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The problem of the ’priors’

I Consider a computer program looping and printing a number at each
iteration. Imagine you pause at a given time the program execution and
displayed is the sequence d := 1, 3, 5, 7. What number will the
computer display in the next iteration?and in the n-th iteration?

I An hypothesis for the data d is h1: dn := 2n − 1

I Another hypothesis is h2: dn := 2n − 1 + (n − 1)(n − 2)(n − 3)(n − 4)

I Which one of h1 and h2 ”seems” more probable given the data?.

I Solution: Pick the hypothesis with highest posterior probability

I But how to take a decision with no information other than
∑
hi

hi=1?
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The problem of the ’priors’

I Multiple heuristics proposed over the centuries.

I ”If more than one theory is consistent with
the data, keep them all”.- Epicurus of Samos
(ca. 342 - 270 BC)

I ”Among competing hypotheses, the simplest
one should be selected”.- William of Ockham
(ca. 1287 – 1347)

I By Occam’s Razor, the ”simplest” hypothesis is most probable.But how
to define ”simple”?
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Minimum Description Length

I Consider an encoding of d as a sequence of computer instructions
generating d , C=i1 i2 ...in.

I We may call C an ”hypothesis” for d .
I Some C might be shorter than the data, so compress the data.

I Now consider the following principle: ”the best hypothesis for a given
set of data is the one that leads to the best compression of the data”

I Named Minimum description length principle (due to Jorma Rissanen).

I But this is an instance of Occam’s Razor, in which we define ”simplest”
as ”shortest”.
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Minimum Description Length

I Now we can use it for the initial example:

Recall: x:= 1, 3, 5, 7
h1: xn := 2n − 1, h2: xn := 2n − 1 + (n − 1)(n − 2)(n − 3)(n − 4).

want to pick ĥ = max
h1,h2
{
PD|H(d |h1)PH(h1)

PD(d)
,
PD|H(d |h2)PH(h2)

PD(d)
}

since p2 is longer than p1 (encodes 9 more arithmetic operations) we
have we have l(p1) < l(p2) and therefore P(h1) > P(h2).

Both h1 and h2 are equally consistent with the data, so
PH(d |h1) = PH(d |h2).

Since PD(d) is constant we prefer h1.
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Kolmogorov Complexity

I The length of the shortest code for d is the Kolmogorov Complexity of d

I But the Kolmogorox complexity of any data depends on the language of
the program that generates it, so cannot be ”universal”...
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Kolmogorov Complexity

I Good news is that the error we can commit is bounded by the length of
the data itself (Invariance Theorem).

I Proof:Consider Kp(o) = min
p:U(p)=o

{l(p)} and Kp′(o) = min
p′:U(p′)=o

{l(p′)}

for arbitrary p, p′ with |Kp(o)− Kp′(o)| = d ≥ 1

d ≥ 1⇒ |Kp(o)

m
−

Kp′(o)

m
| < 1 for m=max(Kp(o),Kp′(o)).

By definition Kp(o),Kp′(o)) < l(o) so that m<l(o)
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Solomonoff’s inference and Machine Learning

I Kolmogorov Complexity is central in Ray
Solomonoff’s Inductive Inference Theory.

I The theory formalizes the sequence prediction procedure we did at the
beginning of the talk.

I But sequence prediction is quite a small subset of real-world prediction
problems...

I Nevertheless, some Machine Learning problems can be reduced to it.
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Solomonoff’s inference and Machine Learning

I Discrete regression is a good example:
I Training dataset (feature,value): (x1, f (x1)), (x2, f (x2)), ....(xn, f (xn)).
I Goal: Find f
I Equivalent to find f (i) = f (xn+1) given x1f (x1)x2f (x2)xnf (xn)xn+1

I Recall first example: Find next in 1,1,2,3,3,5,4,7,5

I But way to prefer such weird ”representation”?
I Suppose some scattered outliers in a dataset.
I Traditional ML techniques typically risk fitting the regression function too

much (high P(h—d)) with complex models (low P(h) as estimated by
Occam’s Razor).

I In contrast, MDL principle tends to gain a balance with P(d |h) ≈ P(h),
therefore maximizing P(d |h)P(h).
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