Data Compression / Source Coding

How much "information" is contained in X?

- compress it into minimal number of L bits per source symbol
- decompress reliably
- \Rightarrow average information content is L bits per symbol

Shannon's source-coding theorem: $L \approx H(X)$

Data Compression / Source Coding

How much "information" is contained in X?

- compress it into minimal number of L bits per source symbol
- decompress reliably
- \Rightarrow average information content is L bits per symbol

Shannon's source-coding theorem: $L \approx H(X)$

Two Types of Compression

I. Lossless compression: (e.g. zip)

- maps all source strings to different encodings
- it shortens some, but necessarily makes others longer
- design it such that the average length is shorter

Two Types of Compression

Shannon's source-coding theorem: $L \approx H(X)$

I. Lossless compression: (e.g. zip)

- maps all source strings to different encodings
- it shortens some, but necessarily makes others longer
- design it such that the average length is shorter
- 2. Lossy compression: (e.g. image compression)
 - map some source strings to same encoding (recovery fails sometimes)
 - If error can be made arbitrarily small, it might be useful in practice

$\log_2(P(\mathbf{x}))$	
1	-50.1
1	-37.3
111111111.111	-65.9
1.11	-56.4
11	-53.2
	-43.7
1	-46.8
1111	-56.4
111111	-37.3
1	-43.7
111	-56.4
	-37.3
.111.1.1.11	-56.4
111111.1.1.1.1.1.11	-59.5
	-46.8
	-15.2
111111111111111111111111111111111111111	-332.1

Figure 4.10. The top 15 strings 3 are samples from X^{100} , where 9 $p_1 = 0.1$ and $p_0 = 0.9$. The .4 bottom two are the most and 2least probable strings in this 7 ensemble. The final column shows 8 the log-probabilities of the .4 random strings, which may be .3 compared with the entropy $H(X^{100}) = 46.9$ bits. 7

r

r

at least $H - \epsilon$ bits. These two extremes tell us that regardless of our specific allowance for error, the number of bits per symbol needed to specify **x** is H bits; no more and no less.