, that provide different kinds of secu-
rity. The algorithms of the first category, most commonly used today, provide computa-
tional security. Computational security means that it is expected to be very hard for Eve

49

to derive the key k, but not necessarily impossible. The downside is, that new smarter
algorithms, for example using a quantum computer, may be developed in the future, so
that Eve then can derive k more easily than expected. Algorithms of the second category
provide information-theoretical security, which means that Eve, even with unlimited re-
sources, cannot have any information about k. In this thesis we have compared these two
types of algorithms, which provide computational security and information-theoretical
security.

50

	Introduction
	Post-Quantum Cryptography: security guarantees
	lattice-based cryptography
	code-based cryptography

	Classical Information Theoretic Security
	Entropy
	Security: statistical distance
	Required key strength: Shannon's theorem
	Key-exchange protocols: independent private randomness
	Impossibility of classical security

	Key-exchange protocols: correlated private randomness
	Special case: pre-shared key

	Quantum states
	Qubits
	Measurements
	Density matrix
	Tensor product
	Operations
	Partial trace

	Quantum Key Distribution
	Protocol
	Quantum channel
	Parameter estimation
	Error correction
	Privacy amplification

	Security definition
	Trace distance

	Conclusion
	Bibliography

