Discrete Channels

Def: A discrete channel is denoted by $(\mathcal{X}, P_{Y|X}, \mathcal{Y})$ where \mathcal{X} is a finite input set, \mathcal{Y} is a finite output set and $P_{Y|X}$ is a conditional probability distribution, d.h.

$$\forall x \in \mathcal{X} \quad \forall y \in \mathcal{Y} : P_{Y|X}(y|x) \ge 0$$

$$\forall x \in \mathcal{X} : \sum_{y} P_{Y|X}(y|x) = 1$$

 $P_{Y|X}(y|x)$ = the probability that the channel outputs y when given x as input

Noisy-Channel Coding

Def: A **(M,n)-code** for the channel $(\mathcal{X}, P_{Y|X}, \mathcal{Y})$ consists of

- I. message set: $[M] = \{1, 2, \dots, M\}$
- 2. encoding function: $e:[M] \to \mathcal{X}^n$ codebook: $\{e(1), e(2), \dots, e(M)\}$
- 3. deterministic decoding function assigning a guess to each possible received vector $d:\mathcal{Y}^n \to [M]$

The rate of a (M,n)-code denotes the transmitted bits per channel use $R := \frac{\log M}{n}$

Rate and Error

The rate of a (M,n)-code denotes the transmitted bits per channel use $R := \frac{\log M}{n}$

$$R := \frac{\log M}{n}$$

probability of error when sending $w \in [M]$

$$\lambda_w := \Pr[\tilde{W} = d(Y^n) \neq w \mid X^n = e(w)]$$

maximal probability of error: $\lambda^{(n)} := \max_{w \in [M]} \lambda_w$

average probability of error: $p_e^{(n)} := \frac{1}{M} \sum_{i=1}^{M} \lambda_w$

Encoding with Feedback

encoding with feedback:

 X_{i+1} can depend on w, $X_1,...,X_i$ and $Y_1,...,Y_i$

The rate of a (M,n)-code denotes the transmitted bits per channel use $R := \frac{\log M}{2}$

$$R := \frac{\log M}{n}$$

probability of error when sending $w \in [M]$

$$\lambda_w := \Pr[\tilde{W} = d(Y^n) \neq w \mid X^n = e(w)]$$

maximal probability of error: $\lambda^{(n)} := \max_{x \in \mathcal{X}} \lambda_w$