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Some Facts

• Shannon (1948): definitions/concepts based on coding
• In following years: information without coding?
• J. L. Kelly (1956): paper “A new interpretation of

information rate” on Bell Sys. Tech. Journal∗

∗B. S. T. J., 35 (4): 917-926, Mar., 1956
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John Larry Kelly

• 1923 Corsicana TX
• 1953 - PhD in Physics, then Bell Labs
• 1956 - Kelly Gambling
• 1961 - Speech Synthesis
• 1965 NY †

• Remarkable character:
gunslinger, stuntman pilot...

• Never profited of his
findings on gambling (Shannon did!)
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Kelly Gambling

Let’s bet!

Take a single horse race with three horses, with probability of

winning
�
1

6
,
1

2
,
1

3

�
respectively.

You can bet any fraction of your capital on any horse and place
simultaneous bets, but you must bet all of it.

How would you bet?
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Kelly Gambling

Now, let’s take the case where every Saturday there’s such a
horse race.

How does your betting strategy change?
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Kelly Gambling

Now, let’s take the case where every Saturday there’s such a
horse race.

How does your betting strategy change?

If you ALWAYS bet on horse 2, you’ll go broke!

Most intuitive way: bet according to probabilities.
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Kelly Gambling

Let’s formalize this, follow Kelly’s article (1956).

• Gambler with private wire: channel transmits results on
binary bet BEFORE they become public.

• Noisless binary channel
• Noisy binary channel

• General case
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Gambler with private wire - Noiseless

Gambler sure of winning → bets all his money.

Consider 2-for-1 bet. After N bets, he’s got VN = 2N times his
initial money V0.

Define the exponential rate of growth:

G = lim
N→∞

1

N
log

VN

V0
(1)

In our case, G = 1.
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Gambler with private wire - Noisy

This time, there’s probability of error p (correct transmission
with probability q = 1− p).

If gambler bets all his money every time, he will be broke for N
large enough!

He should bet a fraction, f , of his money. We have:

VN = (1 + f )W (1− f )LV0
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Gambler with private wire - Noisy

Compute G using VN = (1 + f )W (1− f )LV0:

G = lim
N→∞

�
log

�
(1 + f )W (1− f )LV0

V0

��

= lim
N→∞

�
W

N
log(1 + f ) +

L

N
log(1− f )

�

= q log(1 + f ) + p log(1− f )

Want money? Maximize G !
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Gambler with private wire - Noisy

Maximize G w.r.t. f , using concavity of log or Lagrange
multipliers. You get the relations

1 + f = 2q

1− f = 2p

Which give you:

Gmax = 1 + p log p + q log q
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General case
Notation

Consider case where we bet on input symbols, representing
outcome of chance events.

Now channel has several inputs x with probability of
transmission p(x) and several outputs y with probability of
reception q(y). The joint probability is p(x , y).

Let’s call b(x |y) the fraction of the gambler’s capital that he
decides to bet on x after he receives y .

ox are the odds paid to the gambler for a 1-dollar bet if x wins.
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Horse Races with no channel

But first, let’s consider no channel at all. Then we simply have a
horse race of which we know nothing except the probabilities.

What is G?

Use now VN =
�

b(x)o(x)WV0:

G = lim
N→∞

1

N
log

VN

V0

=
�

p(x) log[b(x)o(x)]
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Horse Races

Again, seek to maximize G . Does Kelly gambling work? YES!
(Theorem 6.1.2 in CT, Kelly gambling is log-optimal)

G =
�

p(x) log[b(x)ox ]

=
�

p(x) log[
b(x)

p(x)
p(x)ox ]

=
�

p(x) log[ox ]− H(p)− D(p||b)

≤
�

p(x) log[ox ]− H(p)

Where equality holds iff p = b. QED
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Interpretation of result

Take fair horse race, where
� 1

ox
= 1. The bookie’s estimate is

given by rx = 1/ox , seen as probability distribution. We note:

G =
�

p(x) log[b(x)ox ]

=
�

p(x) log[
b(x)

p(x)

p(x)

r(x)
]

= D(p||r)− D(p||b)

This means that we can make money only if our estimate
(entropy distance) is better (less) than the bookie’s!
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Horse Races - with channel

Back to case with channel. Consider the most general case with
odds

� 1
ox

= 1. Now we have:

Gmax =
�

x ,y

p(x , y) log[b(x |y)ox ]

=
�

x ,y

p(x , y) log[b(x |y)] +
�

x

p(x) log ox

=
�

x

p(x) log ox − H(X |Y )

Where in the last line we maximize setting b(x) = p(x).
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Mutual Information

Compare this to case without channel. There
G =

�
x p(x) log ox − H(X ). This results in Theorem 6.2.1 of CT:

The increase in G due to side information Y for a horse race X

is given by the mutual information I (X ;Y ).

Proof: just compare previously obtained results!

∆G = Gwith side info − Gwithout side info

=
�

x

p(x) log ox − H(X |Y )−
�
�

x

p(x) log ox − H(X )

�

= H(X )− H(X |Y ) = I (X ;Y )

QED
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Example: 6.15 of CT

Let X be the winner of a fair horse race (ox = 1/p(x)). b(x) is
the bet on horse x as usual. What is the optimal growth rate G?
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Example: 6.15 of CT

Let X be the winner of a fair horse race (ox = 1/p(x)). b(x) is
the bet on horse x as usual. What is the optimal growth rate G?

G =
�

p(x) log[b(x)ox ]

=
�

p(x) log[1]

= 0
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Example: 6.15 of CT

Suppose now we know that Y = 1 if X = 1, 2, and Y = 0
otherwise. What is then G?



Introduction Kelly Gambling Horse Races and Mutual Information

Example: 6.15 of CT

Suppose now we know that Y = 1 if X = 1, 2, and Y = 0
otherwise. What is then G?

G = 0 + I (X ;Y ) = H(Y )− H(Y |X )

= H(Y )

= H(p(1) + p(2))
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Summing up & Outlook

• Gambling and Inf Theory have a lot in common
• If there’s no track take, Kelly gambling is the way
• The maximum exponential rate of growth G is larger than

it would have been with no channel by an amount equal to
I (X ;Y ).

• This was first glimpse of subfield; nowadays applied to
stock market.
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