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Discrete Memoryless Channels

Definition

A discrete memoryless channel consist of two random variables X and Y
over finite discrete alphabets X and Y that satisfy

P(X = x ,Y = y) = P(X = x)P(Y = y |X = x) ∀x , y ∈ X × Y

where X is the input and Y is the output of the channel.

Example
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Definitions

Block Code

A Block Code converts a sequence of source bits s with length K into a
sequence t of length N with N > K .

Probability of Block Error

The pB of a code and decoder is:∑
sin

P(sin)P(sout 6= sin|sin).

Optimal Decoder

An optimal decoder is the decoder which minimalises the probability of
block error, by decoding an output y as input s, where P(s|y) is
maximalised.

Probability of Bit Error

The pb of a code and decoder is the average probability that a bit is sout is
not equal to the correspoding bit in sin.
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Typical Sequences

Definition

Let X be a random variable over an alphabet X . A sequence x ∈ XN of
length N is called typical to tolerance β if and only if

| 1
N
· log

1

P(x)
− H(X )| < β

Example

Suppose X is the result of a coin flip. The sequence

x := 1000111001101100

is typical to any tolerance β ≥ 0.
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Jointly Typical Sequences

Definition

Let X ,Y be random variables over alphabets X and Y. Two sequences
x ∈ XN and y ∈ Y of length N are called jointly typical to tolerance β if
and only if both x and y are typical and

| 1
N
· log

1

P(x , y)
− H(X ,Y )| < β

Example

Suppose X and Y are both random variables such that P(x = 1) = 0.5
and P(y |x) corresponds to a channel of noise level 0.3. The sequences

x := 1111100000

y := 0001100000

are typical to any tolerance β ≥ 0.
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Jointly Typical Set 1

Definition

Let X ,Y be random variables over alphabets X and Y. The set JN,β that
contains all pairs (x , y) ∈ X × Y of length N jointly typical to tolerance β
is called the jointly-typical set.
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Jointly Typical Theorem

Theorem

Let x , y be drawn from (XY )N which is defined by

P(x , y) =
n∏

i=1

P(xn, yn)

1 The probability that x , y are jointly typical to tolerance β tends to 1
as N →∞

2 The number of jointly typical sequences |JN,β| ≤ 2N(H(X ,Y )+β)

3 For any two sequences x , y chosen independently from XN and Y N

respectively that have the same marginal distribution as P(x , y) we
have

P((x , y) ∈ JN,β) ≤ 2−N(I (X ,Y )−3β)
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An Illustration

Figure: Typical Sets (from MacKay 2003)
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Statement

Theorem
1 For every discrete memoryless channel. the channel capacity

C = max
PX

I (X ;Y )

satisfies the following property. For any ε > 0 And rate R < C , for
sufficiently large N, there is a code of length N and rate ≥ R and a
decoding algorithm, such that the maximimal probability of block
error is < ε.

2 If we accept bit error with probability pb, it is possible to achieve
rates up to R(pb), where

R(pb) =
C

1− h(pb)
.

3 Rates greater than R(pb) are not achievable.
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Proof: An Analogy

Figure: Weighing Babies (from MacKay 2003)
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Coding

Creating a Code

Consider a fixed distribution P(x). We will generate S = 2NR
′

codewords
at random using

P(x) =
N∏

n=1

P(xn)

and assign a codeword x (s) to each message s. We make this code known
to both sides of the channel.

Important!

This code has a rate of R ′!
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Decoding

Received Signal

The signal received on the other end of the channel is y , with

P(y |x (s)) =
N∏

n=1

P(yn|x (s)n )

Decoding

We will decode using typical-set decoding. We will decode y as s if
(x (s), y) are jointly typical and there is no other message s ′ such that
(x (s

′), y) are jointly typical.

Mistakes

We will make a mistake when

1 There is no jointly typical x (s).

2 There are multiple jointly typical x (s).
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Three Types of Errors

Block Error

pB(C) ≡ P(ŝ 6= s|C)

Average Block Error

< pB >≡
∑
C P(ŝ 6= s|C)P(C)

Maximal Block Error

pBM(C) ≡ maxs P(ŝ 6= s|s, C)
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Average Block Error

< pB >≡
∑
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Bounding the Errors (1)

No Jointly Typical x (s)

By the first part of the jointly typical theorem

∀δ ∃N(δ) : P(x (1), y) 6∈ JN,β) < 2δ

Too Many Jointly Typical x (s)

The chance for a random x (s
′) and y to be jointly typical

≤ 2−N(I (X ;Y )−3β. There are 2(NR
′) − 1 candidates.
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Bounding the Errors (2)

Average Block Error

Now, using the union bound we find

< pBM > ≤ δ +
2NR

′∑
s′=2

2−N(I (X ;Y )−3β

≤ δ + 2−N(I (X ;Y )−R′−3β)

If R ′ < I (X ;Y )− 3β we can make this error very small (smaller than 2δ).
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Three modifications

Pick the best P(x)

We choose the best P(x), so R ′ < I (X ;Y )− 3β becomes R ′ < C − 3β.

Pick the best C
Using our baby-argument, there must be a code with pB(C) < 2δ

Perform a trick

From this C we now toss the worst half of the codewords. Those that
remain must have probability of error < 4δ. We define a new code with
these (2NR

′−1) codewords.
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Conclusion

We have proven the existence of a code C with rate R ′ < C − 3β with a
maximal probability of error < 4δ. The theorem can now be proven be
setting

R ′ =
R + C

2

δ =
ε

4

β <
(C − R ′)

3
N big enough
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Overview
1 What happens when we try to communicate with a rate, greater than

the capacity?

2 We could just send 1/R of the source bits and guess the rest of the
source. This will give us an average pb of 1

2(1− 1/R).

3 However, it turns out we can minimalise this error so that we get:
H2(pb) = 1− 1/R.
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Method
1 We take an excellent (N,K ) code with rate R ′ = K/N.

2 This code is capable of correcting errors in our channel with transition
probability q.

3 Asymptotically we may assume that R ' 1− H2(pb).

4 We know chop our source our source up in blocks of length N and
pass it through our decoder, which gives us blocks of length K , which
then get communicated over the noiseless channel.

5 When we pass this new message to our encoder, we will receiver a
message which we will differ at an average of qN bits from the
original message, so pb = q.

6 Attaching this compressor to our capacity-C error-free communicator
we get a rate of R = NC

K = C
R′ = C

1−H2(pb)
.
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Proof
1 A Markov chain is defined by the source, encoder, noisy channel and

the decoder:

P(s, x , y , ŝ) = P(s)P(x |s)P(y |x)P(ŝ|y)

2 I (s; ŝ) ≤ I (x ; y) because of the data processing inequality.

3 By the definition of channel capacity we know that I (x ; y) ≤ NC , so
I (s; ŝ) ≤ NC .

4 Assuming that our system has a rate R and bit error probability pb,
then I (s; ŝ) ≥ NR(1− H2(pb)).

5 If R > R(pb) = C
1−H2(pb)

, then I (s; ŝ) ≥ NC . This gives a
contradiction, so for any pb, there is no larger rate possible than
R(pb).
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P(s, x , y , ŝ) = P(s)P(x |s)P(y |x)P(ŝ|y)

2 I (s; ŝ) ≤ I (x ; y) because of the data processing inequality.

3 By the definition of channel capacity we know that I (x ; y) ≤ NC , so
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