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Abstract 

The zero error capacity Co of a noisy 
channel is defined as the least upper bound of 
rates at which it is possible to transmit infor- 
mation with zero probability of error. var 1 oue 
properties of Co are ,studied: upper end lower 
bounds and methods of evaluation of Co are given. 
Inequalities are obtained for the Co relating to 
the @*sumn and "product" of two given channels. 
The analogous problem of zero error capacity C,F 
for a channel with a feedback link is considered. 
It is shown that while the ordinary capacity of 
a memoryless channel with feedback is equal to 
that of the same channel without feedback, the 
zero error capacity may be greater. A solution 
is given to the problem of eialuating CoF. 

Introduction 

The ordinary capacity C of a noisy channel 
may be thought of as follows. There exists a 
sequence of codes for the channel of. increasing 
block length such that the input rate of trans- 
mission approaches C and the probability of error 
in decoding at the receiving point approaches 
zero. Furthermore, this is not true for any 
value higher than C. In some situations it may 
be of interest to consider. rather than codes 
with probability of error auproaching zero, codes 
for which the probability is zero and to - 
investigate the highest possible rate of trans- 
mission (or the least upper bound of these rates) 
for such codes. This rate, Co, is the main 
object of investigation of the present Paper. 
It is interesting that while Co would appear to 
be a simpler property of a channel then C, it is 
in fact more difficult to calculate end leads to 
a number of as yet unsolved problems. 

We shall consider only finite discrete 
memoryless channels. Such a channel is specified 
by a finite transition matrix I/pi(j)11 where 
pi(j) is the probability of input letter i being 
received as output letter j (i = l,Z,...,a; 
j = 1,2,..., b) and $ pi(j) = 1. Equivalently, 
such a channel maybe represented by a line 
diagram such as Fig. 1. 

The channel being memorylees means that 
successive operations are independent. If the 
input letters i and j are used, the probability 
of output letters k and 1 will be pi(k)Pj(l). 
A sequence,of input letters will be called an 
input vord, a sequence of output letters an 
outwt word. A mapping of M messages (which we 

Fig. 1 

may take to be the integers l,Z,...,M) into a 
subset of input words of length n will be called 
a block code of length n. R = & log M will be 
called the inuut rate for this 'model Unless 
otherwise specifi=a code will mean such a 
block code. We will, throughout, use natural 
logarithms and natural (rather then binary) unite 
of information, since this simplifies the 
analytical processes that will be employed. 

A decoding system for a block code of 
length n is a method of associating a unique 
input message (integer from 1 to M) with each 
possible output word of length n, that is, a 
function from outnut words of length n to the 
integers 1 to #. *The Probability-of error for a 
code is the,probability when the M input messages 
are used each with Probability l/M that the noise 
and the decoding system will lead to an input 
messege different from the one that actually 
occurred. 

If we have two given channels, it is 
possible to form a single channel from them in 
two natural ways which we call the sum and 
product of the two channels. The m of two 
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channels is the channel formed by using inputs 
from either of the two given channels with the 
same transition probabilities to the set of out- 
put letters consisting of the logical sum of the 
two output alphabets. Thus the sum channel is 
defined by a transition matrix formed by placing 
the matrix of one channel below and to the right 
of that for the other channel and filling the 
remaining two rectangles with zeros. 
and llP;(j)/I 

If p,(j) 
are the individual matrices, the 

sum has the following matrix: 

~~(1) . . . p,(r) 0 . . . 0 
. . . . . . . 
p,(l) . . . it(r) b . . . b 

0 . ..o pi(l) . . . Pi(r') 
. . . . . . 
b . . . b pi*(l). . . pL'(r') 

The product of two channels is the channel 
whose input alphabet consists of all ordered 
pairs (1.i') where i is a letter from the first 
channel alphabet and 1' from the second, whose 
output alphabet is the similar set of ordered 
pairs of letters from the two individual output 
alphabets and whose transitton probability from 
(i,il) to Ll,j9 is p,(j) f,'Ll 1. 

The sum of channelscorresponds physically 
to a situation where either of two channels mey be 
used (but not both), a new choice being made for 
each transmitted letter. The product channel 
corresponds to a situation where both channels 
are used each unit of time. It is interesting to 
note that multiplication and addition of channels 
are both associative and commutative, and that 
the product distributes over a sum. Thus one can 
develop a kind of algebra for channels in which 
i&isX~ossible to write, for example, a polynomial 

an 9 where the an are non-negative integers a 
and X is a channel. We shall not, however, 
investigate here the algebraic properties of this 
system. 

The Zero Error Canacity 

In a discrete channel we will say that two 
input letters are adjacent if there is an output 
letter which can be caused by either of these two. 
Thus, i and-j are adjacent if there exists a t 
such that both pi(t) and pj(t) do not vanish. In 
Fig.'l, a end c are adjacent, while a and d are 
not. 

If all input letters are adjacent to each 
other, any code with more than one vord has a 
probability of error at the receiving point 
greater than zero. In fact, the probability of 
error in decoding words satisfies 

PeG+ Piin 

where pm n 
the Pi(J 3 

is the smallest (non-vanishing) among 
. n is the length of the code and M is 

the number of words in the code. To prove this, 

note that any two words have a possible output 
word in common, namely the word consisting of the 
sequence of common output letters when the two in- 
put vorde are compared letter by letter. Each of 
the two input words has a probability at least 
l&n of producing this common output word. In 
using the code, the two particular input words 
will each occur 1 of the time and will cause the 
common output b En pmin of the time. This output 
can be decoded in only one way. Hence at least 
one of these situations leads to an error. 

ln This 
error, K pmin, is assigned to this code word, end 
from the remaining M - 1 code words another pair 
is chosen. A source of error to the amount * 
a piin is assigned in similar fashion to one of 
these, and this is a disjoint event. Continuing 
in this manner, we obtain a total of at least 
u pn 

Y min as probability of error. 

If it is not true that the input letters 
are all adjacent to each other, it is possible to 
transmit at a positive rate with zero probability 
of error. The least upper'bound of all rates 
which can be achieved with zero probability of 
error will be called the zero error cauac1t.X of 
the channel and denoted by Co. If we let MO(n) be 
the largest number of words in a code of length n, 
no two of which are adjacent, then Co is the least 
upper bound of the numbers 4 log M,(n) when n 
varies through all positive integers. 

One might expect that Co would be equal to 
log M,(l), that is, that if we choose the largest 
possible set of non-adjacent letters and form all 
sequences of these of length n, then this would be 
the best error free code of length n. This is not, 
in general, true, although it holds in many cases, 
particularly when the number of input letters is 
small. The first failure occurs with five input 
letters vith the channel in Fig. 2. In this 
channel, it is possible to choose at most two non- 
adjacent letters, for example 0 and 2. Using 
sequences of these, 00, 02. 20, and 22 we obtain 
four vords in a code of length two. However, it 
is possible to construct a code of length two with 
five members no two of 'which are adjacent as 
follows: 00, 12, 24, 31. 43. It is readily 
verified that no two of these are adjacent. Thus, 
Co for this channel is at least .$ log 5. 

Fig. 2 



No method has been found for determining 
Co for the general discrete channel, and this we 
propose as an interesting unsolved problem in 
coding theory. We shall develop a number of 
results which enable one to determine Co in many 
special cases, for example, in all channelswith 
five or lees input letters vith the single excep- 
tion of the channel of Fig. 2 (or channels 
equivalent in adjacency structure to it). We 
will also develop some general inequalities 
enabling one to estimate Co quite closely-in most 
cases. 

It WV be seen, in the first place, that 
the value of Co depends only on which input 
letters are adjacent to each other. Let us 
define the adjacency matrix for a channel, Aij, 
as follows. 

1 

i 

if input letter 1 is adjacent to j or 
Aij = ifi=j 

0 otherwise 

Suppose two channelshave the same adjacency 
matrix (possibly after renumbering the input 
letters of one of them). Then it is obvious that 
a zero error code for one will be a zero error 
code for the other and..hence, that the zero 
error capacity Co for one will also apply to the 
other. 

The adjacency structure contained in the 
adjacency matrix can also be represented as a 
linear graph. Construct a graph with as many 
vertices as there are input letters, and connect 
two distinct vertices with a line or branch of 
the graph if the corresponding input letters are 
adjacent. Two examples are shown in Fig. 3, 
corresponding to the channels of Figs. 1 and 2. 
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Theorem 1: The zero error capacity Co of 
a discrete memorylees channel is bounded by the 
inequalities 

- log min > Aij PiPj (Co\< min C 
pi ij pi(S) 

EP, = 1, Pi20 
i 

$Z p,(j) = 1, p,(j) 2 0 

where C is the capacity of any channel with 
transition probabilities p,(j) and having the 
adjacency matrix Aij. 

The upper bound is fairly obvious. The 
zero error capacity is certainly lees than or 
equal to the ordinary capacity for any channel 
with the same adjacency matrix since the former 
requires codes with zero probability of error 
vhile the latter requires only codes approaching 
zero probability of erroi. By minimizing the 
capacity through variation of the pi(j) we find 
the lowest upper bound available through this 
argument. Since the capacity is a continuous 
function of the pi(j) in the closed region 
defined by pi(j) 2, 0, f p,(j) = 1, we may 
write min instead of greatest lower bound. 

It is worth noting that it is only neces- 
sary to consider a particular channel in perform- 
ing this minimization, although there are an 
infinite number with the s&me adjacency matrix. 
This one particular channel is obtained as 
follows from the adjacency matrix. If Aik = 1 
for a pair 1 k, define an output letter j with 
p (j) and p (j) both differing from zero. Now 
ih there arf any three input letters, say 1 k 1, 
all adjacent to each other, define an output 
letter, say m, with pi(m) pk(m) pi(m) all dif- 
ferent from zero. In the adjacency graph this 
corresponds to a complete sub-graph with three 
vertices. Next, subsets of four letters or 
complete subgraphs of four vertices, say 1 k 1 m, 
are given an output letter, each being connected 
to it, end so on. It is evident that any channel 
with the same adjacency matrix differs from that 
just described only by variation in the number of 
output symbols for some of the pairs. triplets, 
etc., of adjacent input letters. If a channel 
has more than one output symbol for an adjacent 
subset of input letters, then its capacity is 
reduced by identifying these. If a channel 
contains no element, say for a triplet i k 1 of 
adjacent input letters, this will occur as a 
special case of our canonical channel which has 
output letter m for this triplet when pi(m), 
%(m) and p,(m) all vanish. 

The lover bound of the theorem will now be 
proved. We use the procedure of random codes 
based on probabilities for the letters Pi, these 
being chosen to minimize the quadratic form 

> 
A .P P.. iJ i J Construct en ensemble of codes 

if 
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each containirg M words. each word n letters long. 
The words in a code are chosen by the following 
stochastic method. Each letter of each word’ is 
chosen independently of all others and is the 
letter 1 with probability Pi. We now compute the 
probability in the ensemble that any particular 
word is not adjacent to any other word in its 
code. The probability that the first letter of 
one word is adjacent to the first letter of a 
second word is 

5 AijPiPj * since this sums 
the cases of adjacency with coefficient 1 end 
those of non-adjacency with coefficient 0. The 
probability that two vorde are adjacent in all 
letters, and therefore adjacent as words, is 
( z &,P,P,)n. The probability of non-adja- 

AJ AJ A J 
cency is, therefore 1 - ( 5 AijPiPj)n. The 
probability that all N - 1 other-words in a code 
are not adjacent to a given word is, since they 
are chosen independently, 

[ 
1 1 ( ) AijPiPjP 1 M -1 

ij 

which is, by a well knovn inequality, greater 
than 1 - ( H - l)( 

F; 
AijPiPj )n, which in turn 

is greater than 1 - M ( x AijPiPj)n. If we 
set H = (1 - 

ij 
.u 13 

P P -n, we then have, 

by taking 5 small, a-rate as close as desired to 
- 1% 

5 Ai jpipj ’ Furthermore, once c is 
chosen, by taking n eu.fficie;tly large, we can 
insure that M( 5 Al jPiPj) = (1 - cP is as 
small as desired, say, less than 6. The 
probability in the ensemble of codes of a 
particular vord being adjacent to eny other in 
its own code is now lees than 6. This implies 
that- there are codes in the ensemble for which 
the ratio of the number of such undesired words 
to the total number in the code is lees than or 
equal to 6. For, if not, the ensemble average 
would be worse than 6. Select such a code and 
delete from it the words having this property. 
We have reduced our rate only by at most 
log (1 - 6)-l, Since c and 6 were both 
arbitrarily small, we obtain error-free codes 
arbitrarily close. to the rate-log 
min 
pi 5 aijPiPj 

as stated in the theorem. 

In connection with the upper bound of 
Theorem 1, the following result is useful in 
evaluating the minimum C. It is also intereet- 
ing in its own right end will prove useful later 
in connection with channel5having a feedback 
link. 

Theorem 2: In a discrete memorylees 
channel with transition probabilitiee pi(j) and 
input letter probabilitiee Pi the follwing 
three statements are equivalent. 

1) The rate of tranemi5eion 
R = 5 p,P,(j) log (pi(j)/ f p&(j)) 

is stationary under variation of all non-vanieh- 
ing Pi subject to x Pi = 1 end under varia- 

I 

tion of p,(j) for those pi(j)suchthat Pip,(j)>0 
and subject to f Pi(j) = 1. 

2) The mutual information between input- 
output pairs Iij = lw (pi(j)/ f p$&)) ia 

constant, Iij = I, for all ij pairs of non-vanish- 
ing probability (i.e. pairs for vhich Pipi(j)‘>O). 

3) We have p,(j) = rj a function of j 
only whenever P,p,(j)>O; and also > Pi = h, 

i&j 
.a constant independent of j where S j is the Set 
of input letters that can produce output letter j 
with probability greater than zero. We also have 
I = log h-l. 

The pi(j) and Pi corresponding to the 
maximum and minimum capacity when the pi(j) are 
varied (keeping, however, any pi(j) that are zero 
fixed at sero) satisfy l), 2) and 3). 

Proof: We vi11 show first that 1) and 2) 
are equivalent and then that 2) end 3) are 
equivalent. 

R 15 a bounded continouus function of its 
arguments Pi and p,(j) in the (bounded) region 
of allowed values defined by 

f p,(j) = 1, p,(j) 3 0. = pi = 1, Pi 80, 
B has a finite 

partial derivative with respect to any pi(j)>O. 
In fact, we readily calculate, 

a*= 
Pi log (P,(j)/ G Pdg(j)) 

A necessary and sufficient condition that R be 
stationary for small variation-of the non- 
vanishing p,(j) subject to the conditions given 
is that 

for all I, j, k such that Pi, pi (.I), pi(k) do not 
vanish. This requires that 

Pi log p,(j) I r P,p,(j) = 
m 

Pi log pi(k) / x P,p,(k) 
m 

If ve let Q 
j= ZE P,p,(j), the probability of 

m - 
output letter j, then this is equivalent to 
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-;:Pi(k) P,(j) 

Qj Qk 
.- 

In other words, p,(j)/Q, is independent of j, 8 
function of i only whenever Pi>0 and pi(j) 
This function of i we call ui. Thus 

p,(j) = uiQj 

unless Pip,(j) = 0. 

Now. taking the partial derivative 
with respect to Pi we obtain: 

$- i 
F P,(j) log v - 1 

of R 

For R to be stationary subject to 
we must have aRIaPi = aRpPk. Thus 

x p (j) log pi(j) ji -= 
Qj 

Since for Pip,(j)>0 we have p,(j)/Qj = Qi, this 
becomes 

E P,(j) log (ti = 
J 

f q&j) log cfk 

1% “i = log ok 

Thus “i is independent of i and may be written a. 
Consequently 

P,(j) -=a 
Qj 

P,(j) 
log - = 

Qj 
1% a= I 

whenever Pipi ( j ) > 0. 

The converse result is an easy reversal of 
the above argument. If 

log Pi(j) - = I, then 

QJ 

aR/aP, = I - 1, by a simple substitution in the 

aR/aP, formula. Hence R is stationary under 
variation of Pi constrained by XP, = 1. 
Further, aR/ap%(j) = Pi I = aRbpi(k), and hence 

the variation of R also vanishes subject to 

f pdj) = l* 
Ye now prove that 2) implies 3). Suppose 

log p,(j) = I whenever PIpi(j)>O. Then p,(j) .-b 
=j 

T 

=e a Qjt a function of j only under this same 
condition. Also, if q (i) is the conditional 
probability of i givenj j, then 

QJ qjw I 
pi Qj = e 

P,(i) = eIPi 

1 = > qj(i) = e1 )-Pi 
id3 

5 its . 
J 

To prove that 3) implies 2) we assume 

P,(j) = rj 

when P,p,(j)>O. Then 

P,P,(j) 2 -= Q,q, (i) qj (i) 

‘iQj QJ = Aj (say) =-e - 
5 Qj pi 

Row, summing the equation P A = q (I) over icS 
and using the assumption frfd3) dat F Pi 2h 

we obtain j 

hh =l 
J 

so A 
j 

is h -1 and independent of j. Hence rij = I 
-1 =logh . 

The last statement of the theorem concern- 
ing minimum and maximum capacity under variation 
of p,(j) follows from the fact that R at these 
points must be stationary under variation of all 
non-vanishing Pi and p,(j), and hence the 
corresponding Pi end p,(j) satisfy condition 1) 
of the theorem. 

For simple channels it is usually more 
convenient to apply particular tricks in trying 
to evaluate Co instead of the bounds given in 
Theorem 1, which involve maximiting and minimizing 
processes. The simplest lower bound, as mentioned 
before, is obtained by merely finding the 
logarithm of the maximum number of non-adjacent 
input letters. 

A very useful device for determining Co 
which works in many cases may be described using 
the notion of an adjacency-reducing maming. 
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By this we mean a mapping of letters into other 
letters, i-u(i), with the property that if i and 
j are not adjacent in the channel (or graph) then 
a(i) ,and a(j) are not adjacent. If we have a 
zero-error code, then we may apply such a mapping 
letter by letter to the code end obtain a new 
code which will also be of the’ zero-error type, 
since no adjacencies can be produced by the 
mapping. 

Theorem 2: If all the input letters i can 
be mapped by en adjacency-reducing mapping 
i+a(i) into a subset of the letters no two of 
which are adjacent, then the zero-error capacity 
Co of the channel is equal to the logarithm of 
the number of letters in this subset. 

For, in the first place, by forming all 
sequences of these letters we obtain a zero-error 
code at this rate. Secondly, any zero error code 
for the channel can be mapped into a code using 
only t ese letters and containing, therefore, at 
most e la! on non-adjacent words. 

The zero-error capacities, or, more exactly, 
the equivalent numbers of input letters for all 
adjacency graphs up to five vertices are shown in 
Fig. 4. These can all be found readily by the 
method of Theorem 3, except for the channel of 
Fig. 2 mentioned previously, for which we know 
only that the zero-error capacity lies in the 
range +10g51c0sog5. 7 

All graphs with sXx vertices have been 
examined and the capacities of all of these can 
also be found by this theorem, with the exception 
of four. These four ten be given in terms of the 
capacity of Fig. 2, so that this case is essen- 
tially the only unsolved problem,up to seven 
vertices. Graphs with seven vertices have not 
been completely examined but at least one new 
situation arises, the analog of Fig. 2 with seven 
input letters. 

As examples of how the No values were 
computed by the method of adjacency-reducing 
l=WPingS, several of the graphs in Fig. 4 have 
been labelled to show a suitable mapping. The 
scheme is as follows. All nodes labelled a are 
mapped into node a as well as aitself. All 
nodes labelled b and also $ are mapped into nodeB. 
All nodes labelled c and y are mpped into node 
Y- It is readily verified that no new adjacen- 
ties are produced by the mappings indicated and 
that the a, S, Y nodes are non-adjacent. 

Cc for Sum and product Channels 

Theorem 4:’ If two memoryless channels have 
zero-error capacities GA = log A ahd Ct = log B, 
their sum has a zero-error capacity.greater than 
or equal to log (A + B) and their product a zet;o 
error capacity greater than or equal to CA + Co. 
If the graph of either of the two channels can 
be reduced to non-adjacent points by the mapping 
method (Theorem 3). then these inequalities can 
be replaced by equalities. 

proof: It is clear that in the case of 
t+e prpduot, the zero error capacity is at least 
co + co, since we may form a produgt code from two 
codes with rates close to CA and Co. If these 
codes are not of the same length, we use for the 
new code the least common multiple of the indl- 
vidual lengths and form all sequences of the code 
words of each of the codes up to this length. To 
prove equality in case one of the graphs, say that 
for the first channel, can be mapped into A non- 
adjacent points, suppose we have a code for the 
product channel. The letters for the product.. 
code, of course , are ordered pairs of letters 
corresponding to the original channels.’ Replace. 
the first letter in each pair in all code wJrds. 
by the letter corresponding to reduction by the 
mapping method. This reduces or preserves 
adjacency between words in the code. Wow sort 
the code words into An subsets according to the 
sequences of first letters in the ordered pairs. 
Each of these subsets can contain at most Bn 
members, since this is the largest possible number 
of codes for the second chennel of this length. 
Thus, in total, there are at most AnBn words in 
the code, giving the desired result. 

In the case of the sum of the two channels, 
we first show how, from two given codes for the 
two channels, to construct a code for the sum 
channel with equivalent number of letters equal 
to Al - s + B1 -& , where 6 is arbitrarily small 
and A and B are the equivalent number of letters 
for the two codes. Let the two codes have 
lengths nl and n2. The new code will have length 
n where n is the smallest integer greater than 
both +nd+ , How form codes for the first 

channel and-for the second channel for all 
lengths k from zero to n as follows. Let k equal 
*1 + b, where a and b are integers and b <nl. 
We form all sequences of a words from the given 
code for the first channel and fill in the 
remaining b letters arbitrarily, say all with the 
first letter in the code alphabet. We achieve 
at least Ak - en different words of length k none 
of which is adjacent to any other. In the same 
way we form codes for the second channel and 
achieve Bk - 6n words in this code of length k. 
We now intermingle the k code for the first 
channel with the n - k code for the second channel 
in all (E)possible ways end do this for each 
value of k. This produces a code n letters long 
with at least 

& 
(El Ak - n 6 Bn- k - nb 

= (AB)-&(A + B)n different words. It is readily 
seen that no two of these different words are 
adjacent . The rate is at least log (A + B) - 6 
log AB, and since 6 was arbitrarily small, we can 
achieve a rate arbitrarily close to log (A + B). 

To show that it is not possible, when one 
of the graphs reduces by mapping to non-adjacent 
points, to exceed the rate corresponding to the 
number of letters A + B, consider any given code 
of length n for the sum channel. The words in 
this consist of sequences of letters each letter 
corresponding to one or the other of the two 
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Fig. 4 - All graphs with 1, 2, 3, 4, 5 nodes and the corresponding tie for chan- 
nels with these as adjacency graphs (note Co = log MO) 
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channels. The words may be subdivided into 
classes corresponding to the pattern of the 
choices of letters between the two channels. 
There are 2n such classes with (E) classes in 
which exactly k of the letters are from the first 
channel and n - k from the second. Consider now 
a particular class of words of this type. Re- 
place the letters from the first channel alphabet 
by the corresponding non-adjacent letters. This 
does not harm the adjacency relations between 
words in the code. Wow, as in the product case, 
partition the code words according to the 
sequence of letters involved from the first 
channel. This produces at most Ak subsets. Each 
of these subsets contains at most Bn - k members, 
since this is the greatest possible number of non- 
adjacent words for the second channel of length 
n - k. In total, then, summing over all values 
of k and taking account of the (bn) classes for 
each k, there -we at most r n'.Ak Rn - k 

k (k) 
=(A + B)n words in the code for the sum channel. 
This proves the desired result. 

Theorem 4, of course, is analogous to 
known results for ordinary capacity C, where the 
product channel has the sum of the ordinary 
capacities and the sum channel has an equivalent 
number of letters equal to the sum of the equiva- 
lent numbers of letters for the individual 
channels. We conjecture but have not been able 
to prove that the equalities in Theorem 4 hold 
in general, not just under the conditions given. 
We now prove a lower bound for the probability of 
error when transmitting at a rate greater than Co. 

Theorem 5: In any code of length n and 
rate R> Co, Co > 0, the probability of error P, 
will satisfy Pez(l - e -n(C, - Ii) ) p n where min' 
P min is the minimum non-vanishing p,(j). 

w: By definition of Co there are not 
more than enCo non-ad'acent words of length n. 
With R> Co, among e xl4 words there must, therefore, 
be an adjacent pair. The adjacent pair has a 
common output word which either can cause with a 
probability at least pmyn. This output word can- 
not be decoded into both inputs. At least one, 
Vcrefore, must cause an error when it leads to 
thi.s output word. 
least eBnR Gin 

This gives a contribution at 
to the probability of error Pe. 

NOW omit this word from consideration and apply 
the same argument to the remaining enR -1 words 
of the code. This will give another adjacent pair 
and another contribution of error of at least 
e-nR n 

pmin* The process may be continued ztil the 
number of code points remaining is just e O. At 
this time, the computed probability of error must 
be at least (enR _ enCo)e-nR pn 

min 

Channelswith a Feedback Link 

We now consider the corresponding problem 
for channels with complete feedback. By this we 
mean that there exists a return channel sending 
back from the receiving point to the transmitting 
point, without error, the letters actually 
received. It is assumed that this information is 
received at the transmitting point before the next 
letter is transmitted, and can be used, therefore, 
if desired, in choosing the next transmitted 
letter. 

It is interesting that for a memory-less 
channel the ordinary forward capacity is the same 
with or without feedback. This will be shown in 
Theorem 6. On the other hand, the zero error 
capacity may, in some cases, be greater witi 
feedback than without. In the channel shown in 
Fig. 5, for example, Co = log 2. However, we 
will see as a result of Theorem 7 that with 
feedback the zero error capacity COP = log 2.5. 

p, 

p2 

p3 z 

p4 - 

Fig. 5 

We first define a block code of length n 
for a feedback system. This means that at the 
transmitting point there is a device with two 
inputs. or, mathematically, a function with two 
arguments. One argument is the message to be 
transmitted, the other. the past received letters 
(which have come in over the feedback link). The 
value of the function is the next letter to be 
transmitted. Thus, the function may be thought 
of as x j+l = f(k, vj) where x. 

J+l 
is the j + 1 

transmitted letter in a block, k is an index 
ranging from 1 to M, and represents the 
specific message, and v j is a received word of 
length j. Thus j ranges from 0 to n - 1 and vj 
over all received words of these lengths. 

In operation, 'if message mk is to be sent 
f is evaluated for f(k -) where the - means "no = (1 - en(Co - R)) pzin. 

1.5 



word" and this is sent as the first transmitted 
letter. If the feedback link sends back a, say, 
as the first received letter, the next trans- 
mitted letter will be f(k, o). If this is 
received as $. the next transmitted letter will 
be f(k,ap), etc. 

Theorem 6: In a memorylees discrete 
channel with feedback, the forward capacity is 
equal to the ordinary capacity C (without feed- 
back). The average change in mutual information 
Ll between received sequence v end message m 
for a letter of text is not greater than C. 

Proof: Let v be the received sequence to 
date of a block, m the message, x the next trans- 
mitted letter and y the next received letter, 
These are all random variables and,. also, x is a 
function of m and v. This function, namely, is 
the one which defines the encoding procedure with 
feedback whereby the next transmitted letter x is 
determined by the ..Jssege m and the feedback 
information v from the previous received signals. 
The channel being memoryless implies that the 
next operation is independent of the past, in 
particular, PrCY/Xl = PrCY/X,Vl. 

The average change in mutual information, 
when a particular v has been received, due to the 
x,y pair is given by (we are averaging over 
messages m and next received letters y, for a 
given v): 

PrEv,y,m] 

log PrCv,YlPr[m] - c PrCm/vl* 

Since Pr[m/vl = x Pr[y,m/vl, the second sum mey 
9 

be rewritten as 

The two suma then combine to give 

The sum on m may be thought of as summed first 
on the m’s which result in the same I (for the 
given v), .reoalling that x Is a function of m 
and v, and then summing on the different x18. In 
the first summation, the term Pr[y/v,ml is 
constant at P&T/X] and the coefficient of the 
1cgarithm sume to Pr[x,y/v]. Thus we can write 

AI= z 
X,Y 

Row consider the rate for the channel (in the’ 
ordinary sense without feedback) if we should 
assign to the x18 the probabilities q(x) 
= Pr[x/v] . ,!l!he probabilities for pairs, r(x,y), 
and for the y’s alone, w(y), in this situation 
would then be 

r(x,y) = q (x3 P&/xl 

=-Pr[x/v] Pr [y/x] 

= pr Cx,r/vl 

w(y) = ) dX.Y) 

= ; P.r CX,Y/Vl 
X 

= prcs/vl 

Hence the rate would be 

R = ) r(x,y) log w 
XSY 

‘= 
5 

prCY/Xl 
XL, 

PrCx*Y/vl log Pr[Y,v] 

E AI 

Since Ric C, the channel capacity (C being the 
no~lrimum possible B for all q(x) assignments), we 
conclude that 

AI CC. 

Since the average change in I per letter is 
not greater than C, the average change in n 
letters is not greater than nC. Hence, in a blodr 
code of length IL with input rate R, if R > C then 
the equivocation at the end of a block will be at 
least B - C, just as in the non-feedback case. 
In other words, it is not possible to approach 
zero equivocation (or, as easily follows, zero 
probability of error) at a rate exceeding the 
Channel capacity. It is, of course, possible to 
do this at rates less than C, since certainly 
anything that can be done without feedback can 
be done with feedback. 
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It is interesting that the first sentence 
of Theorem 6 can be generalized readily to ohan- 
nels with memory provided they are of such a 
nature that the internal state of the channel 
can be calculated at the transmitting point from 
the initial state and the sequence of letters 
that have been transmitted. If this is not the 
case, the conclusion of the theorem will not 
always be true, that is, there exist channels of 
a more complex sort for which the forward 
capacity with feedback exceeds that without feed- 
back. We shall not,however, give the details of 
these generalizations here. 

Returning now to the zero-error problem, 
we define a zero error capacity COP for a 
channel with feedback in the obvious way--the 
least upper bound of rates for block codes with 
no errors. The next theorem solves the problem 
of evaluating COB for memoryless channels with 
feedback, and indicates how rapidly COB may be 
approached as the block length n increases. 

aeorem 7: In a memoryless discrete 
channel with complete feedback of received lettga 
to the transmitting point, the zero error 
capacity CoF is zero if all pairs of input 
letters are adjacent. Otherwise COP = log Pi' 
where 

PO = min mex r 
pi j f;sj pi 

Pi being a probability assigned to input letter 
1 ( z Pi = 1) and S the set of input letters 

1 j 
which can cause output letter j with probability 
greater than zero. A zero error block code of 
length n can be found for such a feedback 
channel which transmits at a rate 
R;LCoF (1 - 2 log2 2t) where t is the number n 
of input letters. 

The PO occuring in this theorem has the 
following meaning. For any given assignment of 
probabilities Pi to the input letters one may 
calculate, for each output letter j, the total 
probability of all input letters that can (with 
positive probability) cause j. This is 

pi’ Output letters for which this is 

large may be thought of as nbadn in that when 
received there is a large uncertainty as to the 
cause. To obtain PO one adjusts the Pi so that 
worst output letter in this sense is as good as 
possible. 

We first show that if all letters are 
adjacent to each other C OF = 6. In fact, in 
aqv coding system, any two messages, say m, and 
m2 can lead to the same received sequence with 
positive probability. Namely, the first trane- 
mitted letters corresponding to m, and m2 have a 

possible received letter in common. Assuming 
this occurs, calculate the next transmitted 
letters in the coding system for ml and m2. These 
also have a possible received letter in common. 
Continuing in this manner we establish a 
received word which could be produced by either 
ml or m2 and therefore they cannot be distin- 
guished with certainty. 

Row consider the case where not all pairs 
are adjacent. *We will first prove, by induction 
on the block length n, that the rate log PO-l 
cannot be exceeded with a zero error code. For 
n = o the result is certainly true. The induc- 
tive hypothesis will be that no block code of 
length n - 1 transmits at a rate greater than 
log 51, or, in other words, can resolve with 
certainty more than 

,(n-1) log PO1= ,-(n-1) 
0 

different messages. Row suppose (in contradic- 
tion to the desired result) we have a block code 
of length n resolving M messages with M>qns 
The first transmitted letter for the code parti- 
tions these M messages among the input letters 
for the channel. Let Fi be the fraction of the 
messages assigned to letter 1 (that is, for which 
1 is the first transmitted letter). Row these 
Fi are like probability assignments to the 
different letters and therefore by definition of 
P o, there is some output letter, say letter k, 
such that 

?G 
Fi )P . Consider the set of 

0 
'k 

messages for which the first transmitted letter 
belongs to Sk. The number of messages in this 
set is at least PoN. Any of these can cause 
output letter k as first received letter. Men 
this happens there are n - 1 letters yet to be 
transmitted and since M >PGn we have PoM>%(n-l). 

Thus we have a zero error code of block length 
n - 1 transmitting at a rate greater than 
log p;? contradicting the inductive assumption. 
Rote that the coding function for this code of 
length n - 1 is formally defined from the 
original coding function by fixing the first 
received letter at k. 

We.must now show that the rate log PL1 can 
actually be approached as closely as desired with 
zero error codes. Let Pi be the set of probabili- 
ties which, when assigned. to the input letters, 
give PO for min max The general 

pi j G 
pi' 

Oj 
scheme of the.coae will be to divide the M 
original messages into t different groups 
corresponding to the first transmitted letter. 
The number of messages in these groups will be 
approximately proportional to Pl, P2,... Pt. 
The first transmitted letter, then, will cor- 
respond to the group containing the message to 
be transmitted. Whatever letter is received, the 
number of possible messages compatible with this 
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received letter will be approximately P,M. This 
subset of possible messages is known both at the 
receiver and (after the received letter is sent 
back to the transmitter) at the transmitting 
point. 

The code system next subdivi&ss this sub- 
set of messages into t groups, again approximate- 
ly in proportion to the probabilities Pi. The 
second letter transmitted is that corresponding 
to the group containing the actual message. 
Whatever letter is received, the number of mes- 
sages compatible with the two received letters is 
now, roughly, P$K. 

This process is continued until only a few 
messages (less than t2) are compatible with all 
the received letters. The ambiguity among these 
is then resolved by using a pair of non-adjacent 
letters in a simple binary code. The code thus 
constructed will be a zero error code for the 
channel. 

Our first concern is to estimate carefully 
the approximation involved in subdividing the 
messages into the t groups. We will show that 
for any M and any set of Pi x Pi = 1, it is 
possible to subdivide the M messages into groups 
of ml,m2,..,mt such that ml = o whenever Pi = o 

and 

I 
mi-p 

M 1 I 
"+- 1 = 1,...,t 

We assume without loss of generality that 
P1'P2.... Pa are the non-vanishing Pi. Choose ml 

to be the largest integer such that ml L-P=. -- 
"1 Let P1 - -T;T = 6,. Clearly /6#+. 

w 
IText choose 

m2 to be the smallest integer such that 2% P2 
"2 M 

and let P2 - M '8,. We have 1 &2i$$. Also 

Is1 4'21Gi1 since 6, and 6, are opposite in 
sign and each less than i in absolute value. 
I?ext ,3 is chosen so that 3 approximates, to 

within 1 
M 

M' to P . 3 If 61 + 6,%0, then 3 is 

chosen less than or equal to P 3’ If s 1 = s,LO, 

then 3 is chosen greater than or equal to P 
M 3’ 

Thus again P3 -2=h3<$- and 

I 6, + 6, + "31-'+* Continuing in this manner 
through Pa,1 we obtain approximationsfor 

P P 1, 2,...,Ps,1 with the property that 

I S1 + S2 +. ..+6 I+, or s-l 'M 

I I4 (P1-+ P2 +...+ PSW1) 

-by+%+ . ..+msel , )I< 1. If we now define 
s-l 

ma as M - x 
1 

ml then this inequality can be 

written /W(l - Pa) - ( M - me) 1 $ 1. Hence 

I 
m A-P 
M .a \M’ I <A !fhus we have achie:ed the 

ml objective of keeping all approximation r to 
within i of Pi and having x m 1 = H. 

Returning now to our main problem note 
first that if PO = 1 then CoF = 0 and the 
theorem is trivially true. We assume, then, that 
PO <l. We wish to show that PO 4 (,l - 4). 
Consider the set of input letters which have 
the maximum value of Pi. This maximum is 
certainly greater than or equal to the average 
1 -. Furthermore. we oan arrange tohave at least t 
one of these input letters not connected to some 
output letter. For suppose this is not the case. 
!Chen either there are no other input letters 
beside this set and we contradict the assumption 
that Po<l, or there are other input letters 
with smaller values of Pi. In this case, by 
reducing the Pi for one input letter in the 
maximum set and increasing correspondingly that 
for some input letter which does not connect to 
all output letters, we do not increase the value 
of PO (for any S 

j 
) and create an input letter of 

the desired type. By consideration of an output 
letter to which this input letter does not 
connect we see that PO 61 -$ 

Now suppose we start with M messages and 
subdivide into groups approximating proportion- 
ality to the Pi as described above. Then when a 
letter has been received, the set of possible 
messages (compatible with this received letter) 
will be reduced to those in the groups correspond- 
ing to letters which connect to the actual 
received letter. Each output letter connects to 
not more than t - 1 input letters (otherwise we 
would have PO = 1). For each of the connecting 
groups, the error in approximating Pi has been 
less than or equal to 1 

-Fr Hence the total 
relative number in all connecting groups for any 
output letter is less than or equal to PO + t-l. 

M 
The total number of possible messages after 
receiving the first letter consequently drops 
from M to a number less than or equal to PoM +t-1. 

In the coding system to be used, this 
remaining possible subset of messages is sub- 
divided again among the input letters to 
approximate in the same fashion the probabilities 
pi- This subdivision can be carried out both at 



receiving point and transmitting point using the 
same standard procedure (say, exactly the one 
described above) since with the feedback both 
terminals have available the required data, 
namely the first received letter. 

. The second transmitted letter obtained by 
this procedure will egain reduce at the receiving 
point the number of possible messages to a value 
not greater than PO (P,M + t - 1) + t - 1. This 
same process continues with each transmitted 
letter. If the upper bound on the number of 
Dossible remaining messe2es after k letters is 
9, then Mk + 1 =-PoMk +-t - 1. The solution of 
this difference equation is 

Mk=bpi: +e 
0 

This may be readily verified by substitution in 
the difference equation. To satisfy the initial 
conditions MO = M requires A = M - ti . Thus 

1-P 0 
the solution becomes 

b$=(M-tio)< +f+, 

t-1 = M Pok + i--- - p,(l - Pok) 

4 M Pok + t (t - 1) 

since we have seen above that 1 - PO>,+. 

If the process described is carried out 
for nl steps, where nl is the smallest integer 
>, d where d is the solution of MPod = 1, then the 
number of possible messages left consistent with 
the received sequence will be not greater than 
1+t(t- 1) St2 (since t-1, otherwise we 
should have C OF = 0). Now the pair of non- 
adjacent letters assumed in the theorem may be 
used to resolve the ambiguity among these 
t2 or less messages. 
than 1 + log2t2 

This will require not more 
=log22t2 additional letters. 

Thus. in total, we have used not more than 
d + 1 + log22t2 = d + log24t2 = n say as block 
length. We have transmitted in this block 

length a choice from M = Td me&ages. Thus the 
zero error rate we have achieved is 

R = $ log Ma 
d log P;;' 

d + log24t2 

= (1 - Jpg 4t2) log Pi' 

= (1 - $ 1% 4t2) c,F 

Thus we can approximate to COP as closely as 
desired with zero error codes. 

As an example of Theorem 7 consider the 
channel in Fig. 5. We wish to evaluate PO. It 
is easily seen that we may take P1 = P2 = P3 in 
forming the min max of Theorem 7, for if they are 
unequal the maximum f- Pi for the correspond- 

I& 
j 

ing three output letters would be reduced by 
equalizing. Also it is evident, then, that 
P4 = P1 + P2, since otherwise a shift of 
probability one way or the other would reduce the 
me2&aum. We conclude, then, that Pl = P2 = P3 

= l/5 and P4 = 215. Finally, the zero error 
capacity with feedback is log Pi1 = log 512. 

There is a close connection between the 
min max process of Theorem 7 and the process of 
finding the minimum capacity for the channel 
under variation of the non-vanishing transition 
probabilities p,(j) as in Theorem 2. It was 
noted there,that at the minimum capacity each 
output letter can be caused by the same total 
probability of input letters. Indeed, it seems 
very likely that the probabilities of input 
letters to attain the minimum capacity are 
exactly those which solve the min mar problem of 
Theorem 7, and, if this is so, the Cmin = log T1. 
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