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2

Probability, Entropy, and Inference

This chapter, and its sibling, Chapter 8, devote some time to notation. Just
as the White Knight distinguished between the song, the name of the song,
and what the name of the song was called (Carroll, 1998), we will sometimes
need to be careful to distinguish between a random variable, the value of the
random variable, and the proposition that asserts that the random variable
has a particular value. In any particular chapter, however, I will use the most
simple and friendly notation possible, at the risk of upsetting pure-minded
readers. For example, if something is ‘true with probability 1’, I will usually
simply say that it is ‘true’.

2.1 Probabilities and ensembles

An ensemble X is a triple (x,AX ,PX), where the outcome x is the value
of a random variable, which takes on one of a set of possible values,
AX = {a1, a2, . . . , ai, . . . , aI}, having probabilities PX = {p1, p2, . . . , pI},
with P (x=ai) = pi, pi ≥ 0 and

∑
ai∈AX

P (x=ai) = 1.

The name A is mnemonic for ‘alphabet’. One example of an ensemble is a
letter that is randomly selected from an English document. This ensemble is
shown in figure 2.1. There are twenty-seven possible letters: a–z, and a space
character ‘-’.

i ai pi

1 a 0.0575
2 b 0.0128
3 c 0.0263
4 d 0.0285
5 e 0.0913
6 f 0.0173
7 g 0.0133
8 h 0.0313
9 i 0.0599
10 j 0.0006
11 k 0.0084
12 l 0.0335
13 m 0.0235
14 n 0.0596
15 o 0.0689
16 p 0.0192
17 q 0.0008
18 r 0.0508
19 s 0.0567
20 t 0.0706
21 u 0.0334
22 v 0.0069
23 w 0.0119
24 x 0.0073
25 y 0.0164
26 z 0.0007
27 – 0.1928
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Figure 2.1. Probability
distribution over the 27 outcomes
for a randomly selected letter in
an English language document
(estimated from The Frequently
Asked Questions Manual for
Linux ). The picture shows the
probabilities by the areas of white
squares.

Abbreviations. Briefer notation will sometimes be used. For example,
P (x=ai) may be written as P (ai) or P (x).

Probability of a subset. If T is a subset of AX then:

P (T ) = P (x∈T ) =
∑

ai∈T

P (x=ai). (2.1)

For example, if we define V to be vowels from figure 2.1, V =
{a, e, i, o, u}, then

P (V ) = 0.06 + 0.09 + 0.06 + 0.07 + 0.03 = 0.31. (2.2)

A joint ensemble XY is an ensemble in which each outcome is an ordered
pair x, y with x ∈ AX = {a1, . . . , aI} and y ∈ AY = {b1, . . . , bJ}.
We call P (x, y) the joint probability of x and y.

Commas are optional when writing ordered pairs, so xy ⇔ x, y.

N.B. In a joint ensemble XY the two variables are not necessarily inde-
pendent.
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x Figure 2.2. The probability
distribution over the 27×27
possible bigrams xy in an English
language document, The
Frequently Asked Questions
Manual for Linux.

Marginal probability. We can obtain the marginal probability P (x) from
the joint probability P (x, y) by summation:

P (x=ai) ≡
∑

y∈AY

P (x=ai, y). (2.3)

Similarly, using briefer notation, the marginal probability of y is:

P (y) ≡
∑

x∈AX

P (x, y). (2.4)

Conditional probability

P (x=ai | y = bj) ≡
P (x=ai, y = bj)

P (y = bj)
if P (y = bj) ̸= 0. (2.5)

[If P (y = bj) = 0 then P (x=ai | y = bj) is undefined.]

We pronounce P (x=ai | y = bj) ‘the probability that x equals ai, given
y equals bj ’.

Example 2.1. An example of a joint ensemble is the ordered pair XY consisting
of two successive letters in an English document. The possible outcomes
are ordered pairs such as aa, ab, ac, and zz; of these, we might expect
ab and ac to be more probable than aa and zz. An estimate of the
joint probability distribution for two neighbouring characters is shown
graphically in figure 2.2.

This joint ensemble has the special property that its two marginal dis-
tributions, P (x) and P (y), are identical. They are both equal to the
monogram distribution shown in figure 2.1.

From this joint ensemble P (x, y) we can obtain conditional distributions,
P (y |x) and P (x | y), by normalizing the rows and columns, respectively
(figure 2.3). The probability P (y |x=q) is the probability distribution
of the second letter given that the first letter is a q. As you can see in
figure 2.3a, the two most probable values for the second letter y given
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What do you notice about your solutions? Does each answer depend on the
detailed contents of each urn?

The details of the other possible outcomes and their probabilities are ir-
relevant. All that matters is the probability of the outcome that actually
happened (here, that the ball drawn was black) given the different hypothe-
ses. We need only to know the likelihood, i.e., how the probability of the data
that happened varies with the hypothesis. This simple rule about inference is
known as the likelihood principle.

The likelihood principle: given a generative model for data d given
parameters θ, P (d |θ), and having observed a particular outcome
d1, all inferences and predictions should depend only on the function
P (d1 |θ).

In spite of the simplicity of this principle, many classical statistical methods
violate it.

2.4 Definition of entropy and related functions

The Shannon information content of an outcome x is defined to be

h(x) = log2
1

P (x)
. (2.34)

It is measured in bits. [The word ‘bit’ is also used to denote a variable
whose value is 0 or 1; I hope context will always make clear which of the
two meanings is intended.]

In the next few chapters, we will establish that the Shannon information
content h(ai) is indeed a natural measure of the information content
of the event x = ai. At that point, we will shorten the name of this
quantity to ‘the information content’.

i ai pi h(pi)

1 a .0575 4.1
2 b .0128 6.3
3 c .0263 5.2
4 d .0285 5.1
5 e .0913 3.5
6 f .0173 5.9
7 g .0133 6.2
8 h .0313 5.0
9 i .0599 4.1
10 j .0006 10.7
11 k .0084 6.9
12 l .0335 4.9
13 m .0235 5.4
14 n .0596 4.1
15 o .0689 3.9
16 p .0192 5.7
17 q .0008 10.3
18 r .0508 4.3
19 s .0567 4.1
20 t .0706 3.8
21 u .0334 4.9
22 v .0069 7.2
23 w .0119 6.4
24 x .0073 7.1
25 y .0164 5.9
26 z .0007 10.4
27 - .1928 2.4

∑

i

pi log2
1
pi

4.1

Table 2.9. Shannon information
contents of the outcomes a–z.

The fourth column in table 2.9 shows the Shannon information content
of the 27 possible outcomes when a random character is picked from
an English document. The outcome x = z has a Shannon information
content of 10.4 bits, and x = e has an information content of 3.5 bits.

The entropy of an ensemble X is defined to be the average Shannon in-
formation content of an outcome:

H(X) ≡
∑

x∈AX

P (x) log
1

P (x)
, (2.35)

with the convention for P (x) = 0 that 0 × log 1/0 ≡ 0, since
limθ→0+ θ log 1/θ = 0.

Like the information content, entropy is measured in bits.

When it is convenient, we may also write H(X) as H(p), where p is
the vector (p1, p2, . . . , pI). Another name for the entropy of X is the
uncertainty of X.

Example 2.12. The entropy of a randomly selected letter in an English docu-
ment is about 4.11 bits, assuming its probability is as given in table 2.9.
We obtain this number by averaging log 1/pi (shown in the fourth col-
umn) under the probability distribution pi (shown in the third column).
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2 About Chapter 1

Approximating x! and
(

N
r

)
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Figure 1.2. The Poisson
distribution P (r |λ=15).

Let’s derive Stirling’s approximation by an unconventional route. We start
from the Poisson distribution with mean λ,

P (r |λ) = e−λλ
r

r!
r ∈ {0, 1, 2, . . .}. (1.8)

For large λ, this distribution is well approximated – at least in the vicinity of
r ≃ λ – by a Gaussian distribution with mean λ and variance λ:

e−λλ
r

r!
≃ 1√

2πλ
e
− (r−λ)2

2λ . (1.9)

Let’s plug r = λ into this formula, then rearrange it.

e−λλ
λ

λ!
≃ 1√

2πλ
(1.10)

⇒ λ! ≃ λλ e−λ
√

2πλ. (1.11)

This is Stirling’s approximation for the factorial function.

x! ≃ xx e−x
√

2πx ⇔ ln x! ≃ x ln x − x + 1
2 ln 2πx. (1.12)

We have derived not only the leading order behaviour, x! ≃ xx e−x, but also,
at no cost, the next-order correction term

√
2πx. We now apply Stirling’s

approximation to ln
(N

r

)
:

ln
(

N

r

)
≡ ln

N !
(N − r)! r!

≃ (N − r) ln
N

N − r
+ r ln

N

r
. (1.13)

Since all the terms in this equation are logarithms, this result can be rewritten
in any base. We will denote natural logarithms (loge) by ‘ln’, and logarithms Recall that log2 x =

loge x

loge 2
.

Note that
∂ log2 x

∂x
=

1
loge 2

1
x

.
to base 2 (log2) by ‘log’.

If we introduce the binary entropy function,

H2(x) ≡ x log
1
x

+ (1−x) log
1

(1−x)
, (1.14)

then we can rewrite the approximation (1.13) as
H2(x)

0
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0.8

1

0 0.2 0.4 0.6 0.8 1 x

Figure 1.3. The binary entropy
function.

log
(

N

r

)
≃ NH2(r/N), (1.15)

or, equivalently, (
N

r

)
≃ 2NH2(r/N). (1.16)

If we need a more accurate approximation, we can include terms of the next
order from Stirling’s approximation (1.12):

log
(

N

r

)
≃ NH2(r/N) − 1

2 log
[
2πN

N−r

N

r

N

]
. (1.17)
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Mutual information and entropy

Theorem: Relationship between mutual information and entropy.

I(X;Y ) = H(X)�H(X|Y )
I(X;Y ) = H(Y )�H(Y |X)
I(X;Y ) = H(X) + H(Y )�H(X, Y )
I(X;Y ) = I(Y ;X) (symmetry)
I(X;X) = H(X) (“self-information”)

``Two’s company, three’s a crowd’’

H(X) H(Y) H(Y)
H(X|Y)

H(X) H(Y)

I(X;Y) I(X;Y) I(X;Y)

University of Illinois at Chicago ECE 534, Fall 2009, Natasha Devroye

Chain rule for entropy

Theorem: (Chain rule for entropy): (X1, X2, ..., Xn) � p(x1, x2, ..., xn)

H(X1, X2, ..., Xn) =
n�

i=1

H(Xi|Xi�1, ..., X1) !
H(X1)

H(X3)

H(X2)

= + +H(X1,X2,X3)

H(X1) H(X2|X1)

H(X3|X1,X2)
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Conditional mutual information
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Chain rule for mutual information

Theorem: (Chain rule for mutual information)

I(X1, X2, ..., Xn;Y ) =
n�

i=1

I(Xi;Y |Xi�1, Xi�2, ..., X1)

!

H(X)

H(Z)

H(Y)

=

H(X)
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What is the grey region?
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H(Y|X,Z)

H(X)

H(Z)

I(X;Y)

H(Z|X) H(Z|X,Y)

I(X;Y|Z)A

H(Z|Y)

H(X|Y,Z)

H(Y)

H(X,Y|Z)

Figure 8.3. A misleading
representation of entropies,
continued.

that the random outcome (x, y) might correspond to a point in the diagram,
and thus confuse entropies with probabilities.

Secondly, the depiction in terms of Venn diagrams encourages one to be-
lieve that all the areas correspond to positive quantities. In the special case of
two random variables it is indeed true that H(X |Y ), I(X;Y ) and H(Y |X)
are positive quantities. But as soon as we progress to three-variable ensembles,
we obtain a diagram with positive-looking areas that may actually correspond
to negative quantities. Figure 8.3 correctly shows relationships such as

H(X) + H(Z |X) + H(Y |X,Z) = H(X,Y,Z). (8.31)

But it gives the misleading impression that the conditional mutual information
I(X;Y |Z) is less than the mutual information I(X;Y ). In fact the area
labelled A can correspond to a negative quantity. Consider the joint ensemble
(X,Y,Z) in which x ∈ {0, 1} and y ∈ {0, 1} are independent binary variables
and z ∈ {0, 1} is defined to be z = x + y mod2. Then clearly H(X) =
H(Y ) = 1 bit. Also H(Z) = 1 bit. And H(Y |X) = H(Y ) = 1 since the two
variables are independent. So the mutual information between X and Y is
zero. I(X;Y ) = 0. However, if z is observed, X and Y become dependent —
knowing x, given z, tells you what y is: y = z − xmod 2. So I(X;Y |Z) = 1
bit. Thus the area labelled A must correspond to −1 bits for the figure to give
the correct answers.

The above example is not at all a capricious or exceptional illustration. The
binary symmetric channel with input X, noise Y , and output Z is a situation
in which I(X;Y ) = 0 (input and noise are independent) but I(X;Y |Z) > 0
(once you see the output, the unknown input and the unknown noise are
intimately related!).

The Venn diagram representation is therefore valid only if one is aware
that positive areas may represent negative quantities. With this proviso kept
in mind, the interpretation of entropies in terms of sets can be helpful (Yeung,
1991).

Solution to exercise 8.9 (p.141). For any joint ensemble XY Z, the following
chain rule for mutual information holds.

I(X;Y,Z) = I(X;Y ) + I(X;Z |Y ). (8.32)

Now, in the case w → d → r, w and r are independent given d, so
I(W ;R |D) = 0. Using the chain rule twice, we have:

I(W ;D,R) = I(W ;D) (8.33)

and
I(W ;D,R) = I(W ;R) + I(W ;D |R), (8.34)

so
I(W ;R) − I(W ;D) ≤ 0. (8.35)

[Mackay’s textbook]
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