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Leftover Hashing Against Quantum Side Information
Marco Tomamichel, Christian Schaffner, Adam Smith, and Renato Renner

Abstract—The Leftover Hash Lemma states that the output of
a two-universal hash function applied to an input with sufficiently
high entropy is almost uniformly random. In its standard formu-
lation, the lemma refers to a notion of randomness that is (usu-
ally implicitly) defined with respect to classical side information.
Here, a strictly more general version of the Leftover Hash Lemma
that is valid even if side information is represented by the state of
a quantum system is shown. Our result applies to almost two-uni-
versal families of hash functions. The generalized Leftover Hash
Lemma has applications in cryptography, e.g., for key agreement
in the presence of an adversary who is not restricted to classical
information processing.

Index Terms—Leftover hash lemma, quantum information,
smooth entropies.

I. INTRODUCTION

C ONSIDER a random variable that is partially known
to an agent, that is, the agent possesses side information

correlated to . One may ask whether it is possible to extract
from a part that is completely unknown to the agent, i.e.,
uniform conditioned on . If yes, what is the maximum size of

? And how is computed?
The Leftover Hash Lemma answers these questions. It states

that extraction of uniform randomness is possible whenever
the agent’s uncertainty about is sufficiently large. More pre-
cisely, the number of extractable bits is approximately equal
to the min-entropy of conditioned on , denoted
(see Section I-B for a definition and properties). Furthermore,
can be computed as the output of a function selected at random
from a suitably chosen family of functions , called two-uni-
versal family of hash functions (see Section I-A for a defini-
tion). Remarkably, the family can be chosen without knowing
the actual probability distribution of and only depends on the
alphabet of and the number of bits to be extracted, .

More specifically, the Leftover Hash Lemma states that, on
average over the choices of from , the distribution of the
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output is at most -far from uniform conditioned
on ,1 where

(1)

The lemma immediately implies that for a fixed joint distribu-
tion of and , there is a fixed function that extracts almost
uniform randomness. In fact, for any , there exists a func-
tion that produces2

(2)

bits that are -close to a bit string that is both uniform and
independent of .

The Leftover Hash Lemma plays an important role in a va-
riety of applications in computer science and cryptography (see,
e.g., [1] for an overview). A prominent example is privacy am-
plification, i.e., the task of transforming a weakly secret key
(about which an adversary may have partial knowledge ), into
a highly secret key (that is uniform and independent of the ad-
versary’s information ). It was in this context that the use
of two-universal hashing for randomness distillation was first
proposed [2]. Originally, the analysis was, however, restricted
to situations where is uniform and is bounded in size.
Later, versions of the Leftover Hash Lemma similar to (1) have
been proved independently in [3] and [4]. The term leftover
hashing was coined in [5], where its use for recycling the ran-
domness in randomized algorithms and for the construction of
pseudo-random number generators is discussed (see also [3],
[6]).

A. Almost Two-Universal Hashing

The notion of two-universal hashing was introduced by Carter
and Wegman [7]. A family of functions from to is said to
be two-universal if, for any pair of distinct inputs and , and
for chosen at random from , the probability of a collision

is not larger than . Note that this value
for the collision probability corresponds to the one obtained by
choosing as the family of all functions with domain and
range .

Later, the concept of two-universal hashing was generalized
to arbitrary collision probabilities [8]. Namely, a family of
functions from to is called -almost two-universal if

(3)

1The distance from uniform � measures the statistical distance of the prob-
ability distribution of� given E to a uniform distribution. See Section III for a
formal definition.

2We use ��� to denote the binary logarithm.
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for any . A two-universal family as above simply corre-
sponds to the special case .

The classical Leftover Hash Lemma (1) can be generalized
to -almost two-universal hash functions [1]. More precisely,
when extracting an -bit string from data , its distance from
uniform conditioned on is bounded by

(4)

The relaxation of the collision probability condition in the def-
inition of -almost two-universal families of hash functions (3)
allows for smaller families , thus reducing the amount of ran-
domness needed to choose a function . This, in turn, al-
lows for the construction of randomness extractors that require
shorter random seeds (cf. Section IV).

B. Quantum Side Information

A majority of the original work on universal hashing is based
entirely on probability theory and side information is, there-
fore (often implicitly), assumed to be represented by a clas-
sical system (modeled as a random variable).3 In fact, since
hashing is an entirely “classical” process (a simple mapping
from a random variable to another random variable ), one
may expect that the physical nature of the side information is
irrelevant and that a purely classical treatment is sufficient. This
is, however, not necessarily the case. For example, the output of
certain extractor functions may be partially known if side infor-
mation about their input is stored in a quantum device of a cer-
tain size, while the same output is almost uniform conditioned
on any side information stored in a classical system of the same
size (see [9] for a concrete example and [10] for a more general
discussion).4

Here, we follow a line of research started in [11]–[13] and
study randomness extraction in the presence of quantum side
information . (This, of course, includes situations where is
partially or fully classical.) More specifically, our goal is to es-
tablish a generalized version of (4) which holds if the system
is quantum-mechanical. In order to state the result, we first need
to define the min-entropy as well as of the notion of uniformity
in a quantum setting.

The definition of uniformity in the context of quantum side
information is rather straightforward. Let be a classical
random variable which takes any value with probability

and let be a quantum system whose state conditioned on
is given by a density operator on . This situation

is compactly described by the classical-quantum (CQ) state

(5)

3If the side information � is classical, the Leftover Hash Lemma can be for-
mulated without the need to introduce � explicitly (see, e.g., [3]). Instead, one
may simply interpret all probability distributions as being conditioned on a fixed
value of the side information.

4Note that there is no sensible notion of a conditional probability distribution
where the conditioning is on the state of a quantum (as opposed to a classical)
system. An implicit treatment of side information �, where one considers all
probability distributions to be conditioned on a specific value of�, as explained
in the previous footnote, is, therefore, not possible in the general case.

defined on the product space , where is a Hilbert
space with orthonormal basis . We say that is uni-
form conditioned on if has product form , where

is the maximally mixed state on . More gen-
erally, we say that is -close to uniform conditioned on if
there exists a state on for which the trace distance between

and is at most (see Section III for a formal defi-
nition). The trace distance is a natural choice of metric because
it corresponds to the distinguishing advantage.5 Furthermore, in
the purely classical case, the trace distance reduces to the statis-
tical distance.

Next, we generalize the notion of min-entropy to situations
involving quantum side information. Before we do this, note
that the classical min-entropy6 has an operational interpretation
as the average guessing probability of given , namely

(6)

Here, denotes the probability of correctly guessing
the value of using the optimal strategy with access to .
The optimal strategy in the classical case is to guess, for each
value of of , the with the highest conditional probability

. The guessing probability is thus

A generalization of the min-entropy to situations where may
be a quantum system was first proposed in [12] (see Section II
for a formal definition). As shown in [16], the operational in-
terpretation (6) naturally extends to this more general case. In
other words, the min-entropy, , is a measure for the
probability of guessing using an optimal strategy with access
to the quantum system .

Next, we argue that the min-entropy, , accurately
characterizes the total amount of randomness contained in ,
i.e., the number of uniformly random bits that can be extracted
using an optimal extraction strategy. For this purpose, let
be fixed and assume that is a function that maps to a string

of length that is uniform conditioned on the side
information . Then, obviously, the probability of guessing
correctly given is equal to and, by virtue of (6), we find
that

(7)

Furthermore, the probability of guessing correctly
cannot be smaller than the probability of guessing correctly.
This fact can again be expressed in terms of min-entropies

(8)

5Let � be the maximum probability that a distinguisher, presented with a
random choice of either the state � or the state �, can correctly guess which of
the two he has seen. The distinguishing advantage is then defined as the advan-
tage compared to a random guess, which is given by � � � ��� ��
(see, e.g., [14])

6There are several conventions for defining conditional min-entropy, even for
classical random variables. The notion we use is sometimes called average con-
ditional min-entropy [15].
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i.e., the min-entropy can only decrease under the action of a
function. Combining (7) and (8) immediately yields

(9)

We conclude that the number of uniform bits (relative to )
that can be extracted from data is upper bounded by the min-
entropy of conditioned on . This result may be seen as a
converse of (2).

So far, the claim (9) is restricted to the extraction of perfectly
uniform randomness. In order to extend this concept to the more
general case of approximately uniform randomness, we need to
introduce the notion of smooth min-entropy. Roughly speaking,
for any , the -smooth min-entropy of given , denoted

, is defined as the maximum value of
evaluated for all density operators that are -close to in terms
of the purified distance (see Section II for a formal definition).

The above argument leading to (9) can be generalized in a
straightforward manner to smooth min-entropy, and results in
the bound

for the maximum number of extractable bits that are -close
to uniform conditioned on . Crucially, our extended version
of the Leftover Hash Lemma implies that this bound can be
reached, up to additive terms of order (see Theorem
6 and Theorem 7). We, thus, conclude that the min-entropy of

conditioned on , in particular its “smoothed” version, is an
accurate measure for the amount of uniform randomness (con-
ditioned on ) that can be extracted from .

C. Main Result

Our main result is a generalization of the Leftover Hash
Lemma for -almost two-universal families of hash functions
which is valid in the presence of quantum side information.
While the statement is new for general -almost two-universal
hash functions, the special case of two-universal hashing was
proved previously by one of us [12].7

Lemma 1 (Generalized Leftover Hash Lemma): Let be
a random variable, let be a quantum system, and let be
a -almost two-universal family of hash functions from to

. Then, on average over the choices of from
is -close to uniform conditioned on , where

(10)

Furthermore, if , i.e., if is two-universal, then

(11)

Note that inserting into the first expression for
yields a looser bound than (11). The latter, therefore, requires a
separate proof. In the technical part below, the two claims are

7We reprove the result here for a slightly adapted definition of the smooth
min-entropy that has now become standard. (See, e.g., [17].)

formulated more generally for the smooth min-entropy (The-
orem 6 and Theorem 7).

D. Applications and Related Work

Quantum versions of the Leftover Hash Lemma [12] for two-
universal families of hash functions have been used in the con-
text of privacy amplification against a quantum adversary [13],
[10]. This application has gained prominence with the rise of
quantum cryptography and quantum key distribution in partic-
ular. There, the side information is gathered during a key
agreement process between two parties by an eavesdropper who
is not necessarily limited to classical information processing.
The quantum generalization of the Leftover Hash Lemma is then
used to bound the amount of secret key that can be distilled by
the two parties.

The restriction to two-universal families of hash functions
leads to the need for a random seed of length , where is
the length in bits of the original partially secret string. This seed
is used to choose from a two-universal family . The main
result of this paper, Lemma 1, and a suitable construction of a
-almost two-universal family of hash functions (see Section IV,

Theorem 10) allow for a shorter seed of length proportional to
and . The length of secret key that can be ex-

tracted with this method is only reduced by an additive term
proportional to compared to the extractor using two-uni-
versal hashing. (See (26) and (27).) Furthermore, the general-
ized Leftover Hash Lemma allows for an extension of existing
cryptographic security proofs to -almost two-universal fami-
lies of hash functions and may lead to a speed-up in practical
implementations.8

Recently, the problem of randomness extraction with
quantum side information has generated renewed interest. For
example, XORing a classical source about which an adversary
holds quantum information with a -biased mask (as in [20])
results in a uniformly distributed string even when conditioned
on quantum side information [21]9.

However, to achieve even shorter seed lengths, more ad-
vanced techniques such as Trevisan’s extractor [23] have
been studied in [24]–[26]. In [25], it is shown that a seed of
length is sufficient to generate a key of length

, where is a measure of the
size of the adversary’s quantum memory. In [26], the result was
extended to the formalism of conditional min-entropies. They
attain a key length of minus erms logarithmic
in the output size. This construction can be concatenated with
our extractor using almost two-universal hashing (Theorem 10)
to extract the remaining randomness. The combined key length,

, is then almost optimal, as we argue in (9) and
the seed still grows as . (See the discussion in [26]
for more details.)

Moreover, our result should be used instead of the classical
Leftover Hash Lemma whenever randomness is extracted in a
context governed by the laws of quantum physics. For example,
consider a device that needs a seed that is random conditioned

8See, e.g., [18] and [19], where a practical implementation of privacy ampli-
fication is discussed in Section V.

9See also [22] for a generalization of this work to the fully quantum setting.
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on its internal state. In this case the use of the classical Left-
over Hash Lemma instead of its quantum version, Lemma 1,
corresponds to the implicit and potentially unjustified assump-
tion that the device is entirely governed by classical mechanics.

E. Organization of the Paper

In Section II, we discuss various aspects of the smooth en-
tropy framework, which will be needed for our proof. We then
give the proof of the General Leftover Hash Lemma (Lemma 1)
in Section III. More precisely, we provide statements of the Left-
over Hash Lemma for two-universal and -almost two-universal
hashing in terms of the smooth min-entropy (Theorems 6 and
7). Finally, in Section IV, we combine known constructions of
-almost two-universal hash functions and discuss their use for

randomness extraction with shorter random seeds. Appendix B
may be of independent interest because it establishes a relation
between the smooth min- and max-entropies (as defined above
and used in [16], [27], [17]) and certain related entropic quan-
tities used in earlier work (e.g., in [12]) and to prove the main
result of this paper.

II. SMOOTH ENTROPIES

Let be a finite-dimensional Hilbert space. We use
and to denote the set of linear, Hermitian and pos-

itive semi-definite operators on , respectively. We define the
set of normalized quantum states by

and the set of sub-normalized states by
. Given a pure state , we use

to denote the corresponding projector in . The
inverse of a Hermitian operator is taken on its support (general-
ized inverse). Given a bipartite Hilbert space
and a state , we denote by and its
marginals and .

The trace distance between states and is given by
. We also employ the purified dis-

tance, , as a metric on [17]. It is an upper bound
on the trace distance and defined in terms of the generalized
fidelity, , as

We will need that the purified distance is a monotone under
trace nonincreasing completely positive maps (CPMs). Let be
a trace nonincreasing CPM, then [17]

(12)

Note that the projections for any projector is a
trace nonincreasing CPM. We define the -ball of states close
to as

We define the smooth min-entropy [12].

Definition 1: Let and . The min-
entropy of A conditioned on B is given by

Furthermore, the smooth min-entropy of A conditioned on B is
defined as

The conditional min-entropy is a measure of the uncertainty
about the state of a system A given quantum side information B.
In particular, if the system A describes a classical random vari-
able (i.e., if the state is CQ, cf. (5)), the min-entropy can be inter-
preted as a guessing probability.10 For general quantum states,
the smooth min-entropy satisfies data-processing inequalities.
For example, if a CPM is applied to the B system or if a pro-
jective measurement is conducted on the A system, the smooth
min-entropy of A given B is guaranteed not to decrease.11

The following lemma makes clear that the min-entropy
smoothing of a state will not destroy its CQ structure.

Lemma 2: Let be a CQ state. Then, there exists a
CQ state that optimizes

.
Proof: Let be a state in . We can create a CQ

state by measuring . This operation will not increase the
distance (cf. [17], Lemma 7), i.e., , while it
cannot decrease min-entropy (cf. [17], Theorem 19).

Finally, we will need a quantum generalization of the colli-
sion entropy (Rényi-entropy of order 2).

Definition 2: Let and , then
the collision entropy of A conditioned on B of a state given

is , where

We will use the fact that the collision entropy provides an
upper bound on the min-entropy. Equation (14) constitutes one
of the main technical contributions of this work.

Lemma 3: Let be a CQ state and .
Then, there exists a state such that

(13)

Moreover, there exists a CQ state such that

(14)

Proof: To prove the first statement, we observe that, by the
definition of the min-entropy, there exists a state
s.t. and, thus

The statement then follows after we multiply both sides by ,
take the trace and use that .

10See discussion in Section I and [16] for details.
11See [17] for precise statements and proofs.
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To prove the second statement, we will make use of properties
of the alternative entropic quantities discussed in Appendix B.
In particular, we use Lemma 19 to define s.t.

In particular, we can choose CQ.12 We now apply the same
argument as in the proof of (13) to show that

which concludes the proof.

III. PROOF OF THE LEFTOVER HASH LEMMA

In this section we give bounds on the distance from uniform of
the quantum state after hashing with two-universal and -almost
two-universal functions (Theorems 6 and 7, respectively). The
proof of the Leftover Hashing Lemma (Lemma 1) then follows.

We consider the scenario where the random variable is
picked from a set and is a quantum system whose state
may depend on . The situation is described by a CQ state of
the form

(15)

where the probability of occurring is the trace of the sub-nor-
malized state and . After applying a function

chosen at random from a family of hash func-
tions , the resulting CQ state is given by

(16)

where and

(17)

Formally, randomness extraction can be modelled as a trace-
preserving CPM, , from that maps

.
First, we extend the definition of the distance from uniform

to sub-normalized states for technical reasons.13

Definition 3: Let , then we define the dis-
tance from uniform of A conditioned on B as

(18)

where and the minimum is taken over all
satisfying .

In the following, we will give upper bounds on the quan-
tity , where is the random variable after

12Similar to Lemma 2, measuring �� on the X system can not decrease the
alternative min-entropy while the distance to � can not increase.

13Note that sub-normalized states have to be considered due to our definition
of the smoothing of the min-entropy.

two-universal or -almost two-universal hashing, respectively.
Note that we consider the distance from uniform conditioned
on the choice of hash function F as well as well as the side in-
formation E. This describes the situation where the chosen hash
function (the value of ) is published after its use, i.e., the strong
extractor regime.

The distance from uniform conditioned on E averaged over
the choice of (as used in the introduction) is given by

It is upper bounded by , i.e.,

(19)

where optimizes (18) for . Hence, an upper
bound on trivially implies an upper bound on the
average distance as well.

As a first step, we bound the distance from uniform in terms
of the collision entropy.

Lemma 4: Let and with
, then

Proof: We use a Hölder-type inequality for linear operators
and unitarily invariant norms (see [28] for a proof). Let and

be linear operators and such that ,
then .

We apply the inequality with parameters
and

. This leads to

We simplify the expression on the r.h.s. further using

which concludes the proof.

The above bound can be simplified by setting

(20)
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The following lemma yields a bound on the collision entropy
of the output of the hash function in terms of the collision en-
tropy of the input.

Lemma 5: Let be -almost two-universal, let and
be defined as in (15) and (16), respectively, and let

. Then,

Proof: The collision entropy on the l.h.s. can be rewritten
as an expectation value over , that is

We have used (17) to substitute for in the last step. The
expectation value can be evaluated using the defining property
(3) of -almost two-universal families. We get

if and otherwise. We use this relation and the fact that
the trace terms are positive to bound

We now complete the second sum with the terms where
to get the statement of the lemma.

If we set , the result can be simplified further

(21)

We are now ready to give a bound on the distance from uni-
form after privacy amplification with two-universal
and -almost two-universal families of hash functions. For two-
universal hashing, we get the following bound. (See also [12],
where the same result was shown for a slightly different defini-
tion of the smooth min-entropy.)

Theorem 6: Let be two-universal and let and be
defined as in (15) and (16), respectively. Then, for any

Proof: We use Lemma 4 to bound . In partic-
ular, we set to get

where we have used Lemma 5 and that is two-universal
in the last step. The r.h.s. can be expressed in terms of a

min-entropy using (13). With an appropriate choice of , we
have

(22)

We have now shown the theorem for the case .
Finally, the bound can be expressed in terms of a smooth

min-entropy. Let be the CQ state (cf. Lemma
2) that optimizes the smooth min-entropy

. We define and
note that privacy amplification can only decrease the purified
distance (12), i.e.,

Moreover, let be the state that minimizes the distance from
uniform . Then

We now apply (22) for (instead of ) to get

which concludes the proof.

Next, we consider the case of -almost two-universal hashing.

Theorem 7: Let be -almost two-universal and let and
be defined as in (15) and (16), respectively. Then, for any
and

Proof: We use Lemma 4 as in (20) to bound .
For normalized , we find

where we used Lemma 5 as stated in (21).
The smoothing of the above equation is achieved using the

same arguments as in the proof of Theorem 6. However, this
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time we need to include an additional smoothing parameter
in order to be able to apply (14).
Let be a CQ state (cf. Lemma 2) that op-

timizes the smooth min-entropy
and let be the CQ state (cf. Lemma 2) that sat-
isfies

(23)

Then, holds due to the triangle inequality
of the purified distance. Moreover, we define the state after ran-
domness extraction, . Following
the arguments laid out in the proof of Theorem 6, we have

This can be bounded using (23), which concludes the proof.

The proof of the Leftover Hash Lemma stated in the intro-
duction (Lemma 1) follows when we set and in
Theorem 6 and Theorem 7. To see this, note that the statements
of both theorems can be expressed in terms of the distance from
uniform averaged over the choice of hash function, , using
(19).

IV. EXPLICIT CONSTRUCTIONS WITH SHORTER SEEDS

Here, we combine known constructions of two-universal and
-almost two-universal hash functions and discuss their use for

randomness extraction with shorter random seeds. We restrict
ourselves to the scenario where is an -bit string .
The challenge is typically to optimize the following parameters:

a) the error described by the distance from uniform, ,
which should be small;

b) the length of the extracted key, , which one wants to make
as large as possible (close to );

c) the length of the random seed, , needed to
choose , which one wants to keep small.

The latter point is important in practical implementations of
privacy amplification, for example in quantum key distribution
(QKD), where the choice of has to be communicated between
two parties.

We will first review the explicit constructions of ( -almost)
two-universal hash functions used in this section. In [7], Carter
and Wegman proposed several constructions of two-universal
function families, trying to minimize the size of . An example
of a two-universal set of hash functions with is the set

consisting of elements

(24)

where denotes the multiplication in the field . The
fact that is two-universal can be readily verified by consid-
ering the difference
and noting that the mapping is a bijection if

.

With -almost two-universal families, a larger value of typ-
ically allows for a smaller set . This is nicely illustrated by the
following well-known construction based on polynomials. Let

be an arbitrary field and let be a positive integer. We define
the family of functions

(25)

Using the fact that a polynomial of degree can only have
zeros, it is easy to verify that is -almost two-universal,

for .
Another method to construct -almost two-universal families

of hash functions is to concatenate two such families. We will
use the following lemma by Stinson (see Theorem 5.4 in [8]).

Lemma 8: Let be -almost two-universal from
to and let be -almost two-universal from
to . Then, the family of all
concatenated hash functions is -almost two-universal.

Combining the general results on -almost two-universal
hashing of Section III with the explicit constructions described
above, we obtain the following statements.

If we do not care about the seed length , we may choose a
two-universal family of hash functions and recover a result by
Renner [12]:

Theorem 9: For any , there exists a family of hash
functions from to satisfying

Proof: We apply Theorem 6 using the two-universal family
constructed in (24), which yields .

We now show that we can choose a family of hash functions
such that is proportional to the key length instead of the input
string length .

Theorem 10: For any and , there exists a
family of hash functions from to satisfying14

Proof: As in the classical approach of [29], we concatenate
two hash functions using Lemma 8 with some clever choice of
the parameters. For the first function, we set

and use the field in the polynomial-
based hash construction from (25). Interpreting the -bit strings
as blocks of bits, the first hash function maps
from to and requires a -bit seed. Then, regular
two-universal hashing from (24) with a seed length of again
bits is used to map from to . The two seed lengths
add up to .

Polynomial-based hashing achieves a of at most

14The variable � allows us to trade off key length against seed length.
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by the choice of and the fact that
. Together with from the two-universal

hashing, we get from Lemma 8 that this construction yields a
-almost two-universal family of hash functions.

Inserting this expression for into Theorem 7 yields

The theorem then follows as an upper bound to this expression.

To illustrate the difference between the two constructions
above, we keep the distance from uniform, , fixed and
consider the min-entropy for . The con-
structions allow us to extract bits of randomness using bits
of random seed. For the two-universal construction in Theorem
9, we find

(26)

For the almost two-universal construction in Theorem 10, using
and , we find

(27)

Therefore, using the almost two-universal construction reduces
the required random seed from to something proportional to
, and while keeping the extractable randomness

unchanged up to terms in .

APPENDIX A
TECHNICAL RESULTS

The first lemma is an application of Uhlmann’s theorem [30]
to the purified distance15 (see [17] for a proof).

Lemma 11: Let and be
a purification of . Then, there exists a purification
of with .

Corollary 12: Let and be an
extension of . Then, there exists an extension
of with .

In the following, we apply this result to an -ball of pure
states, .

Corollary 13: Let and be a purifi-
cation of . Then

and equality holds if the Hilbert space dimensions satisfy
.

15The main advantage of the purified distance over the trace distance is that
we can always find extensions and purifications without increasing the distance.

We will use the following property of pure bipartite states.

Lemma 14: Let be pure,
and let be an operator with support

and image in . Then

and the transpose is taken in the Schmidt basis of .
Proof: We introduce the Schmidt decomposition

. Clearly,
is the (unnormalized) fully entangled

state on the support of and . It is easy to verify that
, where the transposed

matrix is given by .

Corollary 15: Let be pure,
and a real-valued function, then

Proof: Observe that and apply Lemma 14.

We define the notion of a dual projector with regard to a pure
state using the following corollary:

Corollary 16: Let be pure,
and let be a projector in

. Then, there exists a dual projector on such
that

The next Lemma gives a bound on the purified distance of a
state and a projected state .

Lemma 17: Let and a projector on , then

where is the complement of on .
Proof: The generalized fidelity between the two states can

be bounded using . We have

The desired bound on the purified distance follows from its def-
inition.

APPENDIX B
ALTERNATIVE ENTROPIC QUANTITIES

Here, we discuss two alternative entropic quantities,
and , and show that they are equivalent

(up to terms in ) to the smooth min-entropy and smooth
max-entropy, respectively. Some of the technical results of this
Appendix will be used to give a bound on the collision entropy
in terms of the smooth min-entropy (cf. Lemma 2).

First, note that conditional entropies can be defined from rela-
tive entropies, as is well-known for the case of the von Neumann
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entropy. Let be a bipartite quantum state. Then, the condi-
tional von Neumann entropy of A given B is

(28)

(29)

where we used Klein’s inequality [31], [14] in the last step. The
relative entropy is defined as
and .

We will now define the smooth min-entropy and an alternative
to the smooth entropy as first introduced in [12]. The definition
of two versions of the min-entropy is parallel to the case of the
von Neumann entropy above; however, the two identities (28)
and (29) now lead to different definitions. We follow [32] and
first introduce the max relative entropy. For two positive opera-
tors and we define

Definition 4: Let and . The min-
entropy and the alternative min-entropy of A conditioned on B
are given by

respectively. Furthermore, the alternative smooth min-entropy
of A conditioned on B is defined as

The smooth max-entropies can be defined as duals of the
smooth min-entropies.

Definition 5: Let and , then we define
the smooth max-entropy and the alternative smooth max-entropy
of A conditioned on B as

where is any purification of .
The max-entropies are well-defined since the min-entropies

are invariant under local isometries on the C system (cf. [17]
and Lemma 21) and, thus, independent of the chosen pu-
rification. The nonsmooth max-entropies and

are defined as the limit of the corre-
sponding smooth quantities. The alternative max-entropy is
discussed in Appendix C, where it is shown that (cf. also [33])

(30)

where is the projector onto the support of . Further-
more, we find that

(31)

where the infimum is taken over all embeddings of
into . In fact, it is sufficient to consider an embedding
into a space of size .

The first definition of the smooth max-entropy, ,
is used in [16], [27] and is found to have many interesting prop-
erties, e.g. it satisfies a data-processing inequality [17]. The al-
ternative definition, , was first introduced in [12]
and is used to quantitatively characterize various information
theoretic tasks (cf., e.g., [32], [34], [35]). Here, we find that the
two smooth min-entropies and the two smooth max-entropies
are pairwise equivalent up to terms in . Namely, the fol-
lowing lemma holds:

Lemma 18: Let and , then

where .
The equivalence of the max-entropies follows by their defini-

tion as duals, i.e., we have

The proof of Lemma 18 is based on the following result,
where, for convenience of exposition, we introduce the general-
ized conditional min-entropy

Lemma 19: Let and be pure.
Then, there exists a projector on and a state

such that and

Furthermore, there exists a state that satisfies
and

Proof: The proof is structured as follows: First, we
give a lower bound on the entropy in terms of

and a projector that is the dual projector (cf.
Corollary 16) of with regard to . We then find a
lower bound on the purified distance between and
in terms of and define (and, thus, ) such that this
distance does not exceed .

Let and be the pair that optimizes the min-entropy
, i.e., .
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We have by definition of . Hence,
is finite and can be written as

where denotes the maximum eigenvalue of . We bound
this expression using the dual projector of with regard
to and the fact that by definition of
and

where, in the last step, we introduced the Hermitian operator
. Taking the logarithm on both sides leads

to

(32)

We use Lemma 17 to bound the distance between and
, namely

where the last equality can be verified using Corollary 16.
Clearly, the optimal choice of will cut off the largest
eigenvalues of in (32) while keeping the states
and close. We, thus, define to be the minimum
rank projector onto the smallest eigenvalues of such that

or, equivalently, .
This definition immediately implies that and are
-close and it remains to find an upper bound on .

Let be the projector onto the largest remaining eigenvalue
in and note that and commute with . Then

where is minimized over all positive operators in the support
of . Fixing instead ,
we find

In the last step we used that and
that by definition of . We have now
established the first statement.

To prove the second statement, we introduce an operator
. The state ,

where , satisfies . We now show that the
state is -close to . The inequality implies

and, thus

where we used the monotonicity of the fidelity
under the partial trace. Thus, .

We use that and to find
a lower bound on

We have (Lemma 20 in [17]) and, thus

This concludes the proof of the second statement.

Furthermore, the alternative smooth min-entropy is a lower
bound on the smooth min-entropy by definition.

Lemma 20: Let , then

We are now ready to prove Lemma 18. Namely, we show that,
for and , it holds that

where .
Proof of Lemma 18: Let be the state

that maximizes . Clearly, .
Moreover, Lemma 19 and the triangle inequality of the purified
distance imply that there exists a state that
satisfies

which concludes the proof of the first inequality. The second
inequality follows by applying Lemma 20 to the state that max-
imizes .

APPENDIX C
DUALITY RELATION FOR ALTERNATIVE SMOOTH ENTROPIES

Here, we find that the alternative smooth min-entropy of A
conditioned on B is invariant under local isometries on the B
system. Since all purifications are equivalent up to isometries on
the purifying system, this allows the definition of the alternative
max-entropy as its dual (see Definition 5). Moreover, the max-
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entropy is invariant under local isometries on the B system as a
direct consequence. Note that the alternative smooth min- and
max-entropies are in general not invariant under isometries on
the A system, i.e., they depend on the dimension of the Hilbert
space .

Lemma 21: Let and . Moreover, let
be an isometry with

. Then

Proof: Let be the state that maximizes
the alternative min-entropy of A conditioned on B and let be
defined with . Then ,
which implies

Hence, . Moreover,
due to (12), which implies .
The same argument in reverse can be applied to get

.
The invariance under isometry of the dual quantity follows by

definition. Namely, let be any purification of , then

where is a
purification of .

Next, we derive expression (30) for the alternative nonsmooth
and smooth max-entropies. The result for the nonsmooth en-
tropy was first shown in [33] and an alternative proof is provided
here for completeness.

Lemma 22: Let , then

Proof: Let be a purification of . Then,
has marginal

due to Lemma 14. This allows us to write

where the maximization is over all .

The alternative smooth max-entropy can be seen as an op-
timization of the nonsmooth quantity over an -ball of states,
where the ball is embedded in a sufficiently large Hilbert space.
We show that (31) holds.

Lemma 23: Let and , then

where is the embedding of into . Fur-
thermore, the infimum is attained for embeddings with

.
Proof: Let be a purification of on a Hilbert

space with . Furthermore, for any
, let be the embedding of into

with . We use Corollary 13 twice to upper
bound

A lower bound on follows when we require that
. Then, is

large enough to accommodate all purifications of states in .
Using Corollary 13 twice, we find

The infimum is, therefore, attained and it is sufficient to consider
embeddings with .
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