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To be solved in Class

1. Quantifiying the loss when using the wrong code. Prove that when designing a code with length `(X),
believing that the distribution is QX when the true distribution is PX incurs a penality of D(PX ||QX)
in the average description length.

More formally, when we think that the true distribution is QX , we set the code lengths to `x =
dlog 1

QX(x)e. However, the true distribution turns out to be PX and hence, the expected codeword

length is EPX
[`(X)] =

∑
x PX(x)`x. Prove that

H(PX) +D(PX ||QX) ≤ EPX
[`(X)] ≤ H(PX) +D(PX ||QX) + 1

Last time, we had trouble to show the lower bound as we probably did not consider
explicitly that we set the `x to dlog 1

QX(x)e. Let us try again with that extra clarification.

Homework

1. For each of the channels below, give the corresponding confusability graph.

(a) [1 point] X = {1, 2, 3, 4, 5}, Y = {a, b, c}, pY |X(a|1) = pY |X(b|1) = pY |X(a|2) = pY |X(b|2) = 1
2 ,

pY |X(b|3) = 1
3 , pY |X(c|3) = 2

3 , pY |X(c|4) = pY |X(c|5) = 1.

(b) [1 point] X = {1, 2, 3, 4, 5}, Y = {a, b, c, d}, pY |X(a|2) = pY |X(b|2) = pY |X(c|2) = pY |X(a|4) =

pY |X(c|4) = pY |X(d|4) = 1
3 , pY |X(b|3) = pY |X(c|3) = 1

2 , pY |X(a|1) = pY |X(d|5) = 1.

2. For each of the confusability graphs below, describe one of the possible corresponding channels. Try
to minimize number of output symbols you are using.
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(a) [1 point]

(b) [1 point]

(c) [1 point]

(d) [1 point]

(e) [2 points] Can you argue that you reached the minimal number of outputs in (a), (b), (c), (d) ?

(f) [1 point] Show that for any confusability graph G with no isolated vertices, there exists a
corresponding channel with |E(G)| output symbols.

3. Shannon capacity of the complete graph. A graph G with n vertices V (G) = {1, 2, . . . , n} is called
complete if it has edges between any two vertices, i.e. ∀i 6= j : ij ∈ E(G).

(a) [2 points] Compute α(Kn), the independence number of the complete graph.

(b) [2 points] Show that Kn �Kn = Kn2 .

(c) [2 points] Use (a) and (b) to prove that the Shannon capacity of Kn is 0. Note that this result
formally confirms the intuition that channels whose confusability graphs are complete are useless
for zero-error communication, because all symbols can possibly be confused with each other.

4. Disjoint graphs. For two graphs G and H, the graph G + H is defined as the disjoint union of the
two graphs1. Formally, assuming without loss of generality that V (G) ∩ V (H) = ∅, then V (G+H) =
V (G) ∪ V (H) and E(G+H) = E(G) ∪ E(H).

For a graph G, the disjoint union of t copies of G is denoted as G+t. Similarly, we write G�t for the
t-time strong product of G with itself.

(a) [2 points] Prove that α(G+H) = α(G) + α(H).

(b) [Bonus: +4 points] Prove that for any three graphs G,H,L, it holds that

(G+H) � L = (G� L) + (H � L)

and for the same reason, it also holds that

G� (H + L) = (G�H) + (G� L)

.

(c) [4 points] Use (b) to derive that for any natural number k ∈ N, (G+G)�k = (G�k)+2k .

5. Let X = Y = {1, 2, 3, 4, 5, 6}. In this exercise, we compute the zero-error Shannon capacity of the noisy
channel with transition probabilities PY |X(y|x) = 1/3 if and only if x ≡ y mod 2.

(a) [2 points] Give the confusability graph G of the noisy channel PY |X described above.

(b) [4 points] Use 4.(c) and 3.(a) and 3.(b) to show that the Shannon capacity of G is 1.

1You can think of G+H as G and H “next to each other”.
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