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Figure 4.10. The top 15 strings
are samples from X100, where
p1 = 0.1 and p0 = 0.9. The
bottom two are the most and
least probable strings in this
ensemble. The final column shows
the log-probabilities of the
random strings, which may be
compared with the entropy
H(X100) = 46.9 bits.

except for tails close to δ = 0 and 1. As long as we are allowed a tiny
probability of error δ, compression down to NH bits is possible. Even if we
are allowed a large probability of error, we still can compress only down to
NH bits. This is the source coding theorem.

Theorem 4.1 Shannon’s source coding theorem. Let X be an ensemble with
entropy H(X) = H bits. Given ϵ > 0 and 0 < δ < 1, there exists a positive
integer N0 such that for N > N0,

∣∣∣∣
1
N

Hδ(XN ) − H

∣∣∣∣ < ϵ. (4.21)

4.4 Typicality

Why does increasing N help? Let’s examine long strings from XN . Table 4.10
shows fifteen samples from XN for N = 100 and p1 = 0.1. The probability
of a string x that contains r 1s and N−r 0s is

P (x) = pr
1(1 − p1)N−r. (4.22)

The number of strings that contain r 1s is

n(r) =
(

N

r

)
. (4.23)

So the number of 1s, r, has a binomial distribution:

P (r) =
(

N

r

)
pr
1(1 − p1)N−r. (4.24)

These functions are shown in figure 4.11. The mean of r is Np1, and its
standard deviation is

√
Np1(1 − p1) (p.1). If N is 100 then

r ∼ Np1 ±
√

Np1(1 − p1) ≃ 10 ± 3. (4.25)
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shows fifteen samples from XN for N = 100 and p1 = 0.1. The probability
of a string x that contains r 1s and N−r 0s is

P (x) = pr
1(1 − p1)N−r. (4.22)

The number of strings that contain r 1s is

n(r) =
(

N

r

)
. (4.23)

So the number of 1s, r, has a binomial distribution:

P (r) =
(

N

r

)
pr
1(1 − p1)N−r. (4.24)

These functions are shown in figure 4.11. The mean of r is Np1, and its
standard deviation is

√
Np1(1 − p1) (p.1). If N is 100 then

r ∼ Np1 ±
√

Np1(1 − p1) ≃ 10 ± 3. (4.25)
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4.4: Typicality 79

Figure 4.11. Anatomy of the typical set T . For p1 = 0.1 and N = 100 and N = 1000, these graphs
show n(r), the number of strings containing r 1s; the probability P (x) of a single string
that contains r 1s; the same probability on a log scale; and the total probability n(r)P (x) of
all strings that contain r 1s. The number r is on the horizontal axis. The plot of log2 P (x)
also shows by a dotted line the mean value of log2 P (x) = −NH2(p1), which equals −46.9
when N = 100 and −469 when N = 1000. The typical set includes only the strings that
have log2 P (x) close to this value. The range marked T shows the set TNβ (as defined in
section 4.4) for N = 100 and β = 0.29 (left) and N = 1000, β = 0.09 (right).
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Figure 4.12. Schematic diagram
showing all strings in the ensemble
XN ranked by their probability,
and the typical set TNβ.

The ‘asymptotic equipartition’ principle is equivalent to:

Shannon’s source coding theorem (verbal statement). N i.i.d. ran-
dom variables each with entropy H(X) can be compressed into more
than NH(X) bits with negligible risk of information loss, as N → ∞;
conversely if they are compressed into fewer than NH(X) bits it is vir-
tually certain that information will be lost.

These two theorems are equivalent because we can define a compression algo-
rithm that gives a distinct name of length NH(X) bits to each x in the typical
set.

4.5 Proofs

This section may be skipped if found tough going.

The law of large numbers

Our proof of the source coding theorem uses the law of large numbers.

Mean and variance of a real random variable are E [u] = ū =
∑

u P (u)u
and var(u) = σ2

u = E [(u − ū)2] =
∑

u P (u)(u − ū)2.

Technical note: strictly I am assuming here that u is a function u(x)
of a sample x from a finite discrete ensemble X . Then the summations∑

u P (u)f(u) should be written
∑

x P (x)f(u(x)). This means that P (u)
is a finite sum of delta functions. This restriction guarantees that the
mean and variance of u do exist, which is not necessarily the case for
general P (u).

Chebyshev’s inequality 1. Let t be a non-negative real random variable,
and let α be a positive real number. Then

P (t ≥ α) ≤ t̄

α
. (4.30)

Proof: P (t ≥ α) =
∑

t≥α P (t). We multiply each term by t/α ≥ 1 and
obtain: P (t ≥ α) ≤

∑
t≥α P (t)t/α. We add the (non-negative) missing

terms and obtain: P (t ≥ α) ≤
∑

t P (t)t/α = t̄/α. ✷
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where the second inequality follows from (3.6). Hence

|A(n)
ϵ | ≤ 2n(H(X)+ϵ). (3.12)

Finally, for sufficiently large n, Pr{A(n)
ϵ } > 1 − ϵ, so that

1 − ϵ < Pr{A(n)
ϵ } (3.13)

≤
∑

x∈A
(n)
ϵ

2−n(H(X)−ϵ) (3.14)

= 2−n(H(X)−ϵ)|A(n)
ϵ |, (3.15)

where the second inequality follows from (3.6). Hence,

|A(n)
ϵ | ≥ (1 − ϵ)2n(H(X)−ϵ), (3.16)

which completes the proof of the properties of A(n)
ϵ . !

3.2 CONSEQUENCES OF THE AEP: DATA COMPRESSION

Let X1, X2, . . . , Xn be independent, identically distributed random vari-
ables drawn from the probability mass function p(x). We wish to find
short descriptions for such sequences of random variables. We divide all
sequences in Xn into two sets: the typical set A(n)

ϵ and its complement,
as shown in Figure 3.1.

Non-typical set

Typical set

∋
∋

A(n) : 2n(H +   ) elements

n:|    |n elements

FIGURE 3.1. Typical sets and source coding.

Typical set contains almost 

all the probability!
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Non-typical set

Typical set

Description: n log |     | + 2 bits

Description: n(H +   ) + 2 bits∋

FIGURE 3.2. Source code using the typical set.

We order all elements in each set according to some order (e.g., lexi-
cographic order). Then we can represent each sequence of A(n)

ϵ by giving
the index of the sequence in the set. Since there are ≤ 2n(H+ϵ) sequences
in A(n)

ϵ , the indexing requires no more than n(H + ϵ) + 1 bits. [The extra
bit may be necessary because n(H + ϵ) may not be an integer.] We pre-
fix all these sequences by a 0, giving a total length of ≤ n(H + ϵ) + 2
bits to represent each sequence in A(n)

ϵ (see Figure 3.2). Similarly, we can
index each sequence not in A(n)

ϵ by using not more than n log |X| + 1 bits.
Prefixing these indices by 1, we have a code for all the sequences in Xn.

Note the following features of the above coding scheme:

• The code is one-to-one and easily decodable. The initial bit acts as
a flag bit to indicate the length of the codeword that follows.

• We have used a brute-force enumeration of the atypical set A(n)
ϵ

c

without taking into account the fact that the number of elements in
A(n)

ϵ
c is less than the number of elements in Xn. Surprisingly, this is

good enough to yield an efficient description.
• The typical sequences have short descriptions of length ≈ nH .

We use the notation xn to denote a sequence x1, x2, . . . , xn. Let l(xn)
be the length of the codeword corresponding to xn. If n is sufficiently
large so that Pr{A(n)

ϵ } ≥ 1 − ϵ, the expected length of the codeword is

E(l(Xn)) =
∑

xn

p(xn)l(xn) (3.17)

How many are in this set 

useful for source coding 

(compression)!
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``High-probability set’’ vs. ``typical set’’

• Typical set: small number of outcomes that contain most of the probability

• Is it the smallest such set?
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where the second inequality follows from (3.6). Hence

|A(n)
ϵ | ≤ 2n(H(X)+ϵ). (3.12)

Finally, for sufficiently large n, Pr{A(n)
ϵ } > 1 − ϵ, so that

1 − ϵ < Pr{A(n)
ϵ } (3.13)

≤
∑

x∈A
(n)
ϵ

2−n(H(X)−ϵ) (3.14)

= 2−n(H(X)−ϵ)|A(n)
ϵ |, (3.15)

where the second inequality follows from (3.6). Hence,

|A(n)
ϵ | ≥ (1 − ϵ)2n(H(X)−ϵ), (3.16)

which completes the proof of the properties of A(n)
ϵ . !

3.2 CONSEQUENCES OF THE AEP: DATA COMPRESSION

Let X1, X2, . . . , Xn be independent, identically distributed random vari-
ables drawn from the probability mass function p(x). We wish to find
short descriptions for such sequences of random variables. We divide all
sequences in Xn into two sets: the typical set A(n)

ϵ and its complement,
as shown in Figure 3.1.

Non-typical set

Typical set

∋
∋

A(n) : 2n(H +   ) elements

n:|    |n elements

FIGURE 3.1. Typical sets and source coding.

Typical set contains almost 

all the probability!
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Non-typical set

Typical set

Description: n log |     | + 2 bits

Description: n(H +   ) + 2 bits∋

FIGURE 3.2. Source code using the typical set.

We order all elements in each set according to some order (e.g., lexi-
cographic order). Then we can represent each sequence of A(n)

ϵ by giving
the index of the sequence in the set. Since there are ≤ 2n(H+ϵ) sequences
in A(n)

ϵ , the indexing requires no more than n(H + ϵ) + 1 bits. [The extra
bit may be necessary because n(H + ϵ) may not be an integer.] We pre-
fix all these sequences by a 0, giving a total length of ≤ n(H + ϵ) + 2
bits to represent each sequence in A(n)

ϵ (see Figure 3.2). Similarly, we can
index each sequence not in A(n)

ϵ by using not more than n log |X| + 1 bits.
Prefixing these indices by 1, we have a code for all the sequences in Xn.

Note the following features of the above coding scheme:

• The code is one-to-one and easily decodable. The initial bit acts as
a flag bit to indicate the length of the codeword that follows.

• We have used a brute-force enumeration of the atypical set A(n)
ϵ

c

without taking into account the fact that the number of elements in
A(n)

ϵ
c is less than the number of elements in Xn. Surprisingly, this is

good enough to yield an efficient description.
• The typical sequences have short descriptions of length ≈ nH .

We use the notation xn to denote a sequence x1, x2, . . . , xn. Let l(xn)
be the length of the codeword corresponding to xn. If n is sufficiently
large so that Pr{A(n)

ϵ } ≥ 1 − ϵ, the expected length of the codeword is

E(l(Xn)) =
∑

xn

p(xn)l(xn) (3.17)

How many are in this set 

useful for source coding 

(compression)!
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By enumeration!
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Part 2: 1
N Hδ(XN ) > H − ϵ.

Imagine that someone claims this second part is not so – that, for any N ,
the smallest δ-sufficient subset Sδ is smaller than the above inequality would
allow. We can make use of our typical set to show that they must be mistaken.
Remember that we are free to set β to any value we choose. We will set
β = ϵ/2, so that our task is to prove that a subset S ′ having |S ′| ≤ 2N(H−2β)

and achieving P (x ∈ S ′) ≥ 1− δ cannot exist (for N greater than an N0 that
we will specify).

So, let us consider the probability of falling in this rival smaller subset S ′.
The probability of the subset S ′ is

TNβ S′

✫✪
✬✩

✫✪
✬✩

❈
❈❈❖

S′ ∩ TNβ

❅❅■ S′ ∩ TNβ
P (x ∈ S′) = P (x ∈ S ′∩TNβ) + P (x ∈ S ′∩TNβ), (4.38)

where TNβ denotes the complement {x ̸∈ TNβ}. The maximum value of
the first term is found if S ′ ∩ TNβ contains 2N(H−2β) outcomes all with the
maximum probability, 2−N(H−β). The maximum value the second term can
have is P (x ̸∈ TNβ). So:

P (x ∈ S′) ≤ 2N(H−2β) 2−N(H−β) +
σ2

β2N
= 2−Nβ +

σ2

β2N
. (4.39)

We can now set β = ϵ/2 and N0 such that P (x ∈ S ′) < 1 − δ, which shows
that S′ cannot satisfy the definition of a sufficient subset Sδ. Thus any subset
S′ with size |S ′| ≤ 2N(H−ϵ) has probability less than 1− δ, so by the definition
of Hδ, Hδ(XN ) > N(H − ϵ).

Thus for large enough N , the function 1
N Hδ(XN ) is essentially a constant

function of δ, for 0 < δ < 1, as illustrated in figures 4.9 and 4.13. ✷

4.6 Comments

The source coding theorem (p.78) has two parts, 1
N Hδ(XN ) < H + ϵ, and

1
N Hδ(XN ) > H − ϵ. Both results are interesting.

The first part tells us that even if the probability of error δ is extremely
small, the number of bits per symbol 1

N Hδ(XN ) needed to specify a long
N -symbol string x with vanishingly small error probability does not have to
exceed H + ϵ bits. We need to have only a tiny tolerance for error, and the
number of bits required drops significantly from H0(X) to (H + ϵ).

What happens if we are yet more tolerant to compression errors? Part 2
tells us that even if δ is very close to 1, so that errors are made most of the
time, the average number of bits per symbol needed to specify x must still be
at least H − ϵ bits. These two extremes tell us that regardless of our specific
allowance for error, the number of bits per symbol needed to specify x is H
bits; no more and no less.

Caveat regarding ‘asymptotic equipartition’

I put the words ‘asymptotic equipartition’ in quotes because it is important
not to think that the elements of the typical set TNβ really do have roughly
the same probability as each other. They are similar in probability only in
the sense that their values of log2

1
P (x) are within 2Nβ of each other. Now, as

β is decreased, how does N have to increase, if we are to keep our bound on
the mass of the typical set, P (x ∈ TNβ) ≥ 1 − σ2

β2N , constant? N must grow
as 1/β2, so, if we write β in terms of N as α/

√
N , for some constant α, then
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