Entropy Rate of a Stochastic Process

Timo Mulder Jorn Peters

Universiteit van Amsterdam

January 2015

Overview

1 Stochastic Processes
Markov Process

- **2** Entropy Rate of Stochastic Processes
- 3 Finaly...

Stochastic Process $\{X_i\}$

Definition (Stochastic Process)

A discrete stochastic process is a sequence of RVs:

$$\dots, X_{-3}, X_{-2}, X_{-1}, X_0, X_1, X_2, \dots$$

Stochastic Process $\{X_i\}$

Definition (Stochastic Process)

A discrete stochastic process is a sequence of RVs:

$$\dots, X_{-3}, X_{-2}, X_{-1}, X_0, X_1, X_2, \dots$$

Characterized by its joint probability mass function:

$$P_{X_1,X_2...,X_n}(x_1,x_2...,x_n)$$

• Arbitrary dependence between RVs

Markov Process $\{X_i\}$

Stochastic process with the Markov property

Definition (Markov Process)

A stochastic process is a Markov process if for n = 1, 2, ...

$$P(X_{n+1} = x_{n+1} | X_n = x_n, ..., X_1 = x_1)$$

= $P(X_{n+1} = x_{n+1} | X_n = x_n)$

For all $x_1, x_2, \ldots, x_n, x_{n+1} \in \mathcal{X}$.

Stochastic process with the Markov property

Definition (Markov Process)

A stochastic process is a Markov process if for n = 1, 2, ...

$$P(X_{n+1} = x_{n+1} | (X_n = x_n, ..., X_1 = x_1))$$

$$= P(X_{n+1} = x_{n+1} | (X_n = x_n))$$

For all $x_1, x_2, ..., x_n, x_{n+1} \in X$.

Random variable only depends on its direct predecessor

Time Invariant Markov Process I

Definition (Time Invariance)

A Markov process is time invariant if for n = 1, 2, ...,

$$P(X_{n+1} = a \mid X_n = b) = P(X_2 = a \mid X_1 = b)$$

for all $a, b \in X$.

Defined by:

- 1 It's initial state
- **2** A probability transition matrix P
 - $P = [P_{ij}], i, j \in \{1, 2, 3, ..., m\}$
 - Where $P_{ij} = Pr\{X_{n+1} = j | X_n = i\}$

Time Invariant Markov Process II

Example

$$P(X_{n+1} = b|X_n = a)$$

= $P(X_2 = b|X_1 = a)$
= $P(X_9 = b|X_8 = a)$
etc.

Stationary Distribution

Given $P_{X_t}(\cdot)$ the probability mass function at time t+1 is defined as

$$P_{X_{t+1}}(\alpha) = \sum_{k=1}^{n} P(x_k) P(X_{t+1} = \alpha \mid X_t = x_k)$$
$$= \sum_{k=1}^{n} P(x_k) P_{x_k \alpha}$$

Given $P_{X_t}(\cdot)$ the probability mass function at time t+1 is defined as

$$P_{X_{t+1}}(\alpha) = \sum_{k=1}^{n} P(x_k) P(X_{t+1} = \alpha \mid X_t = x_k)$$
$$= \sum_{k=1}^{n} P(x_k) P_{x_k \alpha}$$

If the probability mass at time t and time t+1 are the same then the process is a stationary process. In that case μ is the stationary distribution where $\mu_i = P_X(i)$.

Stationary Stochastic Process

More precise:

Definition

A stochastic process is stationary if the joint distribution of any subset of the sequence of RVs is invariant of shifts in the time index.

Markov Process

More precise:

Definition

A stochastic process is stationary if the joint distribution of any subset of the sequence of RVs is invariant of shifts in the time index.

That is,

$$Pr\{X_1 = x_1, X_2 = x_2, \dots, X_n = x_n\}$$

= $Pr\{X_{1+1} = x_1, X_{2+1} = x_2, \dots, X_{n+1} = x_n\}$

for every n and every shift l and for all $x_1, x_2, ..., x_n \in \mathcal{X}$.

Stationary Stochastic Process

In particular this means that for any stationary stochastic process we have

$$P(X_n = a) = P(X_1 = a), \quad \forall n, a.$$

 In our example we can find the stationary distribution by solving

$$\mu^\mathsf{T} P = \mu^\mathsf{T}$$

 Thus the stationary distribution is related to a left eigenvector of the probability transition matrix P where the eigenvalue equals 1

Irreducible and aperiodic Markov process

Figure: Taken from Moser, 2013

Irreducible and aperiodic Markov process

Given a time invartiant Markov process $\{X_i\}$ that is irreducible and aperiodic.

Remark

 $\{X_i\}$ has a unique stationary distribution.

Irreducible and aperiodic Markov process

Given a time invartiant Markov process $\{X_i\}$ that is irreducible and aperiodic.

Remark

 $\{X_i\}$ has a unique stationary distribution.

Remark

Independent of the starting distribution $P_{X_1}(\cdot)$. $P_{X_k}(\cdot)$ will converge to the stationary distribution μ as $k \to \infty$.

Stationary Distribution II

Example

Let us show that in the example $\mu = [\frac{3}{5},\frac{2}{5}]$

$P_{X_k}(\cdot)$	k = 1
$P_{X_k}(S)$	1
$P_{X_k}(R)$	0
$P_{X_k}(\cdot)$	
$P_{X_k}(S)$	
$P_{X_{L}}(R)$	

Example

Let us show that in the example $\mu = [\frac{3}{5},\frac{2}{5}]$

$P_{X_k}(\cdot)$	k = 1	k = 2
$P_{X_k}(S)$	1	$\frac{1}{2} = 0.5$
$P_{X_k}(R)$	0	$\frac{1}{2} = 0.5$
$P_{X_k}(\cdot)$		
$P_{X_k}(S)$		
$P_{X_k}(R)$		

Markov Process

Example

Let us show that in the example $\mu=[\frac{3}{5},\frac{2}{5}]$

$P_{X_k}(\cdot)$	k = 1	k = 2	k = 3
$P_{X_k}(S)$	1	$\frac{1}{2} = 0.5$	$\frac{5}{8} = 0.625$
$P_{X_k}(R)$	0	$\frac{1}{2} = 0.5$	$\frac{3}{8} = 0.375$
$P_{X_k}(\cdot)$			
$P_{X_k}(S)$			
$P_{X_k}(R)$			

Stationary Distribution II

Example

Let us show that in the example $\mu = [\frac{3}{5},\frac{2}{5}]$

$P_{X_k}(\cdot)$	k = 1	k = 2	k = 3	k = 4
$P_{X_k}(S)$	1	$\frac{1}{2} = 0.5$	$\frac{5}{8} = 0.625$	$\frac{19}{32} = 0.59375$
$P_{X_k}(R)$	0	$\frac{1}{2} = 0.5$	$\frac{3}{8} = 0.375$	$\frac{13}{32} = 0.40625$
$P_{X_k}(\cdot)$				
$P_{X_k}(S)$				
$P_{X_k}(R)$				

Markov Process

Example

Let us show that in the example $\mu=[\frac{3}{5},\frac{2}{5}]$

$P_{X_k}(\cdot)$	k = 1	k = 2	k = 3	k = 4
$P_{X_k}(S)$	1	$\frac{1}{2} = 0.5$	$\frac{5}{8} = 0.625$	$\frac{19}{32} = 0.59375$
$P_{X_k}(R)$	0	$\frac{1}{2} = 0.5$	$\frac{3}{8} = 0.375$	$\frac{13}{32} = 0.40625$
$P_{X_k}(\cdot)$	k = 5			
$P_{X_k}(S)$	$\frac{77}{128} =$	0.6015625		
$P_{X_k}(R)$	$\frac{51}{128} =$	0.3984375		

Stationary Distribution II

Example

Let us show that in the example $\mu=[\frac{3}{5},\frac{2}{5}]$

$P_{X_k}(\cdot)$	k = 1	k = 2	k = 3	k = 4
$P_{X_k}(S)$	1	$\frac{1}{2} = 0.5$	$\frac{5}{8} = 0.625$	$\frac{19}{32} = 0.59375$
$P_{X_k}(R)$	0	$\frac{1}{2} = 0.5$	$\frac{3}{8} = 0.375$	$\frac{13}{32} = 0.40625$
$P_{X_k}(\cdot)$	k = 5		• • •	$k = \infty$
$P_{X_k}(S)$	$\frac{77}{128} =$	0.6015625		$\frac{3}{5} = 0.6$
$P_{X_k}(R)$	$\frac{51}{128} =$	0.3984375		$\frac{2}{5} = 0.4$

Entropy Rate

The entropy rate of a state in the example is

$$H(X_t) = H(\frac{\alpha}{\alpha + \beta}, \frac{\beta}{\alpha + \beta}) = h(\frac{\alpha}{\alpha + \beta})$$

Entropy Rate

The entropy rate of a state in the example is $H(X_t) = H(\frac{\alpha}{\alpha + \beta}, \frac{\beta}{\alpha + \beta}) = h(\frac{\alpha}{\alpha + \beta})$

This is not the entropy a the stochastic process.

Entropy Rate

The entropy rate of a state in the example is $H(X_t) = H(\frac{\alpha}{\alpha + \beta}, \frac{\beta}{\alpha + \beta}) = h(\frac{\alpha}{\alpha + \beta})$

This is not the entropy a the stochastic process.

So what is the entropy of a stochastic process?

Entropy Rate: Some Intuition

If $\{X_i\}$ is i.i.d. it makes sense to say that $H(\{X_i\}) = H(X_1)$.

 \rightarrow Entropy is average bits per symbol.

Entropy Rate: Some Intuition

If $\{X_i\}$ is i.i.d. it makes sense to say that $H(\{X_i\}) = H(X_1)$.

 \rightarrow Entropy is average bits per symbol.

However,

Example

 $\{Y_i\}$ is a source with memory such that $P_{Y_1}(0) = P_{Y_1}(1) = \frac{1}{2}$. furthermore assume that

$$P_{Y_2|Y_1}(0 \mid 0) = 0, P_{Y_2|Y_1}(1 \mid 0) = 1$$

 $P_{Y_2|Y_1}(0 \mid 1) = 0, P_{Y_2|Y_1}(1 \mid 1) = 1$

Then $P_{Y_2}(1)=1$ which means that $H(Y_2)=0$, $H(Y_2\mid Y_1)=0$, $H(Y_{n+1}\mid Y_n)=0$ and $H(Y_1,\ldots,Y_n)=1$.

Entropy Rate: Some Intuition

If $\{X_i\}$ is i.i.d. it makes sense to say that $H(\{X_i\}) = H(X_1)$.

 \rightarrow Entropy is average bits per symbol.

However,

Example

 $\{Y_i\}$ is a source with memory such that $P_{Y_1}(0) = P_{Y_1}(1) = \frac{1}{2}$. furthermore assume that

$$P_{Y_2|Y_1}(0 \mid 0) = 0, P_{Y_2|Y_1}(1 \mid 0) = 1$$

 $P_{Y_2|Y_1}(0 \mid 1) = 0, P_{Y_2|Y_1}(1 \mid 1) = 1$

Then $P_{Y_2}(1)=1$ which means that $H(Y_2)=0$, $H(Y_2\mid Y_1)=0$, $H(Y_{n+1}\mid Y_n)=0$ and $H(Y_1,\ldots,Y_n)=1$. This is not the entropy of the process.

Entropy Rate: Definition

The entropy rate of a stochastic process strongly depends on the memory.

Definition (Entropy Rate of $\{X_i\}$)

The entropy rate (the entropy per source symbol) of any stochastic process $\{X_i\}$ is defined as

$$H({X_i}) := \lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \dots, X_n)$$

if the limit exists.

Entropy Rate: More Intuition

Example

Given a stochastic process $\{X_i\}$. Assume that $\{X_i\}$ is i.i.d. Then the entropy rate of $\{X_i\}$ is

$$H({X_i}) = \lim_{n \to \infty} \frac{1}{n} H(X_1, \dots, H_n) = \lim_{n \to \infty} \frac{1}{n} n H(X_1) = H(X_1)$$

Entropy Rate: More Intuition

Example

Given a stochastic process $\{X_i\}$. Assume that $\{X_i\}$ is i.i.d. Then the entropy rate of $\{X_i\}$ is

$$H(\{X_i\}) = \lim_{n \to \infty} \frac{1}{n} H(X_1, \dots, H_n) = \lim_{n \to \infty} \frac{1}{n} n H(X_1) = H(X_1)$$

Example

Given the stochastic process $\{Y_i\}$. Then the entropy rate of $\{Y_i\}$ is

$$H(\{Y_i\} = \lim_{n \to \infty} \frac{1}{n} H(Y_1, \dots, Y_n) = \lim_{n \to \infty} \frac{1}{n} = 0$$

Entropy Rate: A Related Quantity

We can also define a related quantity for entropy rate:

$$H'(\{X_i\}) = \lim_{n \to \infty} H(X_n \mid X_{n-1}, X_{n-2}, \dots, X_1)$$

Entropy Rate: A Related Quantity

We can also define a related quantity for entropy rate:

$$H'(\{X_i\}) = \lim_{n \to \infty} H(X_n \mid X_{n-1}, X_{n-2}, \dots, X_1)$$

 $H(\{X_1\})$ is the entropy rate per source symbol of $\mathfrak n$ random variables and $H'(\{X_i\})$ is the entropy rate of the last random variable given the past.

Theorem

For a stationary stochastic process the entropy rate $H(\{X_i\} \text{ always exists and is identical to } H'(\{X_i\}):$

$$\begin{split} H(\{X_i\}) &= \lim_{n \to \infty} \frac{1}{n} H(X_1, \dots, X_n) \\ &= \lim_{n \to \infty} H(X_n \mid X_{n-1}, \dots, X_1) = H'(\{X_i\}) \end{split}$$

Furthermore,

- **1** $H(X_n \mid X_{n-1},...,X_1)$ is nonincreasing in n;
- **2** $\frac{1}{n}$ H($X_1, ..., X_n$) is nonincreasing in n;
- **3** $H(X_n \mid X_{n-1}, ..., X_1) \le \frac{1}{n} H(X_1, ..., X_n), \quad \forall n \ge 1.$

Entropy Rate: Markov Chains

For a stationary Markov chain, the entropy rate is easy to calculate:

$$H(\{X_{i}\}) = H'(\{X_{i}\})$$

$$= \lim_{n \to \infty} H(X_{n} \mid X_{n-1}, \dots, X_{1})$$

$$= \lim_{n \to \infty} H(X_{n} \mid X_{n-1})$$

$$= H(X_{2} \mid X_{1})$$

Finaly...

- Method to compute the entropy rate of a stochastic process;
- Using this a typical set for 'ergodic sets' can be constructed which has uses in compression/encoding.
- Also stochastic processes are widely used in moddeling in for example AI and the entropy can be used to find optimal models.