Information Theory, Inference and Learning Algorithms David J.C. MacKay

► 2.7 Jensen's inequality for convex functions

The words 'convex \smile ' and 'concave \frown ' may be pronounced 'convex-smile' and 'concave-frown'. This terminology has useful redundancy: while one may forget which way up 'convex' and 'concave' are, it is harder to confuse a smile with a frown.

Convex \smile **functions**. A function f(x) is convex \smile over (a, b) if every chord of the function lies above the function, as shown in figure 2.10; that is, for all $x_1, x_2 \in (a, b)$ and $0 \le \lambda \le 1$,

$$f(\lambda x_1 + (1 - \lambda)x_2) \leq \lambda f(x_1) + (1 - \lambda)f(x_2).$$
 (2.47)

A function f is strictly convex \smile if, for all $x_1, x_2 \in (a, b)$, the equality holds only for $\lambda = 0$ and $\lambda = 1$.

Similar definitions apply to concave \frown and strictly concave \frown functions.

Some strictly convex \smile functions are

- x^2 , e^x and e^{-x} for all x;
- $\log(1/x)$ and $x \log x$ for x > 0.

Figure 2.10. Definition of convexity.

Figure 2.11. Convex \smile functions.

Jensen's inequality. If f is a convex \smile function and x is a random variable then: $\mathcal{E}[f(x)] > f(\mathcal{E}[x])$ (2.48)

$$C\left[J\left(L\right)\right] \ge J\left(C\left[L\right]\right), \tag{2.46}$$

where \mathcal{E} denotes expectation. If f is strictly convex \smile and $\mathcal{E}[f(x)] = f(\mathcal{E}[x])$, then the random variable x is a constant.

Jensen's inequality can also be rewritten for a concave \frown function, with the direction of the inequality reversed.

A physical version of Jensen's inequality runs as follows.

If a collection of masses p_i are placed on a convex \smile curve f(x) at locations $(x_i, f(x_i))$, then the centre of gravity of those masses, which is at $(\mathcal{E}[x], \mathcal{E}[f(x)])$, lies above the curve.

If this fails to convince you, then feel free to do the following exercise.

Exercise 2.14.^[2, p.41] Prove Jensen's inequality.

Example 2.15. Three squares have average area $\bar{A} = 100 \text{ m}^2$. The average of the lengths of their sides is $\bar{l} = 10 \text{ m}$. What can be said about the size of the largest of the three squares? [Use Jensen's inequality.]

