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Abstract

In information theory, Shannon’s Noisy-Channel Coding Theorem states
that it is possible to communicate over a noisy channel with arbitrarily
small chance of error when the rate of communication is kept below a
maximum which is constant for a channel. In this report we will first
provide some basic concepts surrounding communication over noisy chan-
nels and then give a rigorous proof of the theorem. In conclusion we will
provide some thoughts on practical applications of the theorem.
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1 Introduction

The topic of this report is communication over a noisy channel. Informaly, this
comes down to trying to send some form of information (for instance a stream of
bits) over some channel (for instance an optic-fiber cable) that is noisy. What
we mean by this is that even if we know the input, the output of our channel
is not certain. For example our optic-fiber cable might have an impurity that
results in sometimes outputting a 1 when a 0 is inputted. Rather than giving
a fixed output for each input, our channel will instead have a probability to
give each possible output that is dependent on the input. When we input a 0
into our optic-fiber we could for instance have an 80% chance to get a 0 zero as
output, and a 20% chance to instead get a 1.

When communicating over these noisy channels it is inevitable that we will
make mistakes. When trying to send a message to a friend over my cable some
of the bits might get flipped, and he will end up getting the wrong message. It is
not hard to come up with a crude way of limiting the chance of this happening.
We could, for instance, instead of sending the bit we want to send once, send
it 10 times. Our friend on the other side of the line would then simply count
the amount of zeroes and ones in the output, and pick the most prevalent one.
Though this simple scheme would severely limit the chance of a mistake, it
would also cut the effective rate at which I can send information tenfold!

Interestingly enough, using the right scheme, it is possible to reduce the
chance of error to arbitrarily low amounts, while retaining a decent rate of
information transfer, specifically this rate is dependent only on the channel,
and not on the error-bound we wish to achieve. Proving the existence of such
a scheme will be the main objective of this report. Before we do that, however,
we will first formalize the concept of communication over noisy channels.

2 Discrete Memoryless Channels and Coding

Definition 2.1 (Discrete Memoryless Channel). A discrete memoryless chan-
nel consist of a random variable X, the input, over an alphabet AX , a random
variable Y , the output over an alphabet AY and a conditional probability dis-
tribution PY |X such that the chance of receiving output y ∈ AY given input
x ∈ AX is equal to PY |X(y|x). Within this report we will always assume that
AX and AY are both finite.

Example 2.1. The following is an example of a discrete memoryless channel
from MacKay[1], where f ∈ [0, 1]

When f = 0 ∨ f = 1, we know exactly what the output of the channel will be
given a certain input, and the other way around. If f ∈ (0, 1) we cannot be
certain.
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Definition 2.2 (Block Code). Given a channel with input alphabet AX a

(N,K) block code C consist of S := 2K codewords x(i) = (x
(i)
1 , x

(i)
2 , . . . , x

(i)
N ) ∈

ANX and an encoder which maps each message in S := {1, 2, ..., 2K} to a code-
word. So when we want to send a message s ∈ S, we send the corresponding

codeword x(s) into the channel (by consecutively sending the x
(s)
j ). The output

of the channel y ∈ ANy will then be mapped back to ŝ ∈ {0, 1, 2, ..., 2K}, where
the extra symbol 0 is used to indicate a failure. This mapping is done by a
decoder.

Definition 2.3. The rate R of an (N,K) block code is defined as

R :=
K

N
.

Definition 2.4 (Block Error). Given a channel, a message set S, an encoder,
a decoder and a probability distribution PS on the message set, the probability
of block error pB is:

pB =
∑
s∈S

PS(s)P (ŝ 6= s|s).

If our channel is not noisy there exist an encoder and a decoder such that pB = 0.

Definition 2.5 (Optimal Decoder). An optimal decoder for a channel and code
is the decoder that minimizes pB , by maximizing P (s|y), where:

P (s|y) =
P (y|s)PS(s)∑
s′ PS(s′)P (y|s′)

.

Definition 2.6 (Bit Error). When our message s is represented by K bits (since
s ∈ 1, 2, . . . , 2K), the probabilitiy bit error pb is the average probability, that a
bit in ŝ is not equal to the corresponding bit in s.

3 Typicality

Codewords for messages will often consist of more than one symbol. Because of
this we are interested not only in the behaviour of a single symbol when passed
through a channel, but also in the behaviour of sequences of these symbols.
Consider a discrete memoryless channel with input and output alphabets Ax
and Ay respectively. For any N ∈ N we can simply extend the original definition
of the channel to encorporate input x = (x1, x2, . . . xN ) ∈ ANx and output
y = (y1, y2, . . . yN ) ∈ ANy by defining a new conditional probability as follows:

P (y|x) := PY N |XN (y|x) =

N∏
i=1

PY |X(yi|xi).

which is justified by the fact that the channel is memoryless, that is, each of
the single-symbol communications are independent of one another. We will use
this extension extensively in our proof of Shannon’s theorem. Firstly, however,
we will define some properties of sequences x ∈ XN , with respect to random
variables over the alphabet X .
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3.1 Typicality

We will define a property called typicality. Intuitively, a sequence x will be
typical with respect to a probability distribution PX if PX is relatively likely to
produce x, that is, if we are not very surprised to see x as the result of drawing
from a random variable X ∼ PX a few times independently. Conversely, if x
is not very likely to be the result of drawing from X, in other words if we are
surprised to see x, it will not be typical.

Definition 3.1 (Observed Surprisal Value). Let X be a random variable over
an alphabet X with distribution PX . Let x = (x1, x2, . . . , xN ) ∈ XN be a
sequence of length N . We will say

P (x) := PXN (x) =

N∏
i=1

PX(xi),

which is the chance to retrieve x from X after drawing independently N times.
We now define the observed surprisal value HX(x) of x with respect to PX as

HX(x) :=
1

N
log

1

P (x)
=

1

N

N∑
i=1

log
1

PX(xi)
.

Definition 3.2 (Typicality). Let X be a random variable over an alphabet X
with distribution PX . Let x = (x1, x2, . . . , xN ) ∈ XN be a sequence of length
N . We say x is typical with respect to PX to tolerance β if

|HX(x)−H(X)| < β.

Definition 3.3 (Typical Set). Let X be a random variable over an alphabets
X with distribution PX . We define the typical set TX,N,β with respect to PX
of sequence pairs of length N as

TX,N,β := {x ∈ XN : x is typical with respect to PX to tol. β}

Example 3.1. Suppose X is the result of biased coin flip, with PX(1) = 0.6
and PX(0) = 0.4. The sequence

x := 1110011100

is typical with respect to PX to any tolerance β ≥ 0, as

|HX(x)−H(X)| = | 1

10
log

1

P (x)
− h(0.6)|

= | 1

10
(6 log 0.6 + 4 log 0.4)− (0.6 log 0.6 + 0.4 log(0.4))|

= 0.

Example 3.2. Suppose X is the result of a fair coin flip, so PX(1) = PX(0) =
0.5. Any sequence x ∈ {0, 1}N is typical with respect to PX to any tolerance
β ≥ 0. Every sequence has the same chance to be the result of N coin flips!
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3.2 Joint Typicality

We will now extend the concept of typicality to joint distributions as this is
done in MacKay[1].

Definition 3.4 (Joint Typicality). LetX,Y be random variables over alphabets
X and Y with distributions PX and PY respectively. Let x = (x1, x2, . . . , xN ) ∈
XN and y = (x1, x2, . . . , xN ) ∈ YN be sequences of length N such that x is
typical to tolerance β with respect to PX , and y is typical to tolerance β with
respect to PY . We define the joint oberserved surprisal value as

HXY ((x, y)) :=
1

N
log

1

P (x, y)
=

1

N

N∑
i=1

log
1

PXY (xi, yi)
.

The pair (x, y) is called jointly typical with respect to the joint distribution PXY
to tolerance β if

|HXY ((x, y))−H(XY )| < β.

Once again, intuitively what this means is that the pair (x, y) is typical if it
does not surprise us as the result of drawing from (X,Y ) independently a few
times.

Definition 3.5 (Jointly Typical Set). Let X,Y be random variables over al-
phabets X and Y with distributions PX and PY respectively. We define the
jointly typical set JN,β with respect to PXY of sequence pairs of length N as

JN,β := {(x, y) ∈ XN×YN : (x, y) jointly typical with respect to PXY to tol. β}

3.3 Joint Typicality Theorem

Observation. For any two random variables X,Y over X ,Y, for any N ∈ N
and β > 0 we have

XN × YN ⊇ TX,N,β × TY,N,β ⊇ JN,β .

We formalise this observation in the following theorem, stated much like in
MacKay[1]

Theorem 3.1 (Joint Typicality Theorem). Let X ∼ PX and Y ∼ PY be random
variables over X and Y respectively and let PXY be their joint distribution. The
following statements hold:

1. If (x, y) ∈ XN × YN is drawn i.i.d from PXY , so with probability distri-
bution

P ((x, y)) =

N∏
i=1

PXY (xi, yi),

the probability that (x, y) is jointly typical to tolerance β tends to 1 as N
tends to ∞.
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2. The number of jointly typical sequence pairs |JN,β | ≤ 2N(H(X,Y )+β)

3. For any two sequences x ∈ XN drawn i.i.d from PX and y ∈ YN drawn
i.i.d from PY |X we have

P ((x, y) ∈ JN,β) ≤ 2−N(I(X;Y )−3β)

Proof. We prove each statement seperately, using Christian Schaffner’s lecture
notes[3] for part 2, and MacKay[1] for part 3.

1. By the law of large numbers the observed surprisal values HX(x), HY (y)
and HXY ((x, y)) will tend to H(X), H(Y ) and H(XY ) respectively as N
tends to ∞. This means for large N , |HX(x) − H(X)|, |HY (y) − H(Y )|
and |HXY ((x, y))−H(XY )| will be very small, and so (x, y) will be jointly
typical.

2. We have

1 =
∑

(x,y)∈XN×YN
P ((x, y))

≥
∑

(x,y)∈JN,β

P ((x, y))

≥ |JN,β |2−N(H(XY )+β)

which implies
|JN,β | ≤ 2N(H(XY )+β)

3. We have

P ((x, y) ∈ JN,β) =
∑

(x,y)∈JN,β

P (x)P (y)

≤ |JN,β |2−N(H(X)−β)2−N(H(Y )−β)

≤ 2N(H(XY )+β)−N(H(X)+H(Y )−2β) (using part 2)

= 2−N(I(X;Y )−3β)

4 Shannon’s Noisy-Channel Coding Theorem

Below is the main theorem of this report, following the formulation of MacKay
[1]

Theorem 4.1 (Shannon’s Noisy-Channel Coding Theorem). For any discrete
memoryless channel with input X and output Y the following statements hold:

7



1. The channel capacity
C := max

PX
I(X;Y )

satisfies the following property. For any ε > 0 and rate R < C, for
sufficiently large N , there is a code of length N and rate ≥ R and a
decoding algorithm, such that the maximimal probability of block error is
< ε.

2. If we accept bit error with probability pb, it is possible to achieve rates up
to R(pb), where

R(pb) :=
C

1− h(pb)
.

3. Rates greater than R(pb) are not achievable without having a higher prob-
ability of bit error than pb.

4.1 Proof of the First Part

Proof. We will give a restructured version of the proof in MacKay [1]. We start
off by proving the following lemma

Lemma 4.2. Given a channel with input X ∼ PX over X and output Y over
Y defined by PY |X . For any ε > 0 and rate R < I(X;Y ), for sufficiently large
N , there is a code of length N and rate ≥ R and a decoding algorithm, such
that the maximimal probability of block error is < ε.

Proof. Suppose we have the message set S = {1, 2, . . . , 2NR′}. We will assign

a codeword x(s) = (x
(s)
1 , x

(s)
2 , . . . , x

(s)
N ) ∈ XN of length N to each message s at

random according to

P (x(s) = (x1, x2, . . . xN )) =

N∏
i=1

PX(xi).

Note that this code has a rate of log(2NR
′
)/N = R′. Using this code to encode

our keywords the output of the channel will be y = (y1, y2, . . . , yN ), where

P (y|x(s)) =

N∏
i=1

PY |X(yi|x(s)i ).

We will decode using typical-set decoding meaning we will decode y as ŝ if
(x(ŝ), y) are jointly typical and there is no other message s′ such that (x(s

′), y)
are jointly typical. If y is not jointly typical with any codeword, or if y is jointly
typical with multiple different codewords, we will decode as an error. Now that
we have established a method of encoding and decoding, we will define three
types of errors we will analyse for our method. For simplicity we will assume
that we select messages to send uniformly, this will not affect the generality of
the proof.
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Definition 4.1. For a code C, generated using the method defined above we
define

1. The probability of block error:

pB(C) ≡ 1

2NR′
∑
s∈S

P (ŝ 6= s|C)

2. The maximal probability of block error:

pBM (C) ≡ max
s∈S

P (ŝ 6= s|s, C)

and additionally the average1 probability of block error

p̄B ≡
∑
C
pB(C)P (C)

.

It is now time to find an upper bound for the average probability of block
error. Because we constructed a codeword in the same (symmetrical) way for
each message, we may assume without loss of generality that we always send
message 1. Suppose now we have sent message 1 through the channel and we
are trying to decode. There are two ways to make an error. The first one is for
x(1) and y not to be jointly typical. We know however, by the first part of the
joint typicality theorem, that for any δ > 0 there exists an Nδ such that

∀N > Nδ : P ((x(1), y) /∈ JN,β) < δ.

The second way of making a mistake is for a codeword x(k), k 6= 1 to be jointly
typical with y. We know by the third part of the joint typicality theorem that
the chance for this to happen for any single codeword is ≤ 2−N(I(X;Y )−3β).
Combined with the fact that there are 2NR

′ − 1 competitors we find that there
exists an Nδ such that for any N > Nδ

p̄B ≤ P ((x(1), y) /∈ JN,β) +

2NR
′∑

s′=2

P ((x(s
′), y) ∈ JN,β)

≤ δ + 2−N(I(X;Y )−R′−3β)

Where the first inequality holds because of the union bound. Now if R′ <
I(X;Y )− 3β, the expression I(X;Y )−R′− 3β will be positive. This being the
case, there exists an Mδ for each δ > 0 such that for M > Mδ

2−M(I(X;Y )−R′−3β) < δ

1Though perhaps expected probability of block error would be more correct
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And so for each δ > 0, there exists an Lδ = max(Nδ,Mδ) such that for any
N > Lδ we have

p̄B < 2δ.

Since the average probability of block error < 2δ there must exist at least one
code C′ such that pB(C′) < 2δ.2 For this code, we will call the 2NR

′
/2 messages

least likely to produce an error S1. Now suppose there exists an s1 ∈ S1 such
that the probability of error when sending s1 using C′ is ≥ 4δ. This implies that
for each messages s2 in S − S1 the probability of error when sending s2 ≥ 4δ.
But this would imply that p̄B ≥ 2δ, which is a contradiction. We conclude that
for messages in S1 the probability of error is < 4δ. We now use the messages
in S1 and the codewords assigned to them in C′ to produce a new code C∗.
This code has a rate of R′ − 1

N (which is arbitrarily close to R′ for large N)

and PBM (C∗) < 4δ. Choosing R′ = R+I(X;Y )
2

3, δ = ε
4 , β < (I(X;Y )−R′)

3 and
N large enough to satisfy the bounds we made earlier we have constructed a
code of rate ≥ R with maximal probability of error < ε and thus proven the
lemma.

From this lemma we can now easily proof the first part of the theorem, by
simply choosing PX such that I(X;Y ) = C.

4.2 Proof of the Second and Third Part

For the second and thid part of the theorem we use a proof from Cramer and
Fehr[2] First, we will prove the following lemma:

Lemma 4.3. Let Y N = (Y1, Y2, ..., YN ) be the output of a channel using an
(N,K) block code with probability of bit error pb ∈ (0, 1). Let S ∼ PS be the
random variable that denotes which message was sent. We have

h(pb) ≥
H(S|Y N )

K

Proof. We find that:

h(pb) = h(

∑K
i=1 P (bit error on bit number i)

K
) (definition of pb)

≥
∑K
i=1 h(P (bit error on bit number i))

K
(Jensen’s Inequality (h is concave))

≥
∑K
i=1H(bit number i in message|Y N )

K
(Fano’s Inequality)

≥ H(S|Y N )

K
. (Chain Entropy Bound)

2This is true because

2δ >
∑
C
pB(C)P (C) ≥

∑
C

min
C∗

(pB(C∗)P (C) = min
C∗

pB(C∗).

3which is smaller than I(X;Y )− 3β!
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With this lemma we are now ready to prove the second and third part of
the Noisy-Channel Coding Theorem.

Proof. Let Y N an S be as in the lemma. Additionaly let XN = (X1, X2, . . . XN )
be the the channel input. We have

H(XNY NS) = H(XN−1Y N−1S) +H(XN |XN−1Y N−1S) +H(YN |XN−1Y N−1S)

= H(XN−1Y N−1S) +H(YN |XN ),

where the first equality follows from the chain rule. The second equality
follows from the fact that XN is known, if the other symbols and the original
message are known. We do assume here that every message has a unique code-
word, that every codeword is used only once, and that the Block Code is known.
Also, since channel uses are independent, YN only depends on XN . Repeating
this procedure, we will eventually get:

H(XNY NS) = H(S) +

N∑
i=1

H(Yi|Xi).

This is not the only equality we can derive from the chain rule, as we also have

H(XNY NS) = H(Y NS) +H(XN |Y NS) = H(Y NS).

Once again, if we know the original message, we will know the set of codewords,
so now we can write the mutual information between the original message and
the channel output as:

I(S;Y N ) = H(S) +H(Y N )−H(Y NS)

= H(Y N )−
N∑
i=1

H(Yi|Xi)

≤
N∑
i=1

H(Yi)−H(Yi|Xi)

=

N∑
i=1

I(Yi;Xi)

≤ NC =
NK

R
.

Using our lemma and assuming the bits in our message are uniformly dis-
tributed, we can write:

h(pb) ≥
H(S|Y N )

K
=
H(S)− I(S;Y N )

K
≥
K − NK

R

K
= 1− C

R
.
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Rewriting this will give us:

R ≤ C

1− h(pb)
.

Now because all the bounds we used can be sharp we have shown that rates up
to

R(pb) =
C

1− h(pb)
.

are achievable and that rates above R(pb) are not achievable.

5 Concluding Remarks

Shannon’s Theorem is a strong theoretical result. The first part especially proves
the existence of a coding method that seems counter-intuitive: it keeps on reduc-
ing the chance of error without reducing the transmission rate below a preset
value. The second and third part provide strict bounds on communications
where certain chances of error are acceptable.

It is not easy to apply the (first part of the) theorem in practice in a direct
way. Four main problems hinder our ability to do this. Firstly, while possible,
it can be computationally intensive to calculate the maximal rate C (and it’s
corresponding distribution PX). Secondly, once we have found C and PX , it is
not easy to find the promised code C. Neither the theorem nor it’s proof provide
any clue on how to find it, and though brute-forcing over finite alphabets is of
course possible, it can once again be very demanding, especially because the
codeword length N might be very large. This brings us to the third concern:
large codeword lengths. The theorem provides no bounds whatsoever on the
amount of channel uses we need for our code to start working (that is, achieve
it’s promised rate). N might simply be too large to be feasable in practical
applications. Finally, discrete memoryless channels, the only type of channels
the theorem tells us anything about, are rare in the real world. Most physical
channels have at least some sort of memory (though this may be negligable in
some cases).

Nonetheless these results are not useless in practice. For us personally, the
idea of being able to demand stricter error-bounds without giving up transmis-
sion rate is an interesting concept on its own. The given bounds might also be
seen as something of a goal: go try and achieve in practice what was proven
possible in theory. Lastly, they give a sense of scale. A researcher working on
encoding schemes that reach a rate of say 90% of C knows that he will not be
able to improve his design much further.
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