## Quantum Cryptography

#### Christian Schaffner

Institute for Logic, Language and Computation (ILLC)
University of Amsterdam

Centrum Wiskunde & Informatica



Guest lecture in System & Network Engineering Monday, 16 November 2015



#### 1969: Man on the Moon



http://www.unmuseum.org/moonhoax.htm

How can you prove that you are at a specific location?

#### What will you learn from this Talk?

- Introduction to Quantum Mechanics
- Post-Quantum Cryptography
- Quantum Key Distribution
- Position-Based Cryptography



#### Quantum Bit: Polarization of a Photon

qubit as unit vector in  $\mathbb{C}^2$ 



#### Qubit: Rectilinear/Computational Basis







#### Measuring a Qubit



#### Diagonal/Hadamard Basis



#### Measuring Collapses the State



### Measuring Collapses the State



11



+ basis



 $|0\rangle_{+}$ 



 $|1\rangle_{+}$ 



 $\times$  basis



 $|0\rangle_{\times}$ 



 $|1\rangle_{ imes}$ 



with prob. 1 yields 1











with prob. ½ yields 0











#### Wonderland of Quantum Mechanics











#### What will you Learn from this Talk?

- ✓ Introduction to Quantum Mechanics
- Post-Quantum Cryptography
- Quantum Key Distribution
- Position-Based Cryptography

#### Many Qubits

- 1 qubit lives in a 2-dimensional space,
   can be in a superposition of 2 states
- 2 qubits live in a 4-dimensional space,
   can be in a superposition of 4 states

$$\frac{|00\rangle + |01\rangle + |10\rangle + |11\rangle}{2}$$



- 3 qubits can be in superposition of 8 states
- n qubits can be in superposition of 2<sup>n</sup> states
- So, with 63 qubits, one can do
  2<sup>63</sup> = 9223372036854775808 calculations simultaneously!
- Problem: Measuring this huge superposition collapses everything and yields only one random outcome

#### Quantum Computing

- With n qubits, one can do 2<sup>n</sup> calculations simultaneously
- Problem: Measuring this huge superposition will collapse the state and only give one random outcome
- Solution: Use quantum interference to measure the computation you are interested in!



seems to work for specific problems only

#### Quantum Algorithms: Factoring

 [Shor '94] Polynomial-time quantum algorithm for factoring integer numbers



- Classical Computer: Exponential time
- Quantum Computer : Poly-time: n<sup>2</sup>
- For a 300 digit number:
  - Classical: >100 years
  - Quantum: 1 minute



#### Can We Build Quantum Computers?

Possible to build in theory, no fundamental theoretical

obstacles have been found yet.









Martinis group (UCSB) 9 qubits

- Canadian company "D-Wave" claims to have build one. Did they?
- 2014: Martinis group recently "acquired" by Google
- 2014: QuTech centre in Delft
- Dec 2015: QuSoft centre in Amsterdam



#### Post-Quantum Cryptography

 [Shor '94] A large-scale quantum computer breaks most currently used public-key cryptography (everything based on factoring and discrete logarithms)

(qubits)

 It is high time to think about alternative computational problems which are hard to solve also for quantum computers

 Post-Quantum Cryptography studies classical cryptographic schemes that remain secure in the presence of quantum attackers.

#### Lattice-Based Cryptography

For any vectors v<sub>1</sub>,...,v<sub>n</sub> in R<sup>n</sup>, the lattice spanned by v<sub>1</sub>,...,v<sub>n</sub> is the set of points
L={a<sub>1</sub>v<sub>1</sub>+...+a<sub>n</sub>v<sub>n</sub> | a<sub>i</sub> integers}

 Shortest Vector Problem (SVP): given a lattice, find a shortest (nonzero) vector





- Shortest Vector Problem (SVP): given a lattice, find a shortest (nonzero) vector
- no efficient (classical or quantum) algorithms known
- public-key encryption schemes can be built on the computational hardness of SVP

### Quiz: Post-Quantum Crypto

- Which of the following are correct?
  - Post-quantum cryptography uses quantum computers to do cryptography
- Post-quantum cryptography studies which classical cryptoschemes remain secure against quantum attackers
- Finding the shortest vector in a high-dimensional lattice is hard for a quantum computer
- d. Quantum computers are commercially available
- e. Large-scale quantum computers can never be built.

#### What will you Learn from this Talk?

- ✓ Introduction to Quantum Mechanics
- **✓** Post-Quantum Cryptography
- Quantum Key Distribution
- Position-Based Cryptography

#### Demonstration of Quantum Technology

generation of random numbers



(diagram from idQuantique white paper)

 no quantum computation, only quantum communication required

#### **No-Cloning Theorem**



Proof: copying is a non-linear operation

Quantum Key Distribution (QKD)

[Bennett Brassard 84]







- Offers an quantum solution to the key-exchange problem
- Puts the players into the starting position to use symmetric-key cryptography (encryption, authentication etc.).

# Quantum Key Distribution (QKD) [Bennett Brassard 84]







# Quantum Key Distribution (QKD) [Bennett Brassard 84]



- Quantum states are unknown to Eve, she cannot copy them.
- Honest players can test whether Eve interfered.



Quantum Key Distribution (QKD)
[Bennett Brassard 84]



### Quiz: Quantum Key Distribution

- Which of the following are correct?
- a. The no-cloning theorem guarantees the security of quantum key distribution
- A quantum computer is required to perform quantum key distribution
- c. All public-key systems (e.g. RSA) can be broken by an eavesdropper with unlimited computing power. Hence, QKD is **insecure** against such eavesdroppers as well.
- d. The output of QKD for honest players Alice and Bob is a shared classical key.

#### What will you Learn from this Talk?

- ✓ Introduction to Quantum Mechanics
- ✓ Quantum Key Distribution
- **✓** Post-Quantum Cryptography
- Position-Based Cryptography



#### Position-Based Cryptography

- Typically, cryptographic players use credentials such as
  - secret information (e.g. password or secret key)
  - authenticated information



biometric features

Can the geographical location of a player be used as cryptographic credential?



#### Position-Based Cryptography

# Can the geographical location of a player be used as sole cryptographic credential?

- Possible Applications:
  - Launching-missile command comes from within the military headquarters
  - Talking to the correct country
  - Pizza-delivery problem / avoid fake calls to emergency services
  - . . .





#### Position-Based Cryptography



# Gamer krijgt SWAT-team in z'n nek: swatting

© 29-08-2014, 05:49 AANGEPAST OP 29-08-2014, 05:49

Zit je lekker een oorlogsspel te spelen, valt er ineens een SWAT-team binnen. Dat gebeurde een Amerikaanse gamer. Hij had net in de livestream van z'n spel Counter Strike tegen zijn medespelers 'I think we're being swatted' - toen de deur openbrak en inderdaad een zwaarbewapend arrestatieteam binnenviel.

Dat was allemaal live te zien op de webcam:

#### Basic task: Position Verification



- Prover wants to convince verifiers that she is at a particular position
- no coalition of (fake) provers, i.e. not at the claimed position, can convince verifiers
- assumptions:
- communication at speed of light
- instantaneous computation
- verifiers can coordinate

### Position Verification: First Try



distance bounding [Brands Chaum '93]

#### Position Verification: Second Try



position verification is classically impossible!

### The Attack



### Position Verification: Quantum Try



Can we brake the scheme now?

## **Attacking Game**



- Impossible to cheat due to noncloning theorem
- Or not?



#### **EPR Pairs**

40 [Einstein Podolsky Rosen 1935]





- "spukhafte Fernwirkung" (spooky action at a distance)
- EPR pairs do not allow to communicate (no contradiction to relativity theory)
- can provide a shared random bit

### **Quantum Teleportation**

<sup>41</sup> [Bennett Brassard Crépeau Jozsa Peres Wootters 19





- does not contradict relativity theory
- teleported state can only be recovered once the classical information  $\sigma$  arrives

**Teleportation Attack** 



- It is possible to cheat with <u>entanglement</u>!!
- Quantum teleportation allows to break the protocol perfectly.



[Buhrman, Chandran, Fehr, Gelles, Goyal, Ostrovsky, Schaffner 2010]

- Any position-verification protocol can be broken using an exponential number of entangled qubits.
- Question: Are so many quantum resources really necessary?

- Does there exist a protocol such that:
  - honest prover and verifiers are efficient, but
  - any attack requires lots of entanglement

# Quiz: Position-Based Q Crypto

- Which of the following are correct?
- a. Position verification using classical protocols is impossible against unbounded colluding attackers
- b. Position verification using quantum protocols is impossible against unbounded colluding attackers
- Quantum teleportation can send information faster than the speed of light
- d. Entangled qubits are difficult to create in practice.
- e. Entangled qubits are difficult to store for 1 second in practice.

## What have you learned today?

- ✓ Introduction to Quantum Mechanics
- ✓ Quantum Key Distribution
- ✓ Post-Quantum Cryptography
- ✓ Position-Based Cryptography

#### What Have You Learned from this Talk?

Quantum Mechanics

Qubits

$$\begin{array}{c|c} \longleftrightarrow |0\rangle_{+} & \mathbf{1}|1\rangle_{+} \\ \hline \\ \boxed{|0\rangle_{\times}} & \boxed{|1\rangle_{\times}} \end{array}$$

No-cloning



Entanglement





Quantum Teleportation



### What Have You Learned from this Talk?



# **Quantum Computing**









# Post-Quantum Cryptography



### What Have You Learned from this Talk?

Quantum Key Distribution (QKD)



# **✓** Position-Based Cryptography



# Thank you for your attention!



# Quiz: Quantum Crypto

- Which of the following are correct?
  - Quantum Crypto studies the impact of quantum technology on the field of cryptography
- As RSA encryption will be broken by quantum computers, we should switch to other systems already now (in order to secure information for more than 10 years)
- c. Position-based cryptography exploits the fact that information cannot travel faster than the speed of light
- d. Quantum Key Distribution is fundamentally more secure than classical public-key cryptography

### Are There Secure Schemes?

- Different quantum schemes proposed by
  - Chandran, Fehr, Gelles, Goyal, Ostrovsky [2010]
  - Malaney [2010]
  - Kent, Munro, Spiller [2010]  $\sum_{i=2}^{\sum i=2} n = |5|/452a$
  - ullet Lau, Lo [2010] |012323
    angle |01
    angle
- Unfortunately they can all be broken!
  - General no-go theorem
     [Buhrman, Chandran, Fehr, Gelles, Goyal, Ostrovsky, Schaffner 2010]

### **Quantum Operations**

- are linear isometries
- lacksquare can be described by a unitary matrix:  $UU^\dagger=U^\dagger U=\operatorname{id}$
- examples:
  - identity
  - bitflip (Pauli X): mirroring at  $|0
    angle_{ imes}$  axis



- 53
- are linear isometries
- lacksquare can be described by a unitary matrix:  $UU^\dagger=\operatorname{id}$
- examples:
  - identity
  - bitflip (Pauli X): mirroring at  $|0
    angle_{ imes}$  axis
  - ullet phase-flip (Pauli Z): mirroring at  $|0
    angle_+$  axis
  - both (Pauli XZ)





## Most General Single-Round Scheme



Let us study the attacking game

### Distributed Q Computation in 1 Round



- using some form of back-and-forth teleportation,
   players succeed with probability arbitrarily close to 1
- requires an exponential amount of EPR pairs

# History of Public-Key Crypto



 Early 1970s: <u>invented</u> in the "classified world" at the British <u>Government Communications Head Quarters</u> (GCHQ) by Ellis, Cocks, Williamson











 Mid/late 1970s: invented in the "academic world" by Merkle, Hellman, Diffie, and Rivest, Shamir, Adleman



