Shannon's Noisy-Channel Coding Theorem

Lucas Slot Sebastian Zur

February 13, 2015

Outline

- Definitions and Terminology
 - Discrete Memoryless Channels
 - Terminology
 - Jointly Typical Sets
- Noisy-Channel Coding Theorem
 - Statement
 - Part one
 - Part two
 - Part three

Outline

- Definitions and Terminology
 - Discrete Memoryless Channels
 - Terminology
 - Jointly Typical Sets
- Noisy-Channel Coding Theorem
 - Statement
 - Part one
 - Part two
 - Part three

Discrete Memoryless Channels

Definition

A discrete memoryless channel consist of two random variables X and Y over finite discrete alphabets $\mathcal X$ and $\mathcal Y$ that satisfy

$$P(X = x, Y = y) = P(X = x)P(Y = y|X = x) \ \forall x, y \in \mathcal{X} \times \mathcal{Y}$$

where X is the input and Y is the output of the channel.

Discrete Memoryless Channels

Definition

A discrete memoryless channel consist of two random variables X and Y over finite discrete alphabets $\mathcal X$ and $\mathcal Y$ that satisfy

$$P(X = x, Y = y) = P(X = x)P(Y = y|X = x) \ \forall x, y \in \mathcal{X} \times \mathcal{Y}$$

where X is the input and Y is the output of the channel.

Example

Outline

- Definitions and Terminology
 - Discrete Memoryless Channels
 - Terminology
 - Jointly Typical Sets
- Noisy-Channel Coding Theorem
 - Statement
 - Part one
 - Part two
 - Part three

Definitions

Block Code

A Block Code converts a sequence of source bits s with length K into a sequence t of length N with N > K.

Probability of Block Error

The p_B of a code and decoder is:

$$\sum_{s_{in}} P(s_{in}) P(s_{out} \neq s_{in} | s_{in}).$$

Optimal Decoder

An optimal decoder is the decoder which minimalises the probability of block error, by decoding an output y as input s, where P(s|y) is maximalised.

Probability of Bit Error

The p_b of a code and decoder is the average probability that a bit is s_{out} is not equal to the correspoding bit in s_{in} .

Outline

- Definitions and Terminology
 - Discrete Memoryless Channels
 - Terminology
 - Jointly Typical Sets
- Noisy-Channel Coding Theorem
 - Statement
 - Part one
 - Part two
 - Part three

Typical Sequences

Definition

Let X be a random variable over an alphabet \mathcal{X} . A sequence $x \in \mathcal{X}^N$ of length N is called typical to tolerance β if and only if

$$|\frac{1}{N} \cdot \log \frac{1}{P(x)} - H(X)| < \beta$$

Example

Suppose X is the result of a coin flip. The sequence

$$x := 1000111001101100$$

is typical to any tolerance $\beta \geq 0$.

Jointly Typical Sequences

Definition

Let X, Y be random variables over alphabets \mathcal{X} and \mathcal{Y} . Two sequences $x \in \mathcal{X}^N$ and $y \in \mathcal{Y}$ of length N are called jointly typical to tolerance β if and only if both x and y are typical and

$$\left|\frac{1}{N} \cdot \log \frac{1}{P(x,y)} - H(X,Y)\right| < \beta$$

Jointly Typical Sequences

Definition

Let X, Y be random variables over alphabets \mathcal{X} and \mathcal{Y} . Two sequences $x \in \mathcal{X}^N$ and $y \in \mathcal{Y}$ of length N are called jointly typical to tolerance β if and only if both x and y are typical and

$$\left|\frac{1}{N} \cdot \log \frac{1}{P(x, y)} - H(X, Y)\right| < \beta$$

Example

Suppose X and Y are both random variables such that P(x = 1) = 0.5 and P(y|x) corresponds to a channel of noise level 0.3. The sequences

$$x := 1111100000$$

$$y := 0001100000$$

are typical to any tolerance $\beta \geq 0$.

Jointly Typical Set 1

Definition

Let X, Y be random variables over alphabets \mathcal{X} and \mathcal{Y} . The set $J_{N,\beta}$ that contains all pairs $(x,y) \in \mathcal{X} \times \mathcal{Y}$ of length N jointly typical to tolerance β is called the jointly-typical set.

Jointly Typical Theorem

Theorem

Let x, y be drawn from $(XY)^N$ which is defined by

$$P(x,y) = \prod_{i=1}^{n} P(x_n, y_n)$$

• The probability that x,y are jointly typical to tolerance β tends to 1 as $N \to \infty$

Jointly Typical Theorem

Theorem

Let x, y be drawn from $(XY)^N$ which is defined by

$$P(x,y) = \prod_{i=1}^{n} P(x_n, y_n)$$

- **①** The probability that x,y are jointly typical to tolerance β tends to 1 as $N \to \infty$
- ② The number of jointly typical sequences $|J_{N,\beta}| \leq 2^{N(H(X,Y)+\beta)}$

Jointly Typical Theorem

Theorem

Let x, y be drawn from $(XY)^N$ which is defined by

$$P(x,y) = \prod_{i=1}^{n} P(x_n, y_n)$$

- The probability that x,y are jointly typical to tolerance β tends to 1 as $N \to \infty$
- ② The number of jointly typical sequences $|J_{N,\beta}| \leq 2^{N(H(X,Y)+\beta)}$
- **3** For any two sequences x, y chosen *independently* from X^N and Y^N respectively that have the same marginal distribution as P(x, y) we have

$$P((x, y) \in J_{N,\beta}) \le 2^{-N(I(X,Y)-3\beta)}$$

An Illustration

Figure: Typical Sets (from MacKay 2003)

Outline

- Definitions and Terminology
 - Discrete Memoryless Channels
 - Terminology
 - Jointly Typical Sets
- Noisy-Channel Coding Theorem
 - Statement
 - Part one
 - Part two
 - Part three

Statement

Theorem

• For every discrete memoryless channel, the channel capacity

$$C = \max_{\mathcal{P}_X} I(X; Y)$$

satisfies the following property. For any $\epsilon > 0$ And rate R < C, for sufficiently large N, there is a code of length N and rate $\geq R$ and a decoding algorithm, such that the maximimal probability of block error is $< \epsilon$.

Statement

Theorem

• For every discrete memoryless channel, the channel capacity

$$C = \max_{\mathcal{P}_X} I(X; Y)$$

satisfies the following property. For any $\epsilon>0$ And rate R< C, for sufficiently large N, there is a code of length N and rate $\geq R$ and a decoding algorithm, such that the maximimal probability of block error is $<\epsilon$.

② If we accept bit error with probability p_b , it is possible to achieve rates up to $R(p_b)$, where

$$R(p_b) = \frac{C}{1 - h(p_b)}.$$

Statement

Theorem

For every discrete memoryless channel. the channel capacity

$$C = \max_{\mathcal{P}_X} I(X; Y)$$

satisfies the following property. For any $\epsilon > 0$ And rate R < C, for sufficiently large N, there is a code of length N and rate $\geq R$ and a decoding algorithm, such that the maximimal probability of block error is $< \epsilon$.

② If we accept bit error with probability p_b , it is possible to achieve rates up to $R(p_b)$, where

$$R(p_b) = \frac{C}{1 - h(p_b)}.$$

3 Rates greater than $R(p_b)$ are not achievable.

Outline

- Definitions and Terminology
 - Discrete Memoryless Channels
 - Terminology
 - Jointly Typical Sets
- Noisy-Channel Coding Theorem
 - Statement
 - Part one
 - Part two
 - Part three

Proof: An Analogy

Figure: Weighing Babies (from MacKay 2003)

Coding

Creating a Code

Consider a fixed distribution P(x). We will generate $S=2^{NR'}$ codewords at random using

$$P(x) = \prod_{n=1}^{N} P(x_n)$$

and assign a codeword $x^{(s)}$ to each message s. We make this code known to both sides of the channel.

Important!

This code has a rate of R'!

Decoding

Received Signal

The signal received on the other end of the channel is y, with

$$P(y|x^{(s)}) = \prod_{n=1}^{N} P(y_n|x_n^{(s)})$$

Decoding

We will decode using *typical-set decoding*. We will decode y as s if $(x^{(s)}, y)$ are jointly typical and there is no other message s' such that $(x^{(s')}, y)$ are jointly typical.

Mistakes

We will make a mistake when

- There is no jointly typical $x^{(s)}$.
- ② There are multiple jointly typical $x^{(s)}$.

Three Types of Errors

Block Error

 $p_B(\mathcal{C}) \equiv P(\hat{s} \neq s | \mathcal{C})$

Three Types of Errors

Block Error

$$p_B(\mathcal{C}) \equiv P(\hat{s} \neq s | \mathcal{C})$$

Average Block Error

$$< p_B > \equiv \sum_{\mathcal{C}} P(\hat{s} \neq s | \mathcal{C}) P(\mathcal{C})$$

Three Types of Errors

Block Error

$$p_B(C) \equiv P(\hat{s} \neq s | C)$$

Average Block Error

$$< p_B > \equiv \sum_{\mathcal{C}} P(\hat{s} \neq s | \mathcal{C}) P(\mathcal{C})$$

Maximal Block Error

$$p_{BM}(\mathcal{C}) \equiv \max_{s} P(\hat{s} \neq s | s, \mathcal{C})$$

Bounding the Errors (1)

No Jointly Typical $x^{(s)}$

By the first part of the jointly typical theorem

$$\forall \delta \ \exists N(\delta) : P(x^{(1)}, y) \notin J_{N,\beta}) < 2\delta$$

Too Many Jointly Typical $x^{(s)}$

The chance for a random $x^{(s')}$ and y to be jointly typical $\leq 2^{-N(I(X;Y)-3\beta}$. There are $2^{(NR')}-1$ candidates.

Bounding the Errors (2)

Average Block Error

Now, using the union bound we find

$$< p_{BM} > \le \delta + \sum_{s'=2}^{2^{NR'}} 2^{-N(I(X;Y)-3\beta)}$$

 $\le \delta + 2^{-N(I(X;Y)-R'-3\beta)}$

If $R' < I(X; Y) - 3\beta$ we can make this error very small (smaller than 2δ).

Three modifications

Pick the best P(x)

We choose the best P(x), so $R' < I(X; Y) - 3\beta$ becomes $R' < C - 3\beta$.

Pick the best C

Using our baby-argument, there must be a code with $p_B(\mathcal{C}) < 2\delta$

Perform a trick

From this $\mathcal C$ we now toss the worst half of the codewords. Those that remain must have probability of error $<4\delta$. We define a new code with these $(2^{NR'-1})$ codewords.

Conclusion

We have proven the existence of a code \mathcal{C} with rate $R' < C - 3\beta$ with a maximal probability of error $< 4\delta$. The theorem can now be proven be setting

$$R' = \frac{R+C}{2}$$
 $\delta = \frac{\epsilon}{4}$
 $\beta < \frac{(C-R')}{3}$
 $N \text{ big enough}$

Outline

- Definitions and Terminology
 - Discrete Memoryless Channels
 - Terminology
 - Jointly Typical Sets
- Noisy-Channel Coding Theorem
 - Statement
 - Part one
 - Part two
 - Part three

Overview

- What happens when we try to communicate with a rate, greater than the capacity?
- ② We could just send 1/R of the source bits and guess the rest of the source. This will give us an average p_b of $\frac{1}{2}(1-1/R)$.
- **1** However, it turns out we can minimalise this error so that we get: $H_2(p_b) = 1 1/R$.

Method

- We take an excellent (N, K) code with rate R' = K/N.
- ② This code is capable of correcting errors in our channel with transition probability q.
- **3** Asymptotically we may assume that $R \simeq 1 H_2(p_b)$.
- We know chop our source our source up in blocks of length N and pass it through our decoder, which gives us blocks of length K, which then get communicated over the noiseless channel.
- **3** When we pass this new message to our encoder, we will receiver a message which we will differ at an average of qN bits from the original message, so $p_b = q$.
- Attaching this compressor to our capacity-C error-free communicator we get a rate of $R = \frac{NC}{K} = \frac{C}{R'} = \frac{C}{1 H_2(p_b)}$.

Outline

- Definitions and Terminology
 - Discrete Memoryless Channels
 - Terminology
 - Jointly Typical Sets
- Noisy-Channel Coding Theorem
 - Statement
 - Part one
 - Part two
 - Part three

• A Markov chain is defined by the source, encoder, noisy channel and the decoder:

$$P(s,x,y,\hat{s}) = P(s)P(x|s)P(y|x)P(\hat{s}|y)$$

A Markov chain is defined by the source, encoder, noisy channel and the decoder:

$$P(s, x, y, \hat{s}) = P(s)P(x|s)P(y|x)P(\hat{s}|y)$$

② $I(s; \hat{s}) \leq I(x; y)$ because of the data processing inequality.

A Markov chain is defined by the source, encoder, noisy channel and the decoder:

$$P(s, x, y, \hat{s}) = P(s)P(x|s)P(y|x)P(\hat{s}|y)$$

- $I(s; \hat{s}) \leq I(x; y)$ because of the data processing inequality.
- **3** By the definition of channel capacity we know that $I(x; y) \leq NC$, so $I(s; \hat{s}) \leq NC$.

A Markov chain is defined by the source, encoder, noisy channel and the decoder:

$$P(s,x,y,\hat{s}) = P(s)P(x|s)P(y|x)P(\hat{s}|y)$$

- $I(s; \hat{s}) \leq I(x; y)$ because of the data processing inequality.
- **3** By the definition of channel capacity we know that $I(x; y) \leq NC$, so $I(s; \hat{s}) \leq NC$.
- **3** Assuming that our system has a rate R and bit error probability p_b , then $I(s; \hat{s}) \geq NR(1 H_2(p_b))$.

A Markov chain is defined by the source, encoder, noisy channel and the decoder:

$$P(s,x,y,\hat{s}) = P(s)P(x|s)P(y|x)P(\hat{s}|y)$$

- $I(s; \hat{s}) \leq I(x; y)$ because of the data processing inequality.
- **3** By the definition of channel capacity we know that $I(x; y) \leq NC$, so $I(s; \hat{s}) \leq NC$.
- **3** Assuming that our system has a rate R and bit error probability p_b , then $I(s; \hat{s}) \geq NR(1 H_2(p_b))$.
- If $R > R(p_b) = \frac{C}{1 H_2(p_b)}$, then $I(s; \hat{s}) \ge NC$. This gives a contradiction, so for any p_b , there is no larger rate possible than $R(p_b)$.

References

David J.C. MacKay - Information Theory, Inference, and Learning Algorithms - Cambridge University Press 2003 - Accessed via http://www.inference.phy.cam.ac.uk/itprnn/book.pdf