Difficulty of Sentence Comprehension

How information theory can help us understand which sentences are difficult to comprehend.

Topic of the Talk & Preliminary Remarks

- We will be discussing an information theoretic approach to predicting the difficulty of sentence comprehension.
- We will clarify a proposal by Roger Levy that we can predict the difficulty of a sentence by looking at the surprisal of a word in a sentence.
- No background knowledge in lunguistics is required. (I am also no linguist).
- Please feel free to interrupt me at any time.

Information Theory & Language

- Already Shannon and Weaver did research on langauge in information theoretic terms.
- Shannon and Weaver wanted to know what the redundancy of the English Language was.
- Redundancy is the fraction of the message which is determined not by free choice but by statistical rules.
- Shannon and Weaver wanted to know how many redundancy you need for satisfactory crossword puzzles.

Difficulty of Sentence Comprehension

- This talk will focus on the difficulty of comprehending a sentence.
- We are looking for an answer to the question: "What makes a sentence difficult to read?"
- We measure difficulty by reading time.
- Why do we want to know which sentences are difficult?
- So what properties of sentences or words make sentences difficult? Some intuitive answers come to mind very quickly.

Which sentences are more difficult to comprehend?

• Is this determined by length?

- 1) The player that the coach met at 8 o'clock bought the house.
- 2) The player that the coach met near the gym by the river at 8 o'clock bought the house.

• Is this determined by grammatical structure?

- 1) The reporter who attacked the senator admitted the error.
- 2) The reporter who the senator attacked admitted the error.

Is this determined by presence of ambiguity?

- 1) The daughter of the colonel who shot herself on the balcony had been very depressed.
- 2) The son of the colonel who shot himself on the balcony had been very depressed.

• Is this determined by the frequency of word occurrences?

1) We bought a coffee at the coffee shop on the corner.

2) We bought a soya bean at the flag on the Kullback–Leibler-distance.

Sentence Comprehension

- Evidence suggest sentence comprehension is incremental, i.e. on line.
- Any formalization of sentence comprehension should accommodate incremental processing
- Natural to describe on line comprehension of sentence by way of probability distributions of possible continuations of a sentence based on the words we already read in the sentence.
- Before this is possible we need another definition.

Definition: Complete Structures

A language contains an infinite set of complete structures τ such that a fully disambiguated utterance corresponds to exactly one structure.

Example: The girl saw the boy with a telescope

Now this sentence is ambiguous. It can be that the girl saw some boy by looking through a telescope, or that the girl saw a boy carrying a telescope. This means that the sentence corresponds to 2 complete structures. Most sentences correspond to just 1 structure.

Conclusion: complete structures and sentences are different things!

Definition: Comprehending a Sentence

An agent comprehends a partial input sequence $w_1, ..., w_i$ (the first i words of a sentence) by constructing a probability distribution P_{Ti} over the possible structures T based on $w_1, ..., w_i$, where T in \mathcal{T} . The probability distribution P_T is updated after each word read.

The probability distributions forces an allocation or resources: i.e. it determines how much thinking power should pursuit which structure T.

<u>Intuitively</u>: while reading a sentence, after each word we read, we update a probability distribution over possible complete structures that will correspond with the sentence as a whole.

Definition Comprehension Difficulty

The difficulty of the incremental comprehension of a sentence is the amount of relative entropy between P_{Tk} and P_{Tk+1} defined as:

$$D(P_{T_{k+1}} || P_{T_k}) = \sum_{T \in \mathcal{T}_{k+1}} P_{T_{k+1}}(T) \log \frac{P_{T_{k+1}}(T)}{P_{T_k}(T)}$$

Note that this is just the normal definition of relative entropy (or Kullback-Leibler-divergence or Kullback-Leibler-distance) also found in *Cover & Thomas (pp. 19-20)*. Remember that the relative entropy is always non-negative and it is zero iff two probability distributions are equal (and becomes greater if the difference between the two probability distributions is greater).

Where is surprisal?

• It turns out that our definition of sentence comprehension difficulty in terms of relative entropy is equal to surprisal. That is:

the predicted difficulty of the i^{th} word, w_i , is precisely equal to the surprisal of w_i given w_1, \dots, w_{i-1} .

Definition Comprehension Difficulty

The difficulty of the incremental comprehension of a sentence is the surprisal value of the i^{th} word given words w_1, \dots, w_{i-1} , defined as:

$$-\log P_{T_{i-1}}(w_i|w_1,...,w_{i-1})$$

Proof of Equivalence Suprisal and Relative Entropy

This last claim is not trivial. So we will prove that the surprisal of the i^{th} word is equal to the relative entropy between the probability distributions of the i^{th} and $i-1^{th}$ word. This means we will prove the following statement:

$$\sum_{T \in \mathcal{T}_{k+1}} P_{T_{k+1}}(T) \log \frac{P_{T_{k+1}}(T)}{P_{T_k}(T)} = -\log P_{T_k}(w_{k+1}|w_1, \dots, w_k)$$

Implications of Equivalence Proved

- We can now explain comprehension difficulty in terms of surprisal or relative entropy, this is useful because:
 - → we can use the framework of relative entropy for resource allocation;
 - → We can use the surprisal framework to describe why an agent takes more time to read a certain word or sentence
- Surprisal is easier to calculate than relative entropy, hence computational benefits.

- Consider the following three sentences:
 - 1) The player that the coach met at 8 o'clock₁ bought the house.
 - 2) The player that the coach met by the river₁ at 8 o'clock₂ <u>bought</u> the house.
 - 3) The player that the coach met near the gym_1 by the river₂ at 8 o'clock₃ <u>bought</u> the house

- A theory concentrating on grammatical structure would predict that three sentences are ordered by their difficulty, s.t.:
 - first one easiest;
 - last one hardest.
- What would surprisal predict?

Table 3 Surprisal and average reading times at matrix verb for (6)

	Number of PPs intervening between embedded and matrix verb		
	1 PP	2 PPs	3 PPs
DLT prediction	Easier	Harder	Hardest
Surprisal	13.87	13.54	13.40
Mean reading time (ms)	510 ± 34	410 ± 21	394 ± 16

- Consider the following three sentences:
 - 1) The **daughter** of the colonel who shot **herself** on the balcony had been very depressed.
 - 2) The daughter of the **colonel** who shot **himself** on the balcony had been very depressed.
 - The son of the colonel who shot himself on the balcony had been very depressed.

- In most processing theories local structural ambiguity leads to higher comprehension difficulty.
- Structural ambiguity plays only a role in the determination of processing difficulty for the suprisal theory, if the ambiguity effects the conditional word probabilities.
- So what are the reading times for the three sentences?

Conclusions from Experiments

- There is a lot more evidence in the paper by Roger Levy. There are some especially nice examples and results in German.
- Surprisal seems best in predicting reading times, and thus the best framework for describing sentence comprehension difficulty.

Take Home Message

- If we want to predict the reading difficulty of a sentence, i.e. the reading time, we should just look at the cumulative surprisal of a sentence
- The surprisal theory is language independent. It is not important which language we are studying, only the underlying probabilities of a language are important.

References:

- Levy, Roger "Expectation-Based Syntactic Comprehension" Cognition, 2008, Vol.106(3), pp.1126-1177.
- Shannon, Claude "The Mathematical Theory of Communication" The Mathematical Theory of Communication, 1949, University of Illinois Press, pp. 29-125.
- Weaver, Warren "Some Recent Contributions to the Mathematical Theory of Communication" - The Mathematical Theory of Communication, 1949, University of Illinois Press, pp. 1-29.

Thank you!