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® decompress reliably
= average information content is L bits per symbol

Shannon’s source-coding theorem: L = H(X)
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|. Lossless compression: (e.g. zip)
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2. Lossy compression: (e.g. image compression)

® map some source strings to same encoding (recovery fails
sometimes)

® |f error can be made arbitrarily small, it might be useful in
practice
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Figure 4.10. The top 15 strings
are samples from X 1% where

p1 = 0.1 and pg = 0.9. The
bottom two are the most and
least probable strings in this
ensemble. The final column shows
the log-probabilities of the
random strings, which may be

compared with the entropy
H(X199) = 46.9 bits.
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Figure 4.12. Schematic diagram

showing all strings in the ensemble
X ranked by their probability,

Shannon’s source coding theorem (verbal statement). N ii.d. ran-  and the typical set Tng.
dom variables each with entropy H(X) can be compressed into more
than N H(X) bits with negligible risk of information loss, as N — oo;
conversely if they are compressed into fewer than N H (X)) bits it is vir-
tually certain that information will be lost.

The ‘asymptotic equipartition’ principle is equivalent to:
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at least H — € bits. These two extremes tell us that regardless of our specific
allowance for error, the number of bits per symbol needed to specity x is H
bits; no more and no less.

Book by David MacKay


http://www.inference.phy.cam.ac.uk/mackay/itila/book.html

