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1. Let X,Y, Z be binary random variables such that I(X;Y ) = 0 and I(X;Z) = 0.

(a) [ 12 points] Does it follow that I(X;Y,Z) = 0? If yes, prove it. If no, give a counterexample.

(b) [ 12 points] Does it follow that I(Y ;Z) = 0? If yes, prove it. If no, give a counterexample.

2. [1 point] Let A,B,C be random variables over alphabet Zn = {0, 1, . . . , n − 1} for some integer
n ≥ 2. Let us assume that

A = B + C mod n , (1)

H(B) = log(n) , (2)

I(A;B) = 0 . (3)

Show that I(A;C) = 0.

3. [1 point] Let A,B,C be random variables such that

I(A;B) = 0 , (4)

I(A;C|B) = I(A;B|C) , (5)

H(A|BC) = 0 . (6)

What is the relation between the quantities H(A) and H(C)?

4. [1 point] For each value of m = 0, 1, 2, . . ., what is the capacity of the channel consisting of a
BSC(ε) together with m symbols which are all transmitted perfectly? The transition matrix of
this channel is given by: 

1− ε ε 0 . . . 0
ε 1− ε 0 . . . 0
0 0
...

... 1m×m
0 0


where 1m×m is the m by m identity matrix with 1’s on the diagonal and 0’s everywhere else.

5. Given a random variable X with the following distribution

x 1 2 3 4 5 6

PX(x) 0.1 0.1 0.3 0.1 0.25 0.15

(a) [ 12 points] Draw a binary Huffman tree which is optimal in average codeword length, and give
the corresponding codewords.

(b) [ 12 points] Draw a ternary Huffman tree which is optimal in average codeword length, and give
the corresponding codewords.

(c) [ 12 points] Draw a 4-ary Huffman tree which is optimal in average codeword length, and give
the corresponding codewords.
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6. Both entropy and variance are often used as measures of the “inherent uncertainty” in a distribu-
tion, so it is interesting to find out how similar they are. Consider sample space X = {1, 2, . . . , n}
for some n ≥ 2.

(a) [ 14 points] What distribution Pmax
X on X maximizes the entropy, and what is the entropy

H(Pmax
X )?

(b) [ 14 points] What distributions on X minimize the entropy?

(c) [ 14 points] What distribution Qmax
X on X maximizes the variance, and what is the variance

Var[Qmax
X ] ?

(d) [ 14 points] What distributions on X minimize the variance?

(e) [ 12 points] Now let X be the positive natural numbers. Show that for every ε > 0, no matter
how small, and for every finite C, no matter how large, there exists a distribution PX on X
that has entropy smaller than ε and variance greater than C.

Hint: For some δ > 0 and n ≥ 2, consider the distribution PX(1) = 1− δ, PX(n) = δ.

7. In this exercise we consider yet another different entropy notion. Let X and Y be random variables
with joint probability distribution PXY . The collision probability and the collision entropy are
respectively defined as

Col(X) :=
∑
x

PX(x)2 and H2(X) := − log Col(X).

The conditional collision probability and the conditional collision entropy are respectively defined
as

Col(X|Y ) :=
∑
y

PY (y)Col(X|Y = y) and H2(X|Y ) := − log Col(X|Y ).

(a) [ 14 points] Prove that H2(X) ≤ H2(XY ).

(b) [ 14 points] Prove that H2(X|Y ) ≤ H2(X).

(c) [ 12 points] Prove that

0 ≤ Hmin(X) ≤ H2(X) ≤ H(X)

and

0 ≤ Hmin(X|Y ) ≤ H2(X|Y ) ≤ H(X|Y ) .

8. Zero-error vs non-zero-error Shannon capacity: Let PY |X be a discrete memoryless channel with
confusability graph G and capacity C = maxPX

I(X;Y ).

(a) [ 13 points] Show that log(α(G)) ≤ C.

(b) [ 13 points] Show that for any n ≥ 1, log(α(G�n)) ≤ maxPXn I(Xn;Y n), where the Y n are
obtained by using the channel n times, i.e. PY n|Xn(yn|xn) = Πn

i=1PY |X(yi|xi) for all xn, yn.

(c) [ 13 points] Conclude that the zero-error Shannon capacity of G is at most the channel capacity
C.
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