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The entropy rate of independent and identically distributed events can on average
be encoded by H(X) bits per source symbol. However, in reality, series of events (or
processes) are often randomly distributed and there can be arbitrary dependence
between each event. Such processes with arbitrary dependence between variables
are called stochastic processes. This report shows how to calculate the entropy rate
for such processes, accompanied with some de�nitions, proofs and brief examples.

1 Introduction

One may be interested in the uncertainty of an event or a series of events. Shannon entropy is a
method to compute the uncertainty in an event. This can be used for single events or for several
independent and identically distributed events. However, often events or series of events are
not independent and identically distributed. In that case the events together form a stochastic
process i.e. a process in which multiple outcomes are possible. These processes are omnipresent
in all sorts of �elds of study.
As it turns out, Shannon entropy cannot directly be used to compute the uncertainty in a

stochastic process. However, it is easy to extend such that it can be used. Also when a stochastic
process satis�es certain properties, for example if the stochastic process is a Markov process, it is
straightforward to compute the entropy of the process. The entropy rate of a stochastic process
can be used in various ways. An example of this is given in Section 4.1.
In Section 3 stochastic processes are de�ned and properties they can possess are discussed.

Extra consideration is given toMarkov processes as these have various properties that help when
computing the entropy rate. In Section 4 the entropy rate for a stochastic process is discussed
and de�ned. The �ndings based on all of this are reported in Section 5.

2 Preliminaries

The notation log(·) will refer to the logarithm with base 2. Throughout this paper random
variables (RV) are denoted using a capital letter. The set of values a RV can take on is denoted
using the same calligraphic capital letter. For example, X is a RV and can take on any value in X.
H(X) is the entropy (Shannon, 2001) of a random variable X de�ned as

H(X) , −
∑
x∈X

PX(x) log (PX(x)) . (1)
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The entropy of the joint distribution of two ormore random variables is notated asH(X1, . . . , Xn).
The joint entropy (Shannon, 2001) of X1, . . . , Xn is de�ned as

H(X1, . . . , Xn) , −
∑
x1∈X1

· · ·
∑
xn∈Xn

P(X1 = x1, . . . , Xn = xn) log
(
P(X1 = x1, . . . , Xn = xn)

)
.

(2)

Furthermore, the conditional entropy rate (Shannon, 2001) H(Y | X) is de�ned as

H(Y | X) ,
∑

(x,y)∈X×Y

P(x, y) log
(
P(x)

P(x, y)

)
. (3)

The binary entropy, h(p), is the entropy of event an event with probability p happening. Note
that h(p) = h(1− p). h(p) is de�ned as

h(p) = H(p, 1− p) = p log( 1
p
) + (1− p) log( 1

1− p
). (4)

Finally in this paper P(X1 = 1) has preference over PX1(1) or even just P(1) when there is no
confusion. PX may still be used when referred to the probability distribution of X.

3 Stochastic Processes

A stochastic process, also called a random process, is a set of random variables that model a
non deterministic system. In other words the outcome of the system if not known on beforehand
and the system can evolve in multiple ways. The uses of stochastic processes are manifold and
for example are used in the stochastic analysis of �nancial markets (Bachelier, 2011) or in models
for the simulation of seismic motion during earthquakes (Shinozuka and Deodatis, 1988). If not
cited otherwise the rest of this section follows chapter 4 of Cover and Thomas (2012).

A stochastic process {Xi} is an indexed collection of random variables. There can be arbitrary
dependence between each of the random variables. The stochastic process is characterized by
the joint probability mass function

P(X1 = x1, X2 = x2, . . . , Xn = xn), (x1, x2, , xn) ∈ Xn. (5)

The indexes of the random variables can be seen as discrete time indexes, but are not necessarily
time indexes.
A stochastic process is said to be stationary if the joint probability distribution of any subse-

quence of the sequence of random variables is invariant of shifts in time.

De�nition 1 (Stationary Stochastic Process). A stochastic process {Xi} is stationary if and only if

P(X1 = x1, X2 = x2, . . . Xn = xn) = P(X1+l = x1, X2+l = x2, . . . Xn+l = xn) (6)

for every n and l and every (x1, . . . , xn) ∈ Xn.

More speci�cally this means that P(Xi = α) = P(Xj = α) for any i, j and α ∈ X.
The random variables in a stochastic process can have arbitrary dependence. However, if the

random variables that a random variable can depend are restricted to only its direct predecessor
the stochastic process is called aMarkov chain or markov process.
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Figure 1: Example of a time invariant Markov process. Here X = {S, R}. Independent of the
time step the probability for the next state is only dependent on the current state. For
example if today is sunny (S) tomorrow will be rainy (R) with probability α.

De�nition 2 (Markov Process). A stochastic process {Xi} is a Markov process if and only if

P(Xi = xi | Xn = xn, . . . , Xi+1 = xi+1, Xi−1 = xi−1, . . . , X1 = x1)

= P(Xi = xi | Xi−1 = xi−1)
(7)

For every n, i and (x1, . . . , xn) ∈ Xn.

It follows that in the case of a Markov process the probability mass function of can be written
as

P(X1 = x1, X2 = x2, . . . , Xn = xn)

= P(X1 = x1)P(X2 = x2 | X1 = x1) · · ·P(Xn = xn | Xn−1 = xn−1).
(8)

The conditional probability function P(Xj = α | Xj−1 = β) for any j and α,β ∈ X is the
transition probability of moving from state β to a state α from time step j− 1 to time step j. If
this is the same for any j the Markov process is said to be time invariant.

De�nition 3 (Time Invariant Markov Process). AMarkov process is time invariant if and only if
for every α,β ∈ X and n = 1, 2, . . .

P(Xn = β | Xn−1 = α) = P(X2 = β | X1 = α) (9)

�gure 1 shows an example of the state transitions of a time invariant Markov process. If a Markov
process is time invariant it can be characterized by its initial state and a probability transition
matrix P ∈ R|X|×|X| where Pij = P(Xn+1 = j | Xn = i). For example the probability transition
matrix for the Markov process shown in �gure 1 is

P =

[
1− α α

β 1− β

]
. (10)

The probability transition matrix is a stochastic matrix as all rows sum to 1.
If the probability mass function at time t, PXt , is known then the probability mass function at

time t+ 1 is
P(Xt+1 = α) =

∑
x∈X

P(Xt = x)P(Xt+1 = α | Xt = x)

=
∑
x∈X

P(Xt = x)Pxα
(11)

If the distribution at time t+1 is the same as at time t then the distribution is called the stationary
distribution. This means that if the initial state is drawn according to a stationary distribution
the Markov process will be stationary.

Example 1 (Find the stationary distribution for a stochastic process). For the stochastic process
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{Xi} in �gure 1 let µ ∈ R|X| be the stationary distribution. Here µ is a row vector. The probability
transition matrix P is given in (10). µ is found by solving

µi =

|X|∑
j=1

µjPji, for i = 1, 2, . . . , |X| (12)

which is equivalent to solving µP = µ.

µP = µ⇒ µP = µI⇒ µ(P − I) = 0 (13)

Solve for µ to obtain αµ1 = βµ2. As µ is a probability distribution it follows that µ1 + µ2 = 1 µ
can be found by solving the following system of equations.

αµ1 − βµ2 = 0

µ1 + µ2 = 1
(14)

From this µ1 = β
α+β and µ2 = α

α+β is obtained which form the stationary distribution

µ =
[
µ1 µ2

]
=
[
β
α+β

α
α+β

]
(15)

From the Perron-Frobenius theorem (Perron, 1907) it follows that for a time invariant Markov
process the stationary distribution always exists as it ensures that every stochastic matrix P has
a vector µ such that µ = µP.
If from any state in a Markov process any other state can be reached in a �nite number of

steps with a non-zero probability the Markov chain is said to be irreducible. Let Y be the set of
all cycles in the Markov process. If there is a k ∈ N such that k > 1 and ∀c ∈ Y : k | l(c), where
l(c) is the length of cycle c, then the Markov process is periodic. Otherwise the Markov process
is aperiodic. Both irreducibility and aperiodicity is shown visually in �gure 2

Theorem 1 (Markovity and Stationarity). Let {Xi} be a Markov process that is both irreducible and
aperiodic. Then

1. {Xi} has a unique stationary distribution µ;

2. Independent of the initial distribution PX1 , PXk will converge to the stationary distribution as
k→∞;

3. The Markov process is stationary i� the initial distribution is chosen according to µ.

Table 1 is an illustration of Theorem 1 item 2. The Markov process of �gure 1 is initialized
with α = 1

2 and β = 3
4 . Then µ = [35 ,

2
5 ]. Table 1 shows that as k→∞ the distribution converges

to µ.
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(a) Irreducible (b) Reducible

(c) Periodic (d) Aperiodic

Figure 2: Examples of irreducible, reducible, periodic and aperiodic Markov processes.

PXk(·) k = 1 k = 2 k = 3 k = 4

PXk(S) 1 1
2 = 0.5 5

8 = 0.625 19
32 = 0.59375

PXk(R) 0 1
2 = 0.5 3

8 = 0.375 13
32 = 0.40625

PXk(·) k = 5 · · · k = ∞
PXk(S)

77
128 = 0.6015625 · · · 3

5 = 0.6

PXk(R)
51
128 = 0.3984375 · · · 2

5 = 0.4

Table 1: Convergence to stationary distribution when k→∞. (Table taken from Moser (2013))

3.1 Google PageRank and Stationary Distribution

Up to this point stochastic processes are mostly described as processes that have some sort of
time index. However, this is not needed at all. Murphy (2012) describes Google’s PageRank
as a stochastic process in which the the stationary distribution is determined to compute the
authority of a web page. This is brie�y discussed below to give an example of a di�erent type of
system that stochastic processes are used for.
Firstly, in information retrieval the standard process is to build an inverted document index

which is a mapping from words to the documents they occur in. When a query is entered
into the system this can also be seen as a document. Documents that are similar to this query
are likely to be those the user is searching for. However, on the world wide web there is an
additional source of information. The idea is that a web page that is linked to more often is more
authoritative than a page that is linked to less often. Pages that are more authoritative should
rank higher when they match the query. However, to protect for link farms, i.e. thousands of
websites that only link to other websites to boost the rank, the authority of the web page with
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the outgoing link is taken into account. This results in the following recursive de�nition for
authority of page j.

πj =
∑
i

Aijπi (16)

where Aij is the probability of web page i having a link to web page j. The �rst idea would be
to have a uniform distribution over all outgoing links on a web page. However, according to the
Perron-Frobenius theorem (Perron, 1907), to have a unique PageRank all items in A should be
strictly positive. Therefore there should be a small probability of having a link from any page
to every other page, including itself. By then solving equation (16) for π the authority for each
page is found. For big networks, such as the world wide web, this is costly. However, no further
detail is given in the present study.

This clearly shows that stochastic processes can also be used when there is no ‘time’ involved
or even ‘states’. In this case just the fact of moving between pages is enough to employ the
‘power’ of stochastic processes.

4 Entropy Rate of a Stochastic Process

In the previous section several varieties of stochastic processes are discussed. It is of interest
to compute the uncertainty in these processes. Shannon entropy (Shannon, 2001) can be used
to compute the uncertainty in bits for a single random variable. For example the entropy of a
random variable in the Markov process {Xi} of Figure 1 is

H(Xi) = H

(
α

α+ β
,
β

α+ β

)
= h

(
α

α+ β

)
. (17)

However, this is not the entropy of the stochastic process. If not cited otherwise this section
follows chapter �ve of Moser (2013).

Example 2. Let {Xi} be a stochastic process such that all Xi are i.i.d. Recall that the entropy is
the average number of bits to encode a single source symbol. As all Xi are i.i.d. each random
variable emits symbols according to the same distribution. Therefore the output of each RV can
be encoded using H(Xi) bits. If the entropy rate of a stochastic process is the average number
of bits used to encode a source symbol it makes sense that for an i.i.d. stochastic process the
entropy rate is equal to the entropy of its random variables. That is,

H({Xi}) = H(Xi) = H(X1) if Xi are i.i.d. (18)

However, the following example shows that this is not always the case.

Example 3. Let {Yi} be a Markov process with an initial distribution PY1(0) = PY1(1) = 1
2 .

Furthermore let the probability transition matrix PY be de�ned as

PY ,

[
0 1

0 1

]
. (19)

That is, if the process is in state 0 it will always go to state 1 in the next time step and after it
reached state 1 it will forever stay in state 1. The entropy of the initial state is H(X1) = h(12) = 1.
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For all states Xi for i = 2, 3, . . . there is no uncertainty and the entropy is zero. Obviously entropy
of this process is not equal to the entropy of one of the random variables as these di�er. Also it
is not equal to H(X1, X2, . . . , Xn) = 1 as on average zero bits are needed to encode the output
symbols.

This clearly shows that a new de�nition is needed for the entropy rate of stochastic processes.

De�nition 4 (Entropy Rate for Stochastic Processes). The entropy rate (that is, the entropy rate
per source symbol) for a stochastic process {Xi} is de�ned as

H({Xi}) , lim
n→∞ H(X1, X2, . . . , Xn)n

. (20)

If the limit exists.

For {Xi} from Example 2 this means that the entropy rate

H({Xi}) = lim
n→∞ H(X1, X2, . . . , Xn)n

= lim
n→∞ H(X1) +H(X2) + · · ·+H(Xn)n

= lim
n→∞ nH(X1)n

= H(X1)

(21)

Which still complies with (18). For {Yi} from example 3 however the entropy rate is

H({Yi}) = lim
n→∞ H(Y1, Y2, . . . , Yn)n

= lim
n→∞ H(Y1) +H(Y2) + · · ·+H(Yn)n

= lim
n→∞ H(Y1)n

= 0.

(22)

This makes sense as only the initial random variable has any uncertainty. After this there is no
uncertainty in the process. As the number of time steps goes to in�nity the average number of
bits per symbol approaches zero. This is also according to earlier intuition. A di�erent measure
for entropy can also be de�ned.

De�nition 5 (Entropy Rate Given Past).

H ′({Xi}) , lim
n→∞H(Xn | Xn−1, . . . , X1) (23)

H({Xi}) can be seen as the average entropy rate per source symbol and H ′({Xi}) is the entropy
rate of the last random variable given all random variables in the past. Theorem 2 states that it
doesn’t matter which entropy rate is used for stationary stochastic processes.

Theorem 2. For stationary stochastic processes the limit H({Xi}) always exists and is equal to H ′({Xi}).
That is,

H({Xi}) = lim
n→∞ H(X1, . . . , Xn)n

= lim
n→∞H(Xn | Xn−1, . . . , X1) = H

′({Xi}). (24)

Moreover,
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1. H(Xn | Xn−1, . . . , X1) is non increasing in n;

2. 1nH(X1, . . . , Xn) is non increasing in n;

3. H(Xn | Xn−1, . . . , X1) 6
1
nH(X1, . . . , Xn) for ∀n > 1.

Proof of Theorem 2, sub 1.

H(Xn | Xn−1, . . . , X1) = H(Xn+1 | Xn, . . . , X2) (25)
6 H(Xn+1 | Xn, . . . , X2, X1) (26)

Where (25) follows from stationarity of the process and the inequality of (26) follows from the
fact that conditioning reduces entropy.

Proof of Theorem 2, sub 3.

1

n
H(X1, . . . , Xn) =

1

n

n∑
k=1

H(Xk | Xk−1, . . . , X1) (27)

>
1

n

n∑
k=1

H(Xn | Xn−1, . . . , X1) (28)

= H(Xn | Xn−1, . . . , X1)

Here (27) follows from the chain rule for entropy and (28) follows from Theorem 2 sub 1.

Proof of Theorem 2, sub 2.

H(X1, . . . , Xn, Xn+1) = H(X1, . . . , Xn) +H(Xn+1 | Xn, . . . , X1) (29)
6 H(X1, . . . , Xn) +H(Xn | Xn−1, . . . , X1) (30)

6 H(X1, . . . , Xn) +
1

n
H(X1, . . . , Xn) (31)

=
n+ 1

n
H(X1, . . . , Xn)

Where (29) follows from the chain rule, (30) follows from Theorem 2 part 1 and (31) follows
from Theorem 2 part 3. From this it follows that

1

n+ 1
H(X1, . . . , Xn, Xn+1) 6

1

n
H(X1, . . . , Xn). (32)

For the proof of Theorem 2 one more part is needed, namely Cesáro Mean. The proof for this
is omitted.

Lemma 1 (Cesáro Mean). If limn→∞ an = a and bn , 1
n

∑n
k=1 ak then limn→∞ bn = a.

Proof of Theorem 2. The �rst part of Theorem 2 states that the limit H({Xi}) always exists. The-
orem 2 sub 2 states that 1nH(X1, . . . , Xn) is non increasing in n, however H(X1, . . . , Xn) is
the joint entropy of X1, . . . , Xn and consequently is lower bounded by zero. It follows that
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1
nH(X1, . . . , Xn)must converge and that the limit must exist. It remains to show that both limits
converge to the same limit.

H({Xi}) = lim
n→∞ 1

n
H(X1, . . . , Xn)

= lim
n→∞

,bn︷ ︸︸ ︷
1

n

n∑
k=1

H(Xk | Xk−1, . . . , X1)︸ ︷︷ ︸
,ak

(33)

= lim
n→∞H(Xn | Xn−1, . . . , X1) (34)

= H ′({Xi})

Step (33) follows from the entropy chain rule and (34) follows from Lemma 1.

For a stationary Markov process the entropy rate is particularly easy to compute. Let {Zi} be a
stationary Markov chain with stationary distribution µ and probability transition matrix P.

H({Zi}) = H
′({Zi})

= lim
n→∞H(Zn | Zn−1, . . . , Z1)

= lim
n→∞H(Zn | Zn−1) (35)

= H(Z2 | Z1) (36)

= −

|Z|∑
i=1

µi

 |Z|∑
j=1

Pij logPij

 (37)

Step (35) follows from the markovity of the process and (36) follows from the stationarity of the
process. This shows that the entropy rate of a Markov process is not dependent on its initial
distribution, but only on the transitions between the states and the stationary distribution (Cover
and Thomas, 2012).

4.1 Detecting Spam in Blog Comments using Entropy Rate

Calculating the entropy rate of a stochastic process is useful in several applications. One of these
applications is the detection of spam messages in blog comments. The following example is a
brief illustration on the usefulness of computing the entropy rate in such a case.

Kantchelian et al. (2012) designed a method to detect spam in blog comments. The approach
described in the paper is based on the assumption that calculating the entropy rate of comments
will give a useful indication of the distinction between spam and ham (non-spam). For this
project a Lempel-Ziv-Markov chain algorithm was used, which makes sense, as language itself
can be seen as a markov-chain where every word is dependent of its direct predecessor. As
spam words might appear often after other spam words, the uncertainty of the string decreases.
When this is true, the entropy for the markov process lowers as well. Figure 3 shows that strings
containing spam on average have a lower entropy rate. A user was labeled as spam i� one of the
comments by that particular user was labeled as spam. Conform the expectations, comments
by spam users had a lower entropy rate than comments by non-spam users. The �gure also
shows that blog posts in general contain less bits per character than e-books, from which can be
deducted that blogposts are less informative than texts from e-books.
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Figure 3: Spam and non-spam (ham) users plotted against a model created using an average
entropy rate of a dozen e-books. Each dot represents all contributions of a user in the
dataset, concatenated into one string. A user was considered a spam user i� one of the
comments by that particular user was labeled as spam. (Figure taken from Kantchelian
et al. (2012)).

5 Conclusion

Stochastic processes were introduced as processes that model non deterministic systems, i.e.
systems in which multiple outcomes are possible. Stochastic processes are modeled using an
indexed series of random variables. These RVs can have arbitrary dependence. It is also possible
to have stricter constraints for the stochastic process. In that case the process can, for example,
be a Markov process in which the rules for dependence are more strict. These stricter constraints
help later when one tries to reason with the model and is is easy to, for example, compute the
entropy rate. Other properties that a stochastic process may or may not have were also de�ned.
The normal Shannon entropy is not applicable to stochastic processes. It was shown that

using this de�nition of entropy results are found that do not agree with the intuition about
entropy and uncertainty. Therefore a new de�nition for the entropy rate of stochastic processes
is de�ned that does comply with the intuition about entropy and uncertainty.

A second de�nition for entropy of stochastic processes is also given.The �rst is H({Xi}) which
is the entropy measured in average number of bits per source symbol, and the second entropy
rate is H ′({Xi}) which is the number of bits used for the last source symbol given all source
symbols in the past. It was proved that for a stationary stochastic process is does not matter
which one is used as both exist and are equal for stationary stochastic processes.

Finally it was shown that due to its properties it is straightforward to compute the entropy
rate for a (stationary) Markov process. This shows that when using stochastic processes to
model real world systems it may be of interest to put extra constraints on the model to ease the
computations of, for example, the entropy rate of a system.
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