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Discrete Memoryless Channels

Definition

A discrete memoryless channel consist of two random variables X and Y
over finite discrete alphabets X and ) that satisfy

PX=x,Y=y)=P(X=x)P(Y =y|X=x)Vx,y e X x )

where X is the input and Y is the output of the channel.
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Definitions

Block Code

A Block Code converts a sequence of source bits s with length K into a
sequence t of length N with N > K.

Probability of Block Error

The pg of a code and decoder is:
Esin P(Sin)P(Sout 75 Sinlsin)-

Optimal Decoder

| N\

An optimal decoder is the decoder which minimalises the probability of

block error, by decoding an output y as input s, where P(sly) is
maximalised.

Probability of Bit Error

The pp of a code and decoder is the average probability that a bit is syt is
not equal to the correspoding bit in sj,.

| \
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Typical Sequences

Definition

Let X be a random variable over an alphabet X'. A sequence x € XN of
length N is called typical to tolerance $ if and only if

L log !
N % Px)

—HX)| <8

Suppose X is the result of a coin flip. The sequence

x :=1000111001101100

is typical to any tolerance 8 > 0.
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Jointly Typical Sequences

Definition
Let X, Y be random variables over alphabets X and ). Two sequences
x € XN and y € Y of length N are called jointly typical to tolerance 3 if

and only if both x and y are typical and
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Jointly Typical Sequences

Definition

Let X, Y be random variables over alphabets X and ). Two sequences
x € XN and y € Y of length N are called jointly typical to tolerance 3 if
and only if both x and y are typical and

1 1

|N'|°gW—H(X, Y) <8

| A\

Example

Suppose X and Y are both random variables such that P(x = 1) = 0.5
and P(y|x) corresponds to a channel of noise level 0.3. The sequences

x := 1111100000
y := 0001100000

are typical to any tolerance 3 > 0.
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Jointly Typical Set 1

Definition

Let X, Y be random variables over alphabets X and ). The set Jy 5 that
contains all pairs (x,y) € X x ) of length N jointly typical to tolerance /3
is called the jointly-typical set.
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Jointly Typical Theorem

Let x, y be drawn from (XY)N which is defined by

P(x,y) :H'D(Xna)/n)

© The probability that x, y are jointly typical to tolerance S tends to 1
as N — oo

v
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Jointly Typical Theorem

Let x,y be drawn from (XY)N which is defined by

P(ij) = HP(Xna)/n)
=1l

© The probability that x, y are jointly typical to tolerance S tends to 1
as N — oo

@ The number of jointly typical sequences |Jy g| < PEARE )
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Jointly Typical Theorem

Let x,y be drawn from (XY)N which is defined by

P(ij) = HP(Xna)’n)
=1l

© The probability that x, y are jointly typical to tolerance S tends to 1
as N — oo

@ The number of jointly typical sequences |Jy g| < PEARE )

@ For any two sequences x, y chosen independently from XN and YN

respectively that have the same marginal distribution as P(x,y) we
have

P((x,y) € ng) < 2~ NUXY)=36)

v
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An lllustration

9N H{Y)

Figure: Typical Sets (from MacKay 2003)
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Statement

@ For every discrete memoryless channel. the channel capacity

C=max/(X;Y)
Px
satisfies the following property. For any ¢ > 0 And rate R < C, for
sufficiently large N, there is a code of length N and rate > R and a
decoding algorithm, such that the maximimal probability of block
error is < €.

v
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@ If we accept bit error with probability pp, it is possible to achieve
rates up to R(pp), where

C
R(pp) = 1= h(ps)’
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Statement

@ For every discrete memoryless channel. the channel capacity

C=max/(X;Y)
Px
satisfies the following property. For any ¢ > 0 And rate R < C, for
sufficiently large N, there is a code of length N and rate > R and a

decoding algorithm, such that the maximimal probability of block
error is < €.

@ If we accept bit error with probability pp, it is possible to achieve
rates up to R(pp), where

C
R(pp) = 1= h(ps)’

© Rates greater than R(pp) are not achievable.
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Proof: An Analogy

Figure: Weighing Babies (from MacKay 2003)

Lucas Slot, Sebastian Zur Shannon'’s Noisy-Channel Coding Theorem February 13, 2015



Coding

Creating a Code

Consider a fixed distribution P(x). We will generate S = 2VR" codewords

at random using
N

P(x) =] P(xa)

n=1

and assign a codeword x(5) to each message s. We make this code known
to both sides of the channel.

v

This code has a rate of R’!
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Decoding

Received Signal

The signal received on the other end of the channel is y, with

N
P(yIx)) = [T P(yalx$)

Decoding

3

Il

—
A,

We will decode using typical-set decoding. We will decode y as s if
(x(s?,y) are jointly typical and there is no other message s’ such that
(x'*")) y) are jointly typical.

WIS ELES
We will make a mistake when

—~
~
A,

© There is no jointly typical x(5).

@ There are multiple jointly typical x(*).
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Three Types of Errors

Block Error
pe(C) = P(5 # s|C)
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Three Types of Errors

Block Error
pe(C) = P(5 # s|C)

Average Block Error
<pg >= .P(E#s|C)P(C)
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Three Types of Errors

Block Error
pe(C) = P(5 # s|C)

Average Block Error
<pg >= .P(E#s|C)P(C)

Maximal Block Error
pm(C) = maxs P(§ # s|s,C)
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Bounding the Errors (1)

No Jointly Typical x(*)
By the first part of the jointly typical theorem

V8 AN(S) : P(xW)y) & Ung) < 26

Too Many Jointly Typical x(*)

The chance for a random x(*”) and y to be jointly typical
< 2= NUX:Y)=38  There are 2(NR") — 1 candidates.
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Bounding the Errors (2)

Average Block Error

Now, using the union bound we find

oNR'

< pem > < 5+ Z 27N(I(X;Y)735
s'=2

< 5+2—N(I(X;Y)—R’—3,8)

If R < I(X;Y) — 33 we can make this error very small (smaller than 2¢).
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Three modifications

Pick the best P(x)

We choose the best P(x), so R" < I(X;Y) — 3/ becomes R’ < C — 35.

Pick the best C
Using our baby-argument, there must be a code with pg(C) < 24

Perform a trick

From this C we now toss the worst half of the codewords. Those that
remain must have probability of error < 4. We define a new code with
these (2VR'~1) codewords.
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Conclusion

We have proven the existence of a code C with rate R’ < C — 3§ with a

maximal probability of error < 45. The theorem can now be proven be
setting

R+ C
2

R =

€

"=

(C-FR)
<

p 3

N big enough
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Overview

©@ What happens when we try to communicate with a rate, greater than
the capacity?

@ We could just send 1/R of the source bits and guess the rest of the
source. This will give us an average p, of 3(1 —1/R).

© However, it turns out we can minimalise this error so that we get:
Ha(pp) =1-1/R.
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@ We take an excellent (N, K) code with rate R" = K/N.

@ This code is capable of correcting errors in our channel with transition
probability g.

© Asymptotically we may assume that R ~ 1 — Ha(pp).

@ We know chop our source our source up in blocks of length N and
pass it through our decoder, which gives us blocks of length K, which
then get communicated over the noiseless channel.

© When we pass this new message to our encoder, we will receiver a
message which we will differ at an average of g bits from the
original message, so pp = q.

@ Attaching this compressor to our capacity-C error-free communicator
C

wegetarateofR:%:%:m.

Lucas Slot, Sebastian Zur Shannon'’s Noisy-Channel Coding Theorem February 13, 2015 26 / 29



Outline

e Noisy-Channel Coding Theorem

@ Part three

Lucas Slot, Sebastian Zur Shannon'’s Noisy-Channel Coding Theorem February 13, 2015 27 / 29



Proof

© A Markov chain is defined by the source, encoder, noisy channel and
the decoder:

P(s,x,y,8) = P(s)P(x|s)P(y|x)P(3]y)
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© A Markov chain is defined by the source, encoder, noisy channel and
the decoder:

P(s,x,y,8) = P(s)P(x|s)P(y|x)P(3]y)

@ I(s;8) < I(x; y) because of the data processing inequality.

© By the definition of channel capacity we know that /(x; y) < NC, so
I(s;8) < NC.

© Assuming that our system has a rate R and bit error probability pp,
then I(s;8) > NR(1 — Hax(pp))-

Q If R> R(pp) = Wg(pb)' then /(s;§) > NC. This gives a
contradiction, so for any pp, there is no larger rate possible than
R(ps)-

Lucas Slot, Sebastian Zur Shannon'’s Noisy-Channel Coding Theorem February 13, 2015 28 /29



References

3 David J.C. MacKay - Information Theory, Inference, and Learning
Algorithms - Cambridge University Press 2003 - Accessed via
http://www.inference.phy.cam.ac.uk/itprnn/book.pdf

Lucas Slot, Sebastian Zur Shannon'’s Noisy-Channel Coding Theorem February 13, 2015 29 /29


http://www.inference.phy.cam.ac.uk/itprnn/book.pdf

	Definitions and Terminology
	Discrete Memoryless Channels
	Terminology
	Jointly Typical Sets

	Noisy-Channel Coding Theorem
	Statement
	Part one
	Part two
	Part three


