
Kolmogorov Complexity, revisited
On Minimum Description Length, Inductive Inference

and Machine Learning

Jesus Rodriguez Perez

Universiteit van Amsterdam

December 16, 2014

Outline

The problem of the ’priors’

Minimum Description Length

Kolmogorov Complexity

Solomonoff’s Inference and Machine Learning

Conclusions

The problem of the ’priors’

I Consider a computer program looping and printing a number at each
iteration. Imagine you pause at a given time the program execution and
displayed is the sequence d := 1, 3, 5, 7. What number will the
computer display in the next iteration?and in the n-th iteration?

I An hypothesis for the data d is h1: dn := 2n − 1

I Another hypothesis is h2: dn := 2n − 1 + (n − 1)(n − 2)(n − 3)(n − 4)

I Which one of h1 and h2 ”seems” more probable given the data?.

I Solution: Pick the hypothesis with highest posterior probability

I But how to take a decision with no information other than
∑
hi

hi=1?

The problem of the ’priors’

I Consider a computer program looping and printing a number at each
iteration. Imagine you pause at a given time the program execution and
displayed is the sequence d := 1, 3, 5, 7.

What number will the
computer display in the next iteration?and in the n-th iteration?

I An hypothesis for the data d is h1: dn := 2n − 1

I Another hypothesis is h2: dn := 2n − 1 + (n − 1)(n − 2)(n − 3)(n − 4)

I Which one of h1 and h2 ”seems” more probable given the data?.

I Solution: Pick the hypothesis with highest posterior probability

I But how to take a decision with no information other than
∑
hi

hi=1?

The problem of the ’priors’

I Consider a computer program looping and printing a number at each
iteration. Imagine you pause at a given time the program execution and
displayed is the sequence d := 1, 3, 5, 7. What number will the
computer display in the next iteration?

and in the n-th iteration?

I An hypothesis for the data d is h1: dn := 2n − 1

I Another hypothesis is h2: dn := 2n − 1 + (n − 1)(n − 2)(n − 3)(n − 4)

I Which one of h1 and h2 ”seems” more probable given the data?.

I Solution: Pick the hypothesis with highest posterior probability

I But how to take a decision with no information other than
∑
hi

hi=1?

The problem of the ’priors’

I Consider a computer program looping and printing a number at each
iteration. Imagine you pause at a given time the program execution and
displayed is the sequence d := 1, 3, 5, 7. What number will the
computer display in the next iteration?and in the n-th iteration?

I An hypothesis for the data d is h1: dn := 2n − 1

I Another hypothesis is h2: dn := 2n − 1 + (n − 1)(n − 2)(n − 3)(n − 4)

I Which one of h1 and h2 ”seems” more probable given the data?.

I Solution: Pick the hypothesis with highest posterior probability

I But how to take a decision with no information other than
∑
hi

hi=1?

The problem of the ’priors’

I Consider a computer program looping and printing a number at each
iteration. Imagine you pause at a given time the program execution and
displayed is the sequence d := 1, 3, 5, 7. What number will the
computer display in the next iteration?and in the n-th iteration?

I An hypothesis for the data d is h1: dn := 2n − 1

I Another hypothesis is h2: dn := 2n − 1 + (n − 1)(n − 2)(n − 3)(n − 4)

I Which one of h1 and h2 ”seems” more probable given the data?.

I Solution: Pick the hypothesis with highest posterior probability

I But how to take a decision with no information other than
∑
hi

hi=1?

The problem of the ’priors’

I Consider a computer program looping and printing a number at each
iteration. Imagine you pause at a given time the program execution and
displayed is the sequence d := 1, 3, 5, 7. What number will the
computer display in the next iteration?and in the n-th iteration?

I An hypothesis for the data d is h1: dn := 2n − 1

I Another hypothesis is h2: dn := 2n − 1 + (n − 1)(n − 2)(n − 3)(n − 4)

I Which one of h1 and h2 ”seems” more probable given the data?.

I Solution: Pick the hypothesis with highest posterior probability

I But how to take a decision with no information other than
∑
hi

hi=1?

The problem of the ’priors’

I Consider a computer program looping and printing a number at each
iteration. Imagine you pause at a given time the program execution and
displayed is the sequence d := 1, 3, 5, 7. What number will the
computer display in the next iteration?and in the n-th iteration?

I An hypothesis for the data d is h1: dn := 2n − 1

I Another hypothesis is h2: dn := 2n − 1 + (n − 1)(n − 2)(n − 3)(n − 4)

I Which one of h1 and h2 ”seems” more probable given the data?.

I Solution: Pick the hypothesis with highest posterior probability

I But how to take a decision with no information other than
∑
hi

hi=1?

The problem of the ’priors’

I Consider a computer program looping and printing a number at each
iteration. Imagine you pause at a given time the program execution and
displayed is the sequence d := 1, 3, 5, 7. What number will the
computer display in the next iteration?and in the n-th iteration?

I An hypothesis for the data d is h1: dn := 2n − 1

I Another hypothesis is h2: dn := 2n − 1 + (n − 1)(n − 2)(n − 3)(n − 4)

I Which one of h1 and h2 ”seems” more probable given the data?.

I Solution: Pick the hypothesis with highest posterior probability

I But how to take a decision with no information other than
∑
hi

hi=1?

The problem of the ’priors’

I Consider a computer program looping and printing a number at each
iteration. Imagine you pause at a given time the program execution and
displayed is the sequence d := 1, 3, 5, 7. What number will the
computer display in the next iteration?and in the n-th iteration?

I An hypothesis for the data d is h1: dn := 2n − 1

I Another hypothesis is h2: dn := 2n − 1 + (n − 1)(n − 2)(n − 3)(n − 4)

I Which one of h1 and h2 ”seems” more probable given the data?.

I Solution: Pick the hypothesis with highest posterior probability

I But how to take a decision with no information other than
∑
hi

hi=1?

The problem of the ’priors’

I Multiple heuristics proposed over the centuries.

I ”If more than one theory is consistent with
the data, keep them all”.- Epicurus of Samos
(ca. 342 - 270 BC)

I ”Among competing hypotheses, the simplest
one should be selected”.- William of Ockham
(ca. 1287 – 1347)

I By Occam’s Razor, the ”simplest” hypothesis is most probable.But how
to define ”simple”?

The problem of the ’priors’

I Multiple heuristics proposed over the centuries.

I ”If more than one theory is consistent with
the data, keep them all”.- Epicurus of Samos
(ca. 342 - 270 BC)

I ”Among competing hypotheses, the simplest
one should be selected”.- William of Ockham
(ca. 1287 – 1347)

I By Occam’s Razor, the ”simplest” hypothesis is most probable.But how
to define ”simple”?

The problem of the ’priors’

I Multiple heuristics proposed over the centuries.

I ”If more than one theory is consistent with
the data, keep them all”.- Epicurus of Samos
(ca. 342 - 270 BC)

I ”Among competing hypotheses, the simplest
one should be selected”.- William of Ockham
(ca. 1287 – 1347)

I By Occam’s Razor, the ”simplest” hypothesis is most probable.But how
to define ”simple”?

The problem of the ’priors’

I Multiple heuristics proposed over the centuries.

I ”If more than one theory is consistent with
the data, keep them all”.- Epicurus of Samos
(ca. 342 - 270 BC)

I ”Among competing hypotheses, the simplest
one should be selected”.- William of Ockham
(ca. 1287 – 1347)

I By Occam’s Razor, the ”simplest” hypothesis is most probable.But how
to define ”simple”?

The problem of the ’priors’

I Multiple heuristics proposed over the centuries.

I ”If more than one theory is consistent with
the data, keep them all”.- Epicurus of Samos
(ca. 342 - 270 BC)

I ”Among competing hypotheses, the simplest
one should be selected”.- William of Ockham
(ca. 1287 – 1347)

I By Occam’s Razor, the ”simplest” hypothesis is most probable.

But how
to define ”simple”?

The problem of the ’priors’

I Multiple heuristics proposed over the centuries.

I ”If more than one theory is consistent with
the data, keep them all”.- Epicurus of Samos
(ca. 342 - 270 BC)

I ”Among competing hypotheses, the simplest
one should be selected”.- William of Ockham
(ca. 1287 – 1347)

I By Occam’s Razor, the ”simplest” hypothesis is most probable.But how
to define ”simple”?

Minimum Description Length

I Consider an encoding of d as a sequence of computer instructions
generating d , C=i1 i2 ...in.

I We may call C an ”hypothesis” for d .
I Some C might be shorter than the data, so compress the data.

I Now consider the following principle: ”the best hypothesis for a given
set of data is the one that leads to the best compression of the data”

I Named Minimum description length principle (due to Jorma Rissanen).

I But this is an instance of Occam’s Razor, in which we define ”simplest”
as ”shortest”.

Minimum Description Length

I Consider an encoding of d as a sequence of computer instructions
generating d , C=i1 i2 ...in.

I We may call C an ”hypothesis” for d .
I Some C might be shorter than the data, so compress the data.

I Now consider the following principle: ”the best hypothesis for a given
set of data is the one that leads to the best compression of the data”

I Named Minimum description length principle (due to Jorma Rissanen).

I But this is an instance of Occam’s Razor, in which we define ”simplest”
as ”shortest”.

Minimum Description Length

I Consider an encoding of d as a sequence of computer instructions
generating d , C=i1 i2 ...in.

I We may call C an ”hypothesis” for d .

I Some C might be shorter than the data, so compress the data.

I Now consider the following principle: ”the best hypothesis for a given
set of data is the one that leads to the best compression of the data”

I Named Minimum description length principle (due to Jorma Rissanen).

I But this is an instance of Occam’s Razor, in which we define ”simplest”
as ”shortest”.

Minimum Description Length

I Consider an encoding of d as a sequence of computer instructions
generating d , C=i1 i2 ...in.

I We may call C an ”hypothesis” for d .
I Some C might be shorter than the data, so compress the data.

I Now consider the following principle: ”the best hypothesis for a given
set of data is the one that leads to the best compression of the data”

I Named Minimum description length principle (due to Jorma Rissanen).

I But this is an instance of Occam’s Razor, in which we define ”simplest”
as ”shortest”.

Minimum Description Length

I Consider an encoding of d as a sequence of computer instructions
generating d , C=i1 i2 ...in.

I We may call C an ”hypothesis” for d .
I Some C might be shorter than the data, so compress the data.

I Now consider the following principle: ”the best hypothesis for a given
set of data is the one that leads to the best compression of the data”

I Named Minimum description length principle (due to Jorma Rissanen).

I But this is an instance of Occam’s Razor, in which we define ”simplest”
as ”shortest”.

Minimum Description Length

I Consider an encoding of d as a sequence of computer instructions
generating d , C=i1 i2 ...in.

I We may call C an ”hypothesis” for d .
I Some C might be shorter than the data, so compress the data.

I Now consider the following principle: ”the best hypothesis for a given
set of data is the one that leads to the best compression of the data”

I Named Minimum description length principle (due to Jorma Rissanen).

I But this is an instance of Occam’s Razor, in which we define ”simplest”
as ”shortest”.

Minimum Description Length

I Consider an encoding of d as a sequence of computer instructions
generating d , C=i1 i2 ...in.

I We may call C an ”hypothesis” for d .
I Some C might be shorter than the data, so compress the data.

I Now consider the following principle: ”the best hypothesis for a given
set of data is the one that leads to the best compression of the data”

I Named Minimum description length principle (due to Jorma Rissanen).

I But this is an instance of Occam’s Razor, in which we define ”simplest”
as ”shortest”.

Minimum Description Length

I Now we can use it for the initial example:

Recall: x:= 1, 3, 5, 7
h1: xn := 2n − 1, h2: xn := 2n − 1 + (n − 1)(n − 2)(n − 3)(n − 4).

want to pick ĥ = max
h1,h2
{
PD|H(d |h1)PH(h1)

PD(d)
,
PD|H(d |h2)PH(h2)

PD(d)
}

since p2 is longer than p1 (encodes 9 more arithmetic operations) we
have we have l(p1) < l(p2) and therefore P(h1) > P(h2).

Both h1 and h2 are equally consistent with the data, so
PH(d |h1) = PH(d |h2).

Since PD(d) is constant we prefer h1.

Minimum Description Length

I Now we can use it for the initial example:

Recall: x:= 1, 3, 5, 7
h1: xn := 2n − 1, h2: xn := 2n − 1 + (n − 1)(n − 2)(n − 3)(n − 4).

want to pick ĥ = max
h1,h2
{
PD|H(d |h1)PH(h1)

PD(d)
,
PD|H(d |h2)PH(h2)

PD(d)
}

since p2 is longer than p1 (encodes 9 more arithmetic operations) we
have we have l(p1) < l(p2) and therefore P(h1) > P(h2).

Both h1 and h2 are equally consistent with the data, so
PH(d |h1) = PH(d |h2).

Since PD(d) is constant we prefer h1.

Minimum Description Length

I Now we can use it for the initial example:

Recall: x:= 1, 3, 5, 7
h1: xn := 2n − 1, h2: xn := 2n − 1 + (n − 1)(n − 2)(n − 3)(n − 4).

want to pick ĥ = max
h1,h2
{
PD|H(d |h1)PH(h1)

PD(d)
,
PD|H(d |h2)PH(h2)

PD(d)
}

since p2 is longer than p1 (encodes 9 more arithmetic operations) we
have we have l(p1) < l(p2) and therefore P(h1) > P(h2).

Both h1 and h2 are equally consistent with the data, so
PH(d |h1) = PH(d |h2).

Since PD(d) is constant we prefer h1.

Minimum Description Length

I Now we can use it for the initial example:

Recall: x:= 1, 3, 5, 7
h1: xn := 2n − 1, h2: xn := 2n − 1 + (n − 1)(n − 2)(n − 3)(n − 4).

want to pick ĥ = max
h1,h2
{
PD|H(d |h1)PH(h1)

PD(d)
,
PD|H(d |h2)PH(h2)

PD(d)
}

since p2 is longer than p1 (encodes 9 more arithmetic operations) we
have we have l(p1) < l(p2) and therefore P(h1) > P(h2).

Both h1 and h2 are equally consistent with the data, so
PH(d |h1) = PH(d |h2).

Since PD(d) is constant we prefer h1.

Minimum Description Length

I Now we can use it for the initial example:

Recall: x:= 1, 3, 5, 7
h1: xn := 2n − 1, h2: xn := 2n − 1 + (n − 1)(n − 2)(n − 3)(n − 4).

want to pick ĥ = max
h1,h2
{
PD|H(d |h1)PH(h1)

PD(d)
,
PD|H(d |h2)PH(h2)

PD(d)
}

since p2 is longer than p1 (encodes 9 more arithmetic operations) we
have we have l(p1) < l(p2) and therefore P(h1) > P(h2).

Both h1 and h2 are equally consistent with the data, so
PH(d |h1) = PH(d |h2).

Since PD(d) is constant we prefer h1.

Minimum Description Length

I Now we can use it for the initial example:

Recall: x:= 1, 3, 5, 7
h1: xn := 2n − 1, h2: xn := 2n − 1 + (n − 1)(n − 2)(n − 3)(n − 4).

want to pick ĥ = max
h1,h2
{
PD|H(d |h1)PH(h1)

PD(d)
,
PD|H(d |h2)PH(h2)

PD(d)
}

since p2 is longer than p1 (encodes 9 more arithmetic operations) we
have we have l(p1) < l(p2) and therefore P(h1) > P(h2).

Both h1 and h2 are equally consistent with the data, so
PH(d |h1) = PH(d |h2).

Since PD(d) is constant we prefer h1.

Minimum Description Length

I Now we can use it for the initial example:

Recall: x:= 1, 3, 5, 7
h1: xn := 2n − 1, h2: xn := 2n − 1 + (n − 1)(n − 2)(n − 3)(n − 4).

want to pick ĥ = max
h1,h2
{
PD|H(d |h1)PH(h1)

PD(d)
,
PD|H(d |h2)PH(h2)

PD(d)
}

since p2 is longer than p1 (encodes 9 more arithmetic operations) we
have we have l(p1) < l(p2) and therefore P(h1) > P(h2).

Both h1 and h2 are equally consistent with the data, so
PH(d |h1) = PH(d |h2).

Since PD(d) is constant we prefer h1.

Kolmogorov Complexity

I The length of the shortest code for d is the Kolmogorov Complexity of d

I But the Kolmogorox complexity of any data depends on the language of
the program that generates it, so cannot be ”universal”...

Kolmogorov Complexity

I The length of the shortest code for d is the Kolmogorov Complexity of d

I But the Kolmogorox complexity of any data depends on the language of
the program that generates it, so cannot be ”universal”...

Kolmogorov Complexity

I The length of the shortest code for d is the Kolmogorov Complexity of d

I But the Kolmogorox complexity of any data depends on the language of
the program that generates it, so cannot be ”universal”...

Kolmogorov Complexity

I The length of the shortest code for d is the Kolmogorov Complexity of d

I But the Kolmogorox complexity of any data depends on the language of
the program that generates it, so cannot be ”universal”...

Kolmogorov Complexity

I Good news is that the error we can commit is bounded by the length of
the data itself (Invariance Theorem).

I Proof:Consider Kp(o) = min
p:U(p)=o

{l(p)} and Kp′(o) = min
p′:U(p′)=o

{l(p′)}

for arbitrary p, p′ with |Kp(o)− Kp′(o)| = d ≥ 1

d ≥ 1⇒ |Kp(o)

m
−

Kp′(o)

m
| < 1 for m=max(Kp(o),Kp′(o)).

By definition Kp(o),Kp′(o)) < l(o) so that m<l(o)

Kolmogorov Complexity

I Good news is that the error we can commit is bounded by the length of
the data itself (Invariance Theorem).

I Proof:Consider Kp(o) = min
p:U(p)=o

{l(p)} and Kp′(o) = min
p′:U(p′)=o

{l(p′)}

for arbitrary p, p′ with |Kp(o)− Kp′(o)| = d ≥ 1

d ≥ 1⇒ |Kp(o)

m
−

Kp′(o)

m
| < 1 for m=max(Kp(o),Kp′(o)).

By definition Kp(o),Kp′(o)) < l(o) so that m<l(o)

Kolmogorov Complexity

I Good news is that the error we can commit is bounded by the length of
the data itself (Invariance Theorem).

I Proof:

Consider Kp(o) = min
p:U(p)=o

{l(p)} and Kp′(o) = min
p′:U(p′)=o

{l(p′)}

for arbitrary p, p′ with |Kp(o)− Kp′(o)| = d ≥ 1

d ≥ 1⇒ |Kp(o)

m
−

Kp′(o)

m
| < 1 for m=max(Kp(o),Kp′(o)).

By definition Kp(o),Kp′(o)) < l(o) so that m<l(o)

Kolmogorov Complexity

I Good news is that the error we can commit is bounded by the length of
the data itself (Invariance Theorem).

I Proof:Consider Kp(o) = min
p:U(p)=o

{l(p)} and Kp′(o) = min
p′:U(p′)=o

{l(p′)}

for arbitrary p, p′ with |Kp(o)− Kp′(o)| = d ≥ 1

d ≥ 1⇒ |Kp(o)

m
−

Kp′(o)

m
| < 1 for m=max(Kp(o),Kp′(o)).

By definition Kp(o),Kp′(o)) < l(o) so that m<l(o)

Kolmogorov Complexity

I Good news is that the error we can commit is bounded by the length of
the data itself (Invariance Theorem).

I Proof:Consider Kp(o) = min
p:U(p)=o

{l(p)} and Kp′(o) = min
p′:U(p′)=o

{l(p′)}

for arbitrary p, p′ with |Kp(o)− Kp′(o)| = d ≥ 1

d ≥ 1⇒ |Kp(o)

m
−

Kp′(o)

m
| < 1 for m=max(Kp(o),Kp′(o)).

By definition Kp(o),Kp′(o)) < l(o) so that m<l(o)

Kolmogorov Complexity

I Good news is that the error we can commit is bounded by the length of
the data itself (Invariance Theorem).

I Proof:Consider Kp(o) = min
p:U(p)=o

{l(p)} and Kp′(o) = min
p′:U(p′)=o

{l(p′)}

for arbitrary p, p′ with |Kp(o)− Kp′(o)| = d ≥ 1

d ≥ 1⇒ |Kp(o)

m
−

Kp′(o)

m
| < 1 for m=max(Kp(o),Kp′(o)).

By definition Kp(o),Kp′(o)) < l(o) so that m<l(o)

Solomonoff’s inference and Machine Learning

I Kolmogorov Complexity is central in Ray
Solomonoff’s Inductive Inference Theory.

I The theory formalizes the sequence prediction procedure we did at the
beginning of the talk.

I But sequence prediction is quite a small subset of real-world prediction
problems...

I Nevertheless, some Machine Learning problems can be reduced to it.

Solomonoff’s inference and Machine Learning

I Kolmogorov Complexity is central in Ray
Solomonoff’s Inductive Inference Theory.

I The theory formalizes the sequence prediction procedure we did at the
beginning of the talk.

I But sequence prediction is quite a small subset of real-world prediction
problems...

I Nevertheless, some Machine Learning problems can be reduced to it.

Solomonoff’s inference and Machine Learning

I Kolmogorov Complexity is central in Ray
Solomonoff’s Inductive Inference Theory.

I The theory formalizes the sequence prediction procedure we did at the
beginning of the talk.

I But sequence prediction is quite a small subset of real-world prediction
problems...

I Nevertheless, some Machine Learning problems can be reduced to it.

Solomonoff’s inference and Machine Learning

I Kolmogorov Complexity is central in Ray
Solomonoff’s Inductive Inference Theory.

I The theory formalizes the sequence prediction procedure we did at the
beginning of the talk.

I But sequence prediction is quite a small subset of real-world prediction
problems...

I Nevertheless, some Machine Learning problems can be reduced to it.

Solomonoff’s inference and Machine Learning

I Kolmogorov Complexity is central in Ray
Solomonoff’s Inductive Inference Theory.

I The theory formalizes the sequence prediction procedure we did at the
beginning of the talk.

I But sequence prediction is quite a small subset of real-world prediction
problems...

I Nevertheless, some Machine Learning problems can be reduced to it.

Solomonoff’s inference and Machine Learning

I Discrete regression is a good example:
I Training dataset (feature,value): (x1, f (x1)), (x2, f (x2)),(xn, f (xn)).
I Goal: Find f
I Equivalent to find f (i) = f (xn+1) given x1f (x1)x2f (x2)xnf (xn)xn+1

I Recall first example: Find next in 1,1,2,3,3,5,4,7,5

I But way to prefer such weird ”representation”?
I Suppose some scattered outliers in a dataset.
I Traditional ML techniques typically risk fitting the regression function too

much (high P(h—d)) with complex models (low P(h) as estimated by
Occam’s Razor).

I In contrast, MDL principle tends to gain a balance with P(d |h) ≈ P(h),
therefore maximizing P(d |h)P(h).

Solomonoff’s inference and Machine Learning

I Discrete regression is a good example:

I Training dataset (feature,value): (x1, f (x1)), (x2, f (x2)),(xn, f (xn)).
I Goal: Find f
I Equivalent to find f (i) = f (xn+1) given x1f (x1)x2f (x2)xnf (xn)xn+1

I Recall first example: Find next in 1,1,2,3,3,5,4,7,5

I But way to prefer such weird ”representation”?
I Suppose some scattered outliers in a dataset.
I Traditional ML techniques typically risk fitting the regression function too

much (high P(h—d)) with complex models (low P(h) as estimated by
Occam’s Razor).

I In contrast, MDL principle tends to gain a balance with P(d |h) ≈ P(h),
therefore maximizing P(d |h)P(h).

Solomonoff’s inference and Machine Learning

I Discrete regression is a good example:
I Training dataset (feature,value): (x1, f (x1)), (x2, f (x2)),(xn, f (xn)).

I Goal: Find f
I Equivalent to find f (i) = f (xn+1) given x1f (x1)x2f (x2)xnf (xn)xn+1

I Recall first example: Find next in 1,1,2,3,3,5,4,7,5

I But way to prefer such weird ”representation”?
I Suppose some scattered outliers in a dataset.
I Traditional ML techniques typically risk fitting the regression function too

much (high P(h—d)) with complex models (low P(h) as estimated by
Occam’s Razor).

I In contrast, MDL principle tends to gain a balance with P(d |h) ≈ P(h),
therefore maximizing P(d |h)P(h).

Solomonoff’s inference and Machine Learning

I Discrete regression is a good example:
I Training dataset (feature,value): (x1, f (x1)), (x2, f (x2)),(xn, f (xn)).
I Goal: Find f

I Equivalent to find f (i) = f (xn+1) given x1f (x1)x2f (x2)xnf (xn)xn+1

I Recall first example: Find next in 1,1,2,3,3,5,4,7,5

I But way to prefer such weird ”representation”?
I Suppose some scattered outliers in a dataset.
I Traditional ML techniques typically risk fitting the regression function too

much (high P(h—d)) with complex models (low P(h) as estimated by
Occam’s Razor).

I In contrast, MDL principle tends to gain a balance with P(d |h) ≈ P(h),
therefore maximizing P(d |h)P(h).

Solomonoff’s inference and Machine Learning

I Discrete regression is a good example:
I Training dataset (feature,value): (x1, f (x1)), (x2, f (x2)),(xn, f (xn)).
I Goal: Find f
I Equivalent to find f (i) = f (xn+1) given x1f (x1)x2f (x2)xnf (xn)xn+1

I Recall first example: Find next in 1,1,2,3,3,5,4,7,5

I But way to prefer such weird ”representation”?
I Suppose some scattered outliers in a dataset.
I Traditional ML techniques typically risk fitting the regression function too

much (high P(h—d)) with complex models (low P(h) as estimated by
Occam’s Razor).

I In contrast, MDL principle tends to gain a balance with P(d |h) ≈ P(h),
therefore maximizing P(d |h)P(h).

Solomonoff’s inference and Machine Learning

I Discrete regression is a good example:
I Training dataset (feature,value): (x1, f (x1)), (x2, f (x2)),(xn, f (xn)).
I Goal: Find f
I Equivalent to find f (i) = f (xn+1) given x1f (x1)x2f (x2)xnf (xn)xn+1

I Recall first example: Find next in 1,1,2,3,3,5,4,7,5

I But way to prefer such weird ”representation”?
I Suppose some scattered outliers in a dataset.
I Traditional ML techniques typically risk fitting the regression function too

much (high P(h—d)) with complex models (low P(h) as estimated by
Occam’s Razor).

I In contrast, MDL principle tends to gain a balance with P(d |h) ≈ P(h),
therefore maximizing P(d |h)P(h).

Solomonoff’s inference and Machine Learning

I Discrete regression is a good example:
I Training dataset (feature,value): (x1, f (x1)), (x2, f (x2)),(xn, f (xn)).
I Goal: Find f
I Equivalent to find f (i) = f (xn+1) given x1f (x1)x2f (x2)xnf (xn)xn+1

I Recall first example: Find next in 1,1,2,3,3,5,4,7,5

I But way to prefer such weird ”representation”?

I Suppose some scattered outliers in a dataset.
I Traditional ML techniques typically risk fitting the regression function too

much (high P(h—d)) with complex models (low P(h) as estimated by
Occam’s Razor).

I In contrast, MDL principle tends to gain a balance with P(d |h) ≈ P(h),
therefore maximizing P(d |h)P(h).

Solomonoff’s inference and Machine Learning

I Discrete regression is a good example:
I Training dataset (feature,value): (x1, f (x1)), (x2, f (x2)),(xn, f (xn)).
I Goal: Find f
I Equivalent to find f (i) = f (xn+1) given x1f (x1)x2f (x2)xnf (xn)xn+1

I Recall first example: Find next in 1,1,2,3,3,5,4,7,5

I But way to prefer such weird ”representation”?
I Suppose some scattered outliers in a dataset.

I Traditional ML techniques typically risk fitting the regression function too
much (high P(h—d)) with complex models (low P(h) as estimated by
Occam’s Razor).

I In contrast, MDL principle tends to gain a balance with P(d |h) ≈ P(h),
therefore maximizing P(d |h)P(h).

Solomonoff’s inference and Machine Learning

I Discrete regression is a good example:
I Training dataset (feature,value): (x1, f (x1)), (x2, f (x2)),(xn, f (xn)).
I Goal: Find f
I Equivalent to find f (i) = f (xn+1) given x1f (x1)x2f (x2)xnf (xn)xn+1

I Recall first example: Find next in 1,1,2,3,3,5,4,7,5

I But way to prefer such weird ”representation”?
I Suppose some scattered outliers in a dataset.
I Traditional ML techniques typically risk fitting the regression function too

much (high P(h—d)) with complex models (low P(h) as estimated by
Occam’s Razor).

I In contrast, MDL principle tends to gain a balance with P(d |h) ≈ P(h),
therefore maximizing P(d |h)P(h).

Solomonoff’s inference and Machine Learning

I Discrete regression is a good example:
I Training dataset (feature,value): (x1, f (x1)), (x2, f (x2)),(xn, f (xn)).
I Goal: Find f
I Equivalent to find f (i) = f (xn+1) given x1f (x1)x2f (x2)xnf (xn)xn+1

I Recall first example: Find next in 1,1,2,3,3,5,4,7,5

I But way to prefer such weird ”representation”?
I Suppose some scattered outliers in a dataset.
I Traditional ML techniques typically risk fitting the regression function too

much (high P(h—d)) with complex models (low P(h) as estimated by
Occam’s Razor).

I In contrast, MDL principle tends to gain a balance with P(d |h) ≈ P(h),
therefore maximizing P(d |h)P(h).

Conclusions

I Sometimes little training data is available, and MDL pple assumes
nothing about the distributions it tries to compress, so has a general
advantage to Maximum Entropy models, which assume a uniform
distribution of a restricted set of parameters.

I MDL pple performs better than typical ML models in very noisy data.
I Unlike entropy, kolmogorov complexity cannot be computed in general.

I However Kolmogorov Complexity is ”approximately” computable. We can
avoid infinite loops at the cost of an approximated solution:

I e.g. Time-bounded ”Levin” complexity:
K̂(o) := min

p:U(p)=o in t steps
{l(p) + logt}

Conclusions

I Sometimes little training data is available, and MDL pple assumes
nothing about the distributions it tries to compress, so has a general
advantage to Maximum Entropy models, which assume a uniform
distribution of a restricted set of parameters.

I MDL pple performs better than typical ML models in very noisy data.
I Unlike entropy, kolmogorov complexity cannot be computed in general.

I However Kolmogorov Complexity is ”approximately” computable. We can
avoid infinite loops at the cost of an approximated solution:

I e.g. Time-bounded ”Levin” complexity:
K̂(o) := min

p:U(p)=o in t steps
{l(p) + logt}

Conclusions

I Sometimes little training data is available, and MDL pple assumes
nothing about the distributions it tries to compress, so has a general
advantage to Maximum Entropy models, which assume a uniform
distribution of a restricted set of parameters.

I MDL pple performs better than typical ML models in very noisy data.

I Unlike entropy, kolmogorov complexity cannot be computed in general.
I However Kolmogorov Complexity is ”approximately” computable. We can

avoid infinite loops at the cost of an approximated solution:
I e.g. Time-bounded ”Levin” complexity:

K̂(o) := min
p:U(p)=o in t steps

{l(p) + logt}

Conclusions

I Sometimes little training data is available, and MDL pple assumes
nothing about the distributions it tries to compress, so has a general
advantage to Maximum Entropy models, which assume a uniform
distribution of a restricted set of parameters.

I MDL pple performs better than typical ML models in very noisy data.
I Unlike entropy, kolmogorov complexity cannot be computed in general.

I However Kolmogorov Complexity is ”approximately” computable. We can
avoid infinite loops at the cost of an approximated solution:

I e.g. Time-bounded ”Levin” complexity:
K̂(o) := min

p:U(p)=o in t steps
{l(p) + logt}

Conclusions

I Sometimes little training data is available, and MDL pple assumes
nothing about the distributions it tries to compress, so has a general
advantage to Maximum Entropy models, which assume a uniform
distribution of a restricted set of parameters.

I MDL pple performs better than typical ML models in very noisy data.
I Unlike entropy, kolmogorov complexity cannot be computed in general.

I However Kolmogorov Complexity is ”approximately” computable.

We can
avoid infinite loops at the cost of an approximated solution:

I e.g. Time-bounded ”Levin” complexity:
K̂(o) := min

p:U(p)=o in t steps
{l(p) + logt}

Conclusions

I Sometimes little training data is available, and MDL pple assumes
nothing about the distributions it tries to compress, so has a general
advantage to Maximum Entropy models, which assume a uniform
distribution of a restricted set of parameters.

I MDL pple performs better than typical ML models in very noisy data.
I Unlike entropy, kolmogorov complexity cannot be computed in general.

I However Kolmogorov Complexity is ”approximately” computable. We can
avoid infinite loops at the cost of an approximated solution:

I e.g. Time-bounded ”Levin” complexity:
K̂(o) := min

p:U(p)=o in t steps
{l(p) + logt}

Conclusions

I Sometimes little training data is available, and MDL pple assumes
nothing about the distributions it tries to compress, so has a general
advantage to Maximum Entropy models, which assume a uniform
distribution of a restricted set of parameters.

I MDL pple performs better than typical ML models in very noisy data.
I Unlike entropy, kolmogorov complexity cannot be computed in general.

I However Kolmogorov Complexity is ”approximately” computable. We can
avoid infinite loops at the cost of an approximated solution:

I e.g. Time-bounded ”Levin” complexity:
K̂(o) := min

p:U(p)=o in t steps
{l(p) + logt}

Conclusions

	The problem of the 'priors'
	Minimum Description Length
	Kolmogorov Complexity
	Solomonoff's Inference and Machine Learning
	Conclusions

