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Abstract

Realistic channels generally a certain amount of noise associated with them, that is,
information is not losslessly transmitted. In this article we formalize the notion of
communication over a noisy-channel and prove the result of Shannon’s Noisy-Channel
theorem. Shannon’s Noisy-Channel Theorem states that for codes with less than 2nR

codewords, where R is the rate, it is possible to communicate over a noisy-channel with
arbitrarily small error when the rate of information transmitted is smaller than capacity.
Where capacity is the maximum amount of information that can be send such that the
error is arbitrarily small, a formal notion justified in its intuitive sense of capacity by
Shannon’s noisy-channel theorem. We will also provide some thoughts on the practical
applications of this theorem.
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1 Introduction

In practice, all channels have noise, in principle this means given a fixed input, the
output of our channel will be uncertain. That is, for every input there is a certain
probability, dependent on our input, that our output will differ. For example, we might
send 0 over a certain channel and with probability 90% the receiver gets a 0 and with
probability 10% the receiver gets a 1. Therefore this channel is noisy. It is clear that
when we use a noisy-channel we are bound to make an error. But how do we make
this mistake as small as possible? Naively we can send a 0 a hundred times over the
channel and the receiver declares that either a 0 or a 1 was sent depending on which he
counts the most. This would, however, not be very practical. Suppose we have a channel
where the receiver gets a 0 or 1 both with probability 50%, then it is quite clear that no
information can be sent. From this it seems reasonable that the amount of transmitted
information depends on the mutual information between the input and the received
signal, which has to depend on the particular noisy channel. The brilliance of Shannon
is that he formalizes the above notions and shows that with the right scheme we can
send information with arbitrarily small error while retaining a high rate of information
transmitted. Where rate measures the transmission speed. We have to build our formal
framework first before we can prove this result and we begin by formalizing the notion
of a noisy-channel.
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2 Discrete Memoryless Channels

Definition 2.1. A discrete memoryless channel (X , p(Y |X),Y) is characterized by an
input alphabet X and an output alphabet Y and a set of conditional probability distri-
butions P (y|x), one for each x ∈ X . These transition probabilities may be written in
matrix form:

• Qji := P (y = bj |x = ai)

Where memoryless means that the probability distribution of the output depends only on
the input at that time and is independent of previous inputs.

Example 2.1. Let p ∈ (0, 1) the binary symmetric channel has the following prob-
ability matrix:

Q =

(y|x 0 1

0 1− p p
1 p 1− p

)
Thus,

• P (y = 0|x = 0) = 1− p

• P (y = 1|x = 0) = p

• P (y = 0|x = 1) = p

• P (y = 1|x = 1) = 1− p.

Figure 2.1: Binary symmetric channel; Elements of information theory (2006)
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As noted in the introduction, our intuition is that the amount of information that can
be sent through a channel depends on the mutual information. Shannon’s noisy-channel
theorem will give a justification for the following definition.

Definition 2.2. We define the capacity of a discrete memoryless channel as

C = max
p(x)

I(X;Y ).

Where p(x) is the input distribution. As we need a way to encode and decode our input
and output we have the following definition of a block code.

Definition 2.3. An (M,n) code for the channel (X , P (Y |X),Y) consists of the following:

• An index set {1, 2, . . . ,M}.

• An encoding function Xn : {1, 2, . . . ,M} → X n, yielding codewords xn(1), xn(2), . . . , xn(M),
the set of codewords is called the codebook.

• A decoding function g : Yn → {1, 2, . . . ,M}. Deterministic rule which assigns a
guess to each y ∈ Yn.

Where M can be seen as the number of messages that can be send and n is the number
of times we use the channel. This gives us the following rate,

Definition 2.4. The rate of an (M,n) code is

R =
log(M)

n
bits per transmission.

We also need formal notions of error.

Definition 2.5. Given that i was sent, the probability of error is

λi = P (g(Y n) 6= i|Xn = xn(i)) =
∑
yn

P (yn|xn(i))I(g(yn) 6= i)

Where I(·) is the indicator function.

Definition 2.6. The maximal probability of error λ(n) for an (M,n) code is defined as

λ(n) = max
i∈{1,2,...,m}

λi.

Definition 2.7. We define the average probability of error as

P (n)
e =

1

M

M∑
i=1

λi.

We can now state Shannon’s noisy-channel theorem, before giving Shannon’s noisy-
channel theorem a formal treatment we will give some intuition as to what the main
idea is behind the proof.

Theorem 2.1. For a discrete memory-less channel, for every rate R < C, there exists
a sequence of (2nR, n) codes with maximum probability of error λ(n) → 0
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3 Noisy-Typewriter

Example 3.1. Consider the following noisy-channel, we have the alphabet for X and
Y and the input is either unchanged with probability 1

2 or with probability 1
2 the output

received is the next letter in the alphabet.

Figure 3.1: Noisy Typewriter; http://www.umsl.edu/

Note that this channel has capacity log(13) as C = max I(X;Y ) = max(H(Y ) −
H(Y |X)) = (H(Y ) − 1) = log(26) − 1 = log(13). Where the maximum is attained
by the uniform distribution. Now take the following scheme:

1. We take the index set to be: {1, 2, . . . , 13}

2. The following encoding function X(1) = a,X(2) = c, . . . , x(13) = y

3. The decoding function maps the received letter to the nearest letter in the code.
For example; we map a and b to a and c and d to c.

It is clear that with the following scheme we achieve capacity and communicate without
error. What we did is find a non-confusable subset of input, such that the output could
be uniquely decodable.
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The main idea behind Shannon’s noisy channel theorem is that for large block lengths,
every channel looks like the noisy typewriter; the channel has a subset of inputs that
produce essentially disjoint sequences at the output.

Figure 3.2: Channel after n uses; Elements of information theory(2006)

For this we need the notion of typicality.

Definition 3.1. Let X be a random variable over the alphabet X . A sequences x ∈ X n
of length n is called typical of tolerance β if and only if

| 1
n

log
1

p(xn)
−H(X)| < β.

We define A
(n)
β to be the set of typical sequences.

Example 3.2. Suppose we flip a fair coin 10 times, then

x := 101100101

is typical for every β ≥ 0 as we have five ones and five zeros.

Example 3.3. Let X,Y be a random variable over the alphabets X ,Y. Two sequences
x ∈ X n and y ∈ Yn of length n are called typical of tolerance β if and only if both x and
y are typical and they are jointly typical as well:

| 1
n

log
1

p(xn, yn)
−H(X,Y )| < β.

Note that this condition is necessary if X and Y are dependent but not if they are
independent, suppose that they are independent, then the expression | 1n log 1

p(xn,yn) −
H(X,Y )| equals 0 because H(X,Y ) = H(X) + H(Y ) and log 1

p(xn,yn) = log 1
p(xn) +

log 1
p(yn) . Jointly typical sequences have the following useful properties.
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Theorem 3.1. Let (Xn, Y n) be sequences of length n drawn i.i.d according to p(xn, yn) =∏n
i=1 p(xi, yi). Then:

1. P ((Xn, Y n) ∈ A(n)
ε )→ 1 as n→∞.

2. (1− ε)2n(H(X,Y )−ε) ≤ |A(n)
ε | ≤ 2n(H(X,Y )+ε).

3. If (X ′n, Y ′n) ∼ p(xn)p(yn)[i.e. X ′n and Y ′n are independent with the same marginals
as p(xn, yn), then

(1− ε)2−n(I(X;Y )+3ε) ≤ P ((X ′n, Y ′n) ∈ A(n)
ε ) ≤ 2−n(I(X;Y )−3ε).

These statements have the following intuition,

1. ”Large messages will always become typical.”

2. ”The size of set of jointly typical messages is approximately 2nH(X,Y ).”

3. ”The probability that any independently chosen pair of typical messages is jointly
typical is about 2−n(I(X;Y )).”

The first statement follows quite quickly from the weak law of large numbers applied to
1
n logP (Xn), 1

n logP (yn) and 1
n logP (Xn, Y n). A formal proof is omitted. The second

statement follows quickly from the fact that summing probabilities over the whole space
equals 1 and if | 1n log 1

p(xn,yn) − H(X,Y )| < ε, then −ε < 1
n log 1

p(xn,yn) − H(X,Y ) < ε
and,

−ε < 1

n
log

1

p(xn, yn)
−H(X,Y ) < ε ⇐⇒ 2−n(H(X,Y )+ε) < p(xn, yn) < 2−n(H(X,Y )−ε).

It follows that for the upper bound,

1 =
∑

p(xn, yn)

≥
∑

p(xn, yn)

≥ |Aε|n2−n(H(X,Y )+ε),

and hence |A(n)
ε | ≤ 2n(H(X,Y )+ε). Similar reasoning applies to the lower bound. The third

statement is left as an exercise to the reader as there is not enough space left on this
page. (Hint: Use the second part of the theorem and the above if and only if statement).
The following figure will provide some intuition as to why the third statement is true.
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Figure 3.3: The total number of independent typical pairs is the area of the dashed
rectangle; 2nH(X)2nH(Y ) = 2nH(X)+nH(Y ), and the number of jointly-typical
pairs is roughly 2nH(X,Y ), so the probability of hitting a jointly-typical pair
is roughly 2nH(X,Y )/2nH(X)+nH(Y ) = 2−nI(X;Y ); Mackay(2003)
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4 Proof of Shannon’s noisy-channel
theorem

We can now prove Shannon’s noisy channel theorem, the proof will use the notion of
typicality to think of a smart encoding and decoding the scheme. The outline of the
proof will be as follows:

• Generate a code randomly from a certain distribution.

• Decode by joint typicality.

• Calculate the average probability of error for a random choice of codewords and
show that it becomes arbitrarily small.

Theorem 4.1. For a discrete memory-less channel, for every rate R < C, there exists
a sequence of (2nR, n) codes with maximum probability of error λ(n) → 0.

Proof. Choose p(x) to be the distribution on X that achieves capacity. We generate 2nR

codewords independently according to the distribution

p(xn) =
n∏
i=1

p(xi).

Now, our block length is n and we have to generate 2nR such codewords, this gives us
n ∗ 2nR entries that need to be generated (independently) according to p(x). Thus, the
probability for a certain code is

Pr(C) =
2nR∏
w=1

n∏
i=1

p(xi(w)).

Consider the following events,

1. This code C is revealed to both the sender and receiver.

2. A message w is chosen and the wth codeword Xn(w) is sent over the channel.

3. The receiver receives a sequence according to the distribution

P (yn|xn(w)) =

n∏
i=1

p(yi|xi(w))
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4. The receiver decodes by joint typicality, that is; the receiver declares that the
message W̃ was sent if the following conditions are satisified:

• (Xn(W̃ ), Y n) is jointly typical

• There is no other index W ′ 6= W̃ such that (Xn(W ′), Y n) are jointly typical

If no such W ′ exists or if there is more than one, an error is declared

Now there is a decoding eror if W ′ 6= W . We define E to be the event that {W ′ 6= W}.
For a typical codeword there are two error when we use jointly typical decoding,

1. The output Y n is not jointly typical with the transmitted codeword.

2. There is some other codeword that is jointly typical with Y n.

We know from (1) of Theorem 3.1 that the probability that the transmitted codeword and
the received sequence are jointly typical goes to 1 for large n. And for any other codeword
the probability that it is jointly typical with the received sequence is approximately
2−nC by (3) of Theorem 3.1. As we choose the distribution that achieved capacity, more
formally we will calculate the average probability of error, averaged over all codewords
in the codebook, and averaged over all codewords; that is, we calculate

Pr(E) =
∑
C
Pr(C)Pnε (C) =

1

2nR

2nR∑
w=1

∑
C
Pr(C)λw(C).

As every codeword is generated independently according to the same distribution the
average probability of error averaged over all codes does not depend on the particular
index that was sent thus we can assume without loss of generality that the message
W = 1 was sent, thus Pr(E) = Pr(E|W = 1). Now define the event Ei to be the event
that the ith codeword and Y n are jointly typical, that is

Ei = {Xn(i), Y n) ∈ Anε } for i ∈ {1, 2, . . . , 2nR}.

Hence, noting that we assumed W = 1 was sent, an error happens when EC1 or E2 ∪
E3 ∪ . . . ∪ E2nR occurs. Which respectively corresponds to an error of type 1 and an
error of type 2. Now,

Pr(E) = Pr(E|W = 1) = P (EC1 ∪ E2 ∪ . . . ∪ E2nR|W = 1)

≤ P (EC1 |W = 1) +

2nR∑
i=2

P (Ei|W = 1)

By the union bound. We know by (1) from Theorem 3.1 that P (EC1 |W = 1) will
become arbitrarily small, and since by the code generation process, Xn and Xn(i) are
independent for i 6= 1 and so are Y n and Xn(i), hence, the probability that Xn(i) and
Y n are jointly typical is ≤ 2−n(C−3ε) by (3) from Theorem 3.1. And thus,
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Pr(E) ≤ P (EC1 |W = 1) +
2nR∑
i=2

P (Ei|W = 1)

≤ ε1 +
2nR∑
i=2

2−n(C−3ε)

= ε1 + (2nR − 1)2−n(C−3ε)

≤ ε1 + 2−n(C−3ε−R)

≤ 2ε

Where we choose n to be sufficiently large and R < C − 3ε. Hence, if R < C we can
choose ε and n such that the average probability of error, averaged over codebooks and
codewords, is less than 2ε. This proves Shannon’s noisy channel theorem.
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5 Conclusion

In conclusion, we have constructed a formal framework of noisy channels and shown
that with the right scheme we can send information with arbitrarily small error while
retaining a high rate of information transmitted. An interesting question is the impact of
Shannon’s noisy channel theorem in practice. The theorem is an asymptotic statement,
that is, we can send messages with arbitrarily small error for large n, and in practice the
value of n might be too large to use the above random code scheme. An open question is
thus to find theoretically how large n must be for a particular error(ε). Shannon’s noisy
channel theorem does however give us confidence that it is possible to communicate
with a high rate and small error and forces us to look for smarter schemes that can send
information with a rate below capacity. Also, the power of the formal framework allows
us to ask new questions and gain deeper insights in noisy channels.
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