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Examples of Symbol Codes

x PX C(x) D(x) E(x)
a 1/2 0 0 0
b 1/4 10 010 01
c 1/8 110 01 011
d 1/8 111 10 111

expected code word length:

`

C

(X) = E[`(C(X))] =
X

x

P

X

(x)`(C(x))
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Figure 5.1. The symbol coding
budget. The ‘cost’ 2−l of each
codeword (with length l) is
indicated by the size of the box it
is written in. The total budget
available when making a uniquely
decodeable code is 1.
You can think of this diagram as
showing a codeword supermarket,
with the codewords arranged in
aisles by their length, and the cost
of each codeword indicated by the
size of its box on the shelf. If the
cost of the codewords that you
take exceeds the budget then your
code will not be uniquely
decodeable.
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Figure 5.2. Selections of
codewords made by codes
C0, C3, C4 and C6 from section
5.1.
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100 5 — Symbol Codes

ai pi log2
1
pi

li c(ai)

a 0.0575 4.1 4 0000
b 0.0128 6.3 6 001000
c 0.0263 5.2 5 00101
d 0.0285 5.1 5 10000
e 0.0913 3.5 4 1100
f 0.0173 5.9 6 111000
g 0.0133 6.2 6 001001
h 0.0313 5.0 5 10001
i 0.0599 4.1 4 1001
j 0.0006 10.7 10 1101000000
k 0.0084 6.9 7 1010000
l 0.0335 4.9 5 11101
m 0.0235 5.4 6 110101
n 0.0596 4.1 4 0001
o 0.0689 3.9 4 1011
p 0.0192 5.7 6 111001
q 0.0008 10.3 9 110100001
r 0.0508 4.3 5 11011
s 0.0567 4.1 4 0011
t 0.0706 3.8 4 1111
u 0.0334 4.9 5 10101
v 0.0069 7.2 8 11010001
w 0.0119 6.4 7 1101001
x 0.0073 7.1 7 1010001
y 0.0164 5.9 6 101001
z 0.0007 10.4 10 1101000001
– 0.1928 2.4 2 01
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Figure 5.6. Huffman code for the
English language ensemble
(monogram statistics).

It is not the case, however, that optimal codes can always be constructed
by a greedy top-down method in which the alphabet is successively divided
into subsets that are as near as possible to equiprobable.

Example 5.18. Find the optimal binary symbol code for the ensemble:

AX = { a, b, c, d, e, f, g }
PX = { 0.01, 0.24, 0.05, 0.20, 0.47, 0.01, 0.02 } . (5.24)

Notice that a greedy top-down method can split this set into two sub-
sets {a, b, c, d} and {e, f, g} which both have probability 1/2, and that
{a, b, c, d} can be divided into subsets {a, b} and {c, d}, which have prob-
ability 1/4; so a greedy top-down method gives the code shown in the
third column of table 5.7, which has expected length 2.53. The Huffman

ai pi Greedy Huffman

a .01 000 000000
b .24 001 01
c .05 010 0001
d .20 011 001
e .47 10 1
f .01 110 000001
g .02 111 00001

Table 5.7. A greedily-constructed
code compared with the Huffman
code.

coding algorithm yields the code shown in the fourth column, which has
expected length 1.97. ✷

5.6 Disadvantages of the Huffman code

The Huffman algorithm produces an optimal symbol code for an ensemble,
but this is not the end of the story. Both the word ‘ensemble’ and the phrase
‘symbol code’ need careful attention.

Changing ensemble

If we wish to communicate a sequence of outcomes from one unchanging en-
semble, then a Huffman code may be convenient. But often the appropriate
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The Huffman coding algorithm

We now present a beautifully simple algorithm for finding an optimal prefix
code. The trick is to construct the code backwards starting from the tails of
the codewords; we build the binary tree from its leaves.

Algorithm 5.4. Huffman coding
algorithm.1. Take the two least probable symbols in the alphabet. These two

symbols will be given the longest codewords, which will have equal
length, and differ only in the last digit.

2. Combine these two symbols into a single symbol, and repeat.

Since each step reduces the size of the alphabet by one, this algorithm will
have assigned strings to all the symbols after |AX |− 1 steps.

Example 5.15. Let AX = { a, b, c, d, e }
and PX = { 0.25, 0.25, 0.2, 0.15, 0.15 }.
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The codewords are then obtained by concatenating the binary digits in
reverse order: C = {00, 10, 11, 010, 011}. The codelengths selected

ai pi h(pi) li c(ai)

a 0.25 2.0 2 00
b 0.25 2.0 2 10
c 0.2 2.3 2 11
d 0.15 2.7 3 010
e 0.15 2.7 3 011

Table 5.5. Code created by the
Huffman algorithm.

by the Huffman algorithm (column 4 of table 5.5) are in some cases
longer and in some cases shorter than the ideal codelengths, the Shannon
information contents log2

1/pi (column 3). The expected length of the
code is L = 2.30 bits, whereas the entropy is H = 2.2855 bits. ✷

If at any point there is more than one way of selecting the two least probable
symbols then the choice may be made in any manner – the expected length of
the code will not depend on the choice.

Exercise 5.16.[3, p.105] Prove that there is no better symbol code for a source
than the Huffman code.

Example 5.17. We can make a Huffman code for the probability distribution
over the alphabet introduced in figure 2.1. The result is shown in fig-
ure 5.6. This code has an expected length of 4.15 bits; the entropy of
the ensemble is 4.11 bits. Observe the disparities between the assigned
codelengths and the ideal codelengths log2

1/pi.

Constructing a binary tree top-down is suboptimal

In previous chapters we studied weighing problems in which we built ternary
or binary trees. We noticed that balanced trees – ones in which, at every step,
the two possible outcomes were as close as possible to equiprobable – appeared
to describe the most efficient experiments. This gave an intuitive motivation
for entropy as a measure of information content.
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