Information Theory Exercise Sheet #3

University of Amsterdam, Master of Logic, Fall 2014 Lecturer: Christian Schaffner TA: Philip Schulz

Out: Wednesday, 12 November 2014 2014 (due: Wednesday, 19 November 2014, 13:00)

Previous Exam Questions

At this point in the course, you should be able to solve the following exercises which were exam questions in previous editions of the course:

- 1. Let X, Y, Z be binary random variables such that I(X; Y) = 0 and I(X; Z) = 0.
 - (a) $[\frac{1}{2} \text{ points}]$ Does it follow that I(X;Y,Z)=0? If yes, prove it. If no, give a counterexample.
 - (b) $\left[\frac{1}{2} \text{ points}\right]$ Does it follow that I(Y;Z)=0? If yes, prove it. If no, give a counterexample.
- 2. Let A, B, C be random variables over alphabet $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$ for some integer $n \geq 2$. Let us assume that

$$A = B + C \mod n, \tag{1}$$

$$H(B) = \log(n), \tag{2}$$

$$I(A;B) = 0. (3)$$

Show that I(A; C) = 0.

3. Let A, B, C be random variables such that

$$I(A;B) = 0, (4)$$

$$I(A;C|B) = I(A;B|C), (5)$$

$$H(A|BC) = 0. (6)$$

What is the relation between the quantities H(A) and H(C)?

To be solved in Class

- 1. For the Markov chain $X \leftrightarrow Y \leftrightarrow \hat{X}$, show that $H(X|\hat{X}) \geq H(X|Y)$.
- 2. [Cover-Thomas 2.32]. We are given the following joint distribution of $X \in \{1, 2, 3\}$ and $Y \in \{a, b, c\}$:

$$P_{XY}(1,a) = P_{XY}(2,b) = P_{XY}(3,c) = 1/6$$

 $P_{XY}(1,b) = P_{XY}(1,c) = P_{XY}(2,a) = P_{XY}(2,c) = P_{XY}(3,a) = P_{XY}(3,b) = 1/12.$

Let $\hat{X}(Y)$ be an estimator for X (based on Y) and let $p_e = P(\hat{X} \neq X)$.

- (a) Find an estimator $\hat{X}(Y)$ for which the probability of error p_e is as small as possible.
- (b) Evaluate Fano's inequality for this problem and compare.
- 3. The mean of a random variable X is $\mu = \mathbb{E}[X]$. The variance of X is defined as $Var[X] = \mathbb{E}[(X \mu)^2]$.
 - (a) Show that $Var[X] = \mathbb{E}[X^2] (\mathbb{E}[X])^2$.
 - (b) Show that for any real a > 0, it holds that $Var[aX] = a^2Var[X]$, and Var[X + a] = Var[X].
 - (c) Show that for independent random variables X, Y, we have Var[X + Y] = Var[X] + Var[Y].
 - (d) Let X be a random variable with Bernoulli distribution $P_X(1) = p$ and $P_X(0) = 1 p$. Compute $\mathbb{E}[X]$ and Var[X].
 - (e) Let Y be a random variable with binomial distribution $P_Y(y) = \binom{n}{y} p^y (1-p)^{n-y}$. Compute $\mathbb{E}[Y]$ and Var[Y].

Homework

- 1. Deriving the weak law of large numbers.
 - (a) [3 points] (Markov's inequality.) For any real non-negative random variable X and any t > 0, show that

$$P_X(X \ge t) \le \frac{\mathbb{E}[X]}{t}$$
.

Exhibit a random variable (which can depend on t) that achieves this inequality with equality.

(b) [2 points] (Chebyshev's inequality.) Let Y be a random variable with mean μ and variance σ^2 . By letting $X = (Y - \mu)^2$, show that for any $\varepsilon > 0$,

$$P\left(|Y - \mu| \ge \varepsilon\right) \le \frac{\sigma^2}{\varepsilon^2} \,.$$

(c) [2 points] (The weak law of large numbers.) Let Z_1, Z_2, \ldots, Z_n be a sequence of iid random variables with mean μ and variance σ^2 . Let $\overline{Z_n} = \frac{1}{n} \sum_{i=1}^n Z_i$ be the sample mean. Show that

$$P(|\overline{Z_n} - \mu| \ge \varepsilon) \le \frac{\sigma^2}{n\varepsilon^2}.$$

Thus, $P(|\overline{Z_n} - \mu) > \varepsilon) \to 0$ as $n \to \infty$. This is known as the weak law of large numbers.

- 2. AEP and source coding. A discrete memoryless source emits a sequence of statistically independent binary digits with probabilities $P_X(1) = 0.005$ and $P_X(0) = 0.995$. The digits are taken 100 at a time and a binary codeword is provided for every sequence of 100 digits containing three or fewer 1's.
 - (a) [2 points] Assuming that all codewords are the same length, find the minimum length required to provide codewords for all sequences with three or fewer 1's.
 - (b) [2 points] Calculate the probability of observing a source sequence for which no codeword has been assigned.
 - (c) [3 points] Use Chebychev's inequality to bound the probability of observing a source sequence for which no codeword has been assigned. Compare this bound with the actual probability computed in part (b).
- 3. Calculation of typical set. To clarify the notion of a typical set $A_{\varepsilon}^{(n)}$ and the smallest set of high probability $B_{\delta}^{(n)}$, we will calculate these sets for a simple example. Consider a sequence of iid binary random variables $X_1, X_2, \dots X_n$, where the probability that $P_X(1) = 0.6$ and $P_X(0) = 0.4$.
 - (a) [1 point] Calculate H(X).
 - (b) [3 points] With n=25 and $\varepsilon=0.1$, which sequences fall in the typical set $A_{\varepsilon}^{(n)}$? What is the probability of the typical set? How many elements are there in the typical set? (This involves computation of a table of probabilities for sequences with k 1's, $0 \le k \le 25$, and finding those sequences that are in the typical set.)

Hint: Here is the table: http://goo.gl/sQCPMO

- (c) [2 points] How many elements are there in the smallest set that has probability 0.9? In other words, what is $|B_{\delta}^{(n)}|$ for n=25 and $\delta=0.1$?
- (d) [2 points] How many elements are there in the intersection $|A_{\varepsilon}^{(n)} \cap B_{\delta}^{(n)}|$ of the sets computed in parts (b) and (c)? What is the probability of this intersection?