
Error-Correcting Codes

Michael Mo 10770518

6 February 2016

Abstract

An introduction to error-correcting codes will be given by dis-
cussing a class of error-correcting codes, called linear block codes.
The main concept of block codes will also be deduced, which comes
with a notion of how powerful a block code is. Following the con-
crete example of the Hamming[7, 4] code, some general methods to
encode and decode linear block codes are given and at last we con-
sider some aspects of codes, which can help determine how to rank
the performance of a code and what other considerations have to be
made.

1 Introduction

Moving some data from one place to another requires the data to move
through some medium. What we wish is that the data which one party
sends is exactly the same as the data which the other party receives. But in
general, there is not always a guarantee that the data really stays the same
as it goes through the medium. For example, a satellite sends data in the
form of radiowaves to some station on earth, but some interference can easily
change that signal. This means the data received at the station might not
be the same as the original.

The goal of introducing error-correcting codes is to still be able to com-
municate reliably, even though the medium may not be reliable. To explain
how this can be achieved, we first give a more detailed explanation of what
an error-correcting code is. Then we consider the main concept of a class of
error-correcting codes called block codes and show some practical ways on
how to encode and decode. At last we compare some different codes in order
to have some sense of which code is better.

1

2 Setting and Model

Communication between a source and destination can be summarized in the
following diagram.

Figure 1: Standard setting of communication from a source to destination.

Whenever data from the source passes through a noisy channel, some noise
could affect the data, meaning the data received at the destination could be
different than the original data send.

One solution to overcome this problem is to introduce an encoding and
decoding scheme. The encoding part will perform some operation on the
data from the source, which probably involves adding some redundancy as
we will see later. The decoding part, will work on any information received
from the channel, with the goal to try to decode it back to the original data,
even if some noise has altered the data. So our communication diagram now
has two extra blocks:

Figure 2: Communication with an encoding and decoding function.

Before we can introduce some error-detecting/correcting codes, we need a
more detailed model for the diagram above. In this introduction, we assume
that the source generates a binary bitstream. We furthermore assume that
the noisy channel is a binary symmetric channel, which means that the only
error which can be introduced is a bitflip, and that the chance for a 0 to turn
into an 1 is the same as the chance for an 1 to turn into an 0.

For this model we will now consider a block code, which is an encoding
and decoding scheme where the encoder works on a fixed number of data bits
and always changes it into a fixed-length binary string.

2

3 Block Codes

To discuss block codes, we first need to have some kind of measure of how
much two binary strings look like each other. Note that the following defini-
tions for this measure are based on the model of the channel which tells us
that the error only introduces bitflips. For other types of errors, for example
a deletion of a bit, you might consider other distance functions.

Definition 3.1. The Hamming weight of a binary string x is defined as the
total number of 1’s which appear in x.

Definition 3.2. The Hamming distance between two binary strings x and
y of the same length is defined as the number of positions in which x and y
differ.

Remark 3.3. The Hamming distance between x and y is the same as the
Hamming weight of (x⊕y). The symbol ⊕ means the bitwise XOR operator.

Suppose we have a block code with n data bits and k extra bits. What does
the encoding function actually do? It is simply a function which works on
the n data bits and creates a longer binary string, consisting of n + k bits.
So the encoder just maps each data string to a longer binary string of length
n + k, which is called a codeword. It should also be clear that the encoder
should be an injective function, since we do not want the same codeword
for different data strings. Therefore k should not be negative. It also does
not make sense to have k = 0, since you would then just permute the data
strings.

So the problem of designing a block code really lies in choosing the code-
words of the bigger set wisely. To demonstrate the main concept of what a
good block code is, let us suppose we have two different data strings d1 and
d2 which the encoder will respectively encode as codewords c1 and c2. In the
next two figures we also assume that each circle in the set represents a binary
string, and that they are ordered such that two circles are neighbours only if
the Hamming distance between them is 1.

3

Figure 3: Scenario 1.

Scenario 1: The Hamming distance of c1 and c2 is very small. In other words:
The two codewords c1 and c2 look a lot like each other. This means that when
the codeword c1 goes through the noisy channel, a single bitflip can turn c1
into c2. So when the decoder gets the binary string c2, the obvious strategy
would be to decode c2 as the data string d2 which is wrong.

Figure 4: Scenario 2.

Scenario 2: The Hamming distance of c1 and c2 is big. In this case, even
if there is a bitflip, the corrupted codeword c̃1 will still be close to c1. The
decoder can then use the strategy: Pretend the received binary string is just
the codeword which lies closest to it, and then continue decoding as normal.
In this case, it means the corrupted codeword c̃1 will still be decoded as d1,
which is the error-correcting ability we want. If the strategy is to only accept
binary strings which are exactly equal to a codeword, then the decoder would
detect the error and we have an error-detecting code.

4

So we see that if the encoding function distributes the codewords in such
a way that the Hamming distance for all pairs of codewords is as big as
possible, then it will be more difficult for one codeword to turn into another
codeword and the decoder is thus able to detect or correct more errors. Hav-
ing this concept in mind, we define a property of a code which can tell us
how powerful the code is with respect to detecting or correcting errors.

Definition 3.4. The distance of a code is defined as the minimum Hamming
distance of all possible pairs of two different codewords.

Theorem 3.5. If a code has distance d, then:

• it can be used as a d− 1 error-detecting code

• it can be used as a bd−1
2
c error-correcting code

• mix of the two above

This theorem immediately follows from Figure 4 when we generalize Sce-
nario 2 with the two decoding strategies mentioned.

4 Hamming [7, 4] code

Before demonstrating the Hamming[7, 4] code, we first define what a parity
bit is.

Definition 4.1. A parity bit p over the bits b1, . . . , bk is a bit with the value
set such that the number of 1’s in the string b1...bkp is even. The parity bit
p can thus be defined as p = b1 ⊕ . . .⊕ bk.

Example 4.2. The value of the parity bit p over the bits {1, 1, 0} is 0 and
the value of the parity bit p over the bits {0, 1, 1, 1} is 1.

The Hamming[7, 4] code is a 1-bit error-correcting linear block code with a
blocksize of 7 which consists out of 4 data bits. The encoding part of this
code works like this: The data string d1d2d3d4 gets encoded as the codeword
p1p2d1p3d2d3d4 where:

p1 = d1 ⊕ d2 ⊕ d4

p2 = d1 ⊕ d3 ⊕ d4

p3 = d2 ⊕ d3 ⊕ d4

5

So you can see that the encoding function adds three extra parity-check
bits, where each parity bit covers only a subset of the data bits. To have a
more concrete feeling on how the decoder decodes a received binary string
or corrects it, we can draw a figure of three intersecting circles which can
represent our codeword and received binary string of length 7. As seen in
Figure 5, each circle consists of one parity bit and the three data bits it
covers. The number of 1’s in each circle should therefore be even.

Figure 5: Representation of the codeword p1p2d1p3d2d3d4.

Figure 6: Example of 1-bit error correction.

An example of how a 1-bit error can be corrected is shown in Figure 6:
The encoder sends the codeword (A), and the decoder receives the corrupted
codeword (B) where d1 was flipped. In (C) you can see that for each parity
bit, the decoder marks with red or green whether the parity bit satisfies the
parity-check equation or not. What you see is that for any combination of
these markings, there will always be exactly 1 bit which when flipped will
make all markings green. So in this case that bit would be d1 (coloured with
yellow), which indeed gives us back the original codeword.

Note that when there are two bitflips, the decoder will flip another bit
thinking it has corrected an 1-bit error, when actually the original codeword

6

has been converted to another codeword. An example is given in Figure 7:
When both d1 and p3 have been flipped, we see that all three parity bits
do not satisfy their parity-check equations. Using the 1-bit error-correcting
algorithm, the decoder determines that d4 is the bit that should be flipped,
since flipping that bit will make all three markings green. The ‘corrected’
codeword the decoder gives us is therefore not the original codeword that
was sent!

Figure 7: Example of a 2-bit error leading to a wrong correction.

4.1 Extended Hamming[8, 4] Code

We have seen that the Hamming[7, 4] code can correct a 1-bit error, but fails
whenever 2 bitflips happen. The extended Hamming[8, 4] code is a small
modification of the Hamming[7, 4] code, such that it can still correct up to
1-bit errors, but is also able to detect all 2-bit errors. The only change is that
it now has an extra parity bit p4 which checks the parity of all other 7 bits.
Using the fact that the value of p4 tells us whether either there is an odd or
even number of errors makes it possible to know when there are 2 errors.

Figure 8: Representation of the codeword p1p2d1p3d2d3d4p4.

7

5 Linear block codes

We have seen how to encode and decode with the Hamming[7, 4] code. Now
we analyse the Hamming[7, 4] code a bit more, and use the fact that it is
linear to show a more general encoding and decoding algorithm, which also
works for other linear block codes.

We can regard a bit as an element of F2, the finite field with two elements.
A binary string of length n is then a vector of the vector space (F2)

n and the
encoding function of the Hamming[7, 4] code becomes:(

F2

)4
→
(
F2

)7


x1

x2

x3

x4

 7→


x1 + x2 + x4

x1 + x3 + x4

x1

x2 + x3 + x4

x2

x3

x4


It is easy to see that any parity-check function is a linear function, so the
Hamming code is indeed a linear block code. Therefore, the encoding function
can be expressed as a matrix like this:

G =



1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1


This matrix is called the generator matrix, since for any data string x ∈ (F2)

4

the corresponding codeword y can be calculated from the expression y = Gx.
Note that if the block code was not linear, then there would not exist such a
generator matrix. In that case the encoder would need to use a table lookup
method which might result in gigantic tables.

8

All codewords Hamming[7, 4] code
0000 0000000 1000 1110000
0001 1101001 1001 0011001
0010 0101010 1010 1011010
0011 1000011 1011 0110011
0100 1001100 1100 0111100
0101 0100101 1101 1010101
0110 1100110 1110 0010110
0111 0001111 1111 1111111

Figure 9: Codewords of the Hamming[7, 4] code.

With the help of all codewords seen in the table above, we can also prove
that the distance of the Hamming[7, 4] code is three, which is of course in
accordance with Theorem 3.5.

Theorem 5.1. The distance of a linear block code equals the minimum
Hamming weight of all codewords c, where c is not the null vector/string.

Proof. First we show that the sum of two different codewords is a codeword
not equal to the null string. Let c1 and c2 be two different codewords for the
data strings x1 and x2 respectively. Since the code is linear, there exists a
generator matrix G, and we see:

c1 + c2 = Gx1 + Gx2 = G(x1 + x2)

which means that c1 + c2 is the codeword for the data string x1 + x2. The
codeword c1 + c2 can also not be the null string, since that would imply
c1 = c2 giving a contradiction.

Now let C be the set of all codewords. For x, y ∈ C, let D(x, y) be the
Hamming distance between x and y, and W (x) be the Hamming weight of x.
Then by definition the distance d of the code is min{D(x, y)|x, y ∈ C, x 6= y}.

If x and y are any two different codewords, using Remark 3.3 and the fact
that x + y is some codeword z 6= 0, we have:

D(x, y) = W (x + y)

= W (z)

≥ min{W (z)|z ∈ C, z 6= 0}

This holds for any two different x and y, thus d ≥ min{W (z)|z ∈ C, z 6= 0}.

9

On the other hand, fixing one codeword to be the null codeword, we have:

d = min{D(x, y)|x, y ∈ C, x 6= y} ≤ min{D(0, y)|y ∈ C, y 6= 0}
= min{W (y)|y ∈ C, y 6= 0}

Combining the two inequalities gives us d = min{W (z)|z ∈ C, z 6= 0}.

Using the previous theorem and a quick scan of the table in Figure 9, we see
that the Hamming[7, 4] code does indeed has distance 3.

For a more general decoding method, we first create another useful ma-
trix called the parity-check matrix. The parity-check matrix H is the matrix
which checks if all parity-check equations are correct. So the parity-check
matrix for the Hamming[7, 4] code is exactly the 3 × 7 matrix, where each
row corresponds with one of the three parity-check equations, and is thus
given by:

H =

 1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1


To see why this matrix is useful in decoding, we note that Hc = 0 for any
codeword c. This follows from the fact that any codeword is constructed
such that it fulfills all parity-check equations.

Now suppose the codeword c is sent over the noisy channel, and the
decoder receives the binary string v. If there are some errors introduced from
the noisy channel, then we can write the received binary string as v = c + e,
with e an error vector which only has 1’s in the positions where there are
bitflips.

The problem of decoding is to determine from all codewords which code-
word has the smallest Hamming distance with v. The solution for a block
code is to go through a list of all codewords, and calculate the Hamming
distance for each codeword with v. But as we already saw in the encoding
part, this is inefficient and even impossible if the number of codewords is
very large. What we can do is to again make use of the property that the
block code is linear, to come up with some smarter decoding algorithm called
syndrome decoding.

Definition 5.2. The syndrome s of a received binary string v is defined as
s = Hv.

What follows from the linear property is:

s = Hv = H(c + e) = Hc + He = 0 + He = He

10

So the syndrome of v basically gives us the parity-check matrix multiplied
with the error vector. We want to know the error vector, since knowing
the error vector can give us the original codeword back again with v − e =
(c + e) − e = c. But solving s = He for e often has many solutions. What
we really want is to find the error vector e which was most likely to have
happened i.e. the e with the smallest Hamming weight.

The standard way to find that e is to have a table which for each syndrome
can tell you exactly which error vector of minimum weight can generate
that syndrome. That table is called a syndrome table and an algorithm to
construct a syndrome table goes like this:

Step 1: Begin with the integer i = 0 and an empty syndrome table.

Step 2: For each possible error vector e with a Hamming weight of i, multiply
it with the parity-check matrix with to get a syndrome s and only put
the pair (s, e) in the table if the syndrome s is not yet in the table.

Step 3: If the table contains all possible syndromes, then the syndrome table
is complete, else we increment i and go back to step 2.

Syndrome table
Syndrome Error vector

000 0000000
100 1000000
010 0100000
110 0010000
001 0001000
101 0000100
011 0000010
111 0000001

Figure 10: Syndrome table for the Hamming[7, 4] code.

In this case we see that the syndrome table in Figure 10 has a nice pattern.
When we see the syndrome as a binary number with the least significant bit
on its left, the value of that number actually gives you the position of the
error in the error vector! This is not a coincidence, but rather a consequence
of the way the Hamming[7, 4] code was constructed with its strange positions
for the parity bits. For general linear block codes, this will not be the case.

11

6 Performance

We have seen an example of a linear block code, called the Hamming[7, 4]
code. But how do we rank all these different error-correcting codes, or how
should one choose which one to use? Remember that the original goal of in-
troducing error-correcting codes was to improve the reliability of sending data
through a noisy channel. So of course we still need to measure how reliable
the communication is when using the error-correcting code. Is is important
that this also should not completely hamper the real goal of what we want,
namely sending some data from the source to the destination. Information
about this aspect is given by the rate of the code.

Definition 6.1. The rate R of a blockcode is defined as (#data bits / block-
size).

Definition 6.2. With f the chance of a bitflip, the decoding error of a data
bit pb(f) is defined as the chance that a single data bit will be decoded
wrongly.

Figure 11: The solid curve represents the Shannon limit defined by
R = C/(1−H2(pb)). (David J. C. MacKay. Information Theory, Inference,
and Learning Algorithms [1]).

In Figure 11 we have a noisy channel with a bitflip chance of f = 0.1. The
figure shows a graph of some different codes, where the decoding error of a

12

data bit pb(f) is on the y-axis, and the rate of the used code is on the x-axis.
Intuitively, we see what we expect: As the decoding error of a data bit gets
lower, the rate also gets lower. In the graph we also see the number C(f),
which is the capacity of the channel as defined in Shannon’s noisy channel
theorem. This theorem actually tells us that there exists codes whose rate
can approach C and also have an arbitrarily low decoding error. So we want
codes which in the graph lie near C.

But this graph also does not tell you everything. For example, suppose
we have some very good code which in the graph lies very close to the channel
capacity C. Also suppose that the encoding and decoding function consists
of a lot of complex calculations, and therefore take an enormous amount of
time to complete. Then this code is not what we are searching for, since
the actual transmission rate of data will be much lower, because you have
to take into account the time taken to complete the encoding and decoding
functions. And also, if the code is so complex, then these calculations might
even use up all battery on board of the computer on our satellite, which is
not what we want the satellite to do!

7 Conclusion

In this introduction to error-correcting codes, we have seen that when cre-
ating and comparing codes, there are many different aspects which have to
be considered, even when we limit ourselves to block codes. We saw that
even choosing the model of the channel might give you a complete different
concept of what a desired property of a code should be. We also saw that
for practical uses, a block code really has to have a linear encoding function
in order to make encoding and decoding reasonable with respect of calcu-
lation time, which is a point that has to be considered when choosing an
error-correcting code.

References

[1] David J. C. MacKay. Information Theory, Inference, and Learning Al-
gorithms. Cambridge University Press, 2003.

13

	Introduction
	Setting and Model
	Block Codes
	Hamming [7, 4] code
	Extended Hamming[8, 4] Code

	Linear block codes
	Performance
	Conclusion

