
Robust Combiners

Krzysztof Pietrzak (CWI Amsterdam)

Chennai, December 13th, 2007

Use two different locks, with separate locking

mechanisms. Thieves carry tools that will either snip

cables, or pry-apart U-locks but rarely both. A cable-lock

and a U-lock together are very secure.

Robust Combiner: Informal Definition

Definition (Robust (1, 2)-Combiner for XXX)

A combiner for XXX is a construction, which given two
candidate implementations of XXX, is a secure realization
of XXX if at least one of the two candidates is secure.

Robust Combiner: Informal Definition

Definition (Robust (1, 2)-Combiner for XXX)

A combiner for XXX is a construction, which given two
candidate implementations of XXX, is a secure realization
of XXX if at least one of the two candidates is secure.

Definition (Robust (k , ℓ)-Combiner for XXX)

A combiner for XXX is a construction, which given ℓ
candidate implementations of XXX, is a secure realization
of XXX if at least k one of the two candidates is secure.

Related Concept is Amplification: Combine many
instantiations of the same candidate, if a single
instantiation is insecure with probability ǫ, then k

instantiations will be insecure with probability≪ ǫ, ideally
O(ǫk).

Outline

Part 1: Robust Combiners for Cryptographic
Primitives: Definitions and Constructions

Part 2: (1, n)-Combiners from (1, 2)-Combiners and
Universal Schemes

Part 3: Combiners for Collision Resistance

Part 1

Robust Combiners for Cryptographic

Primitives: Definitions and

Constructions

A. Herzberg, On cryptographic tolerance, CT-RSA 2005

D. Harnik, J.Kilian, M.Naor, O.Reingold, A.Rosen, On
Robust Combiners for Oblivious Transfer and other
Primitives, EUROCRYPT 2005

A Combiner For One-Way Functions

F : Xn → Yn is a One Way Function if for all efficient A

PrX←Xn [A(F (X))→ X ′ where F (X ′) = F (X)] = negl(n)

A Combiner For One-Way Functions

CF1,F2(X1,X2) = F1(X1)‖F2(X2)

X1 X2

F1 F2

A Combiner For One-Way Functions

Claim

CF1,F2(X1,X2) = F1(X1)‖F2(X2) is a robust combiner.

Proof: Let A be an adversary who breaks CF1,F2, i.e. for
some non-negligeable δ(.)

PrX1,X2←Xn[A(F1(X1)‖F2(X2))→ F−1
1 (X1)‖F

−1
2 (X2)] = δ(n)

We can invert F1 and F2 with one call to A with prob. δ(.).
On input Y = F1(X):

◮ sample X ′ ← Xn, set Y ′ := F2(X
′).

◮ Invoke A(Y‖Y ′)→ Z‖Z ′

◮ Output Z

Note that Pr [F1(Z) = Y] = δ(n). �

Formal Definition

Definition (Cryptographic Primitive)

A primitive P is a triplet 〈FP ,AP ,RP〉, where FP is a set
of functions f : {0, 1}∗ → {0, 1}∗ defining the functionality
of P, AP is the class of adversary machines and RP is a
relation over pairs 〈f ,A〉, including machines A ∈ AP that
break functions f ∈ FP . We say that f implements P if
f ∈ FP and is computable by a PPTM. A secure

implementation is an f that no A ∈ AP breaks. The
primitive P exists if there exists an implementation of P
that is secure.

Example: OWF

The primitive “one-way-function” 〈FOWF ,AOWF ,ROWF〉.

◮ FOWF are all functions {0, 1}∗ → {0, 1}∗.

◮ AOWF are all functions {0, 1}∗ → {0, 1}∗ computable
by a PPTM.

◮ f ∈ FOWF implements a OWF if it is computable by a
PPTM.

◮ If f implements a OWF and A ∈ AOWF then
〈f ,A〉 ∈ ROWF (i.e. A breaks f) if

Prx∈{0,1}n [A(f (x)) = f−1(x)] 6= negl(n)

Thus f ∈ FOWF is a secure implementation of a OWF if for
all A ∈ AOWF

Prx∈{0,1}n [A(f (x)) = f−1(x)] = negl(n)

On Implementability

In general, it is undecidable if a candidate scheme f

implements P (i.e. whether it is computable by a PPTM).

On Implementability

In general, it is undecidable if a candidate scheme f

implements P (i.e. whether it is computable by a PPTM).

This is not the problem in practice: checking whether any

“reasonable” candidate scheme f implements some

primitive P can usually be done unconditionally.

The concern is solely if f securely implements P.

Formal Definitions: Robust Combiners

Definition ((k , n)-Robust Combiner)

Fix representation for cryptographic primitive P. A
(k , n)-robust combiner for P is a PPTM that gets n

candidate schemes as inputs and implements P s.t.

◮ If at least k of the candidates securely implement P,
so does the combiner.

◮ The running time of the combiner is polynomial in a
security parameter in n.

Robust (k , n) combiner for P exists if P exists, as
combiner may ignore the inputs and simply implement P
securely.

Formal Definitions: Robust Combiners

Definition (Black-Box (k , n)-Robust Combiner)

C is a black-box (k , n)-Robust Combiner for P if it is a
(k , n)-Robust Combiner where

◮ The implementations is black-box: C get access to
the candidates via oracle calls.

◮ The proof is black-box: for all candidates there exists
an oracle PPTM R s.t. if A breaks the combiner RA

breaks the candidate.

All known costruction of combinres are black-box.
Non-black box constructions are very rare in crypto in
general, the few known examples are extremly inefficient.
In some cases one can rule out the existence of black-box
combiners.

Combiner for OWFs gives a Combiner for all Primitives

equivalent to OWFs.

◮ Pseudorandom Generators/Functions/Permutations

◮ Bit Commitments

◮ Message Authentication Codes

◮ Digital Signatures

Combiner for any Primitive Equivalent to OWFs

Let P ∈ {PRG,PRF ,PRP,BC,MAC} or any other
primitive equivalent to OWFs.

Combiner for any Primitive Equivalent to OWFs

Let P ∈ {PRG,PRF ,PRP,BC,MAC} or any other
primitive equivalent to OWFs.

◮ Given to candidates P1,P2 for P, construct F1,F2

such that Fi is a secure OWF is Pi is a secure P.

Combiner for any Primitive Equivalent to OWFs

Let P ∈ {PRG,PRF ,PRP,BC,MAC} or any other
primitive equivalent to OWFs.

◮ Given to candidates P1,P2 for P, construct F1,F2

such that Fi is a secure OWF is Pi is a secure P.

◮ Let F (.) be the combined OWF F1(.)‖F2(.).

Combiner for any Primitive Equivalent to OWFs

Let P ∈ {PRG,PRF ,PRP,BC,MAC} or any other
primitive equivalent to OWFs.

◮ Given to candidates P1,P2 for P, construct F1,F2

such that Fi is a secure OWF is Pi is a secure P.

◮ Let F (.) be the combined OWF F1(.)‖F2(.).

◮ Construct P from F .

Combiner for any Primitive Equivalent to OWFs

Let P ∈ {PRG,PRF ,PRP,BC,MAC} or any other
primitive equivalent to OWFs.

◮ Given to candidates P1,P2 for P, construct F1,F2

such that Fi is a secure OWF is Pi is a secure P.

◮ Let F (.) be the combined OWF F1(.)‖F2(.).

◮ Construct P from F .

Just of theoretical interest, as reduction from OWF to
other primitives are extremely inefficient.

Combiner for any Primitive Equivalent to OWFs

Let P ∈ {PRG,PRF ,PRP,BC,MAC} or any other
primitive equivalent to OWFs.

◮ Given to candidates P1,P2 for P, construct F1,F2

such that Fi is a secure OWF is Pi is a secure P.

◮ Let F (.) be the combined OWF F1(.)‖F2(.).

◮ Construct P from F .

Just of theoretical interest, as reduction from OWF to
other primitives are extremely inefficient.
Fortunately, for all the above primitives, there are efficient
(1, 2) combiners...

Combiner for any Primitive Equivalent to OWFs

Let P ∈ {PRG,PRF ,PRP,BC,MAC} or any other
primitive equivalent to OWFs.

◮ Given to candidates P1,P2 for P, construct F1,F2

such that Fi is a secure OWF is Pi is a secure P.

◮ Let F (.) be the combined OWF F1(.)‖F2(.).

◮ Construct P from F .

Just of theoretical interest, as reduction from OWF to
other primitives are extremely inefficient.
Fortunately, for all the above primitives, there are efficient
(1, 2) combiners... except for Bit-Commitment.

Combiner for Pseudorandom Generators

CPRG1,PRG2(S1,S2) = PRG1(S1)⊕ PRG2(S2)

S1 S2

PRG1 PRG2

⊕

Combiner for Pseudorandom Generators

CPRG1,PRG2(S1,S2) = PRG1(S1)⊕ PRG2(S2)

S1 S2

PRG1 PRG2

⊕

This combiner plays a crucial role in the classical construction

of a PRG from OWF.

J.Håstad, R.Impagliazzo, L.A.Levin, M.Luby: A Pseudorandom

Generator from any One-way Function. SIAM J. Comput. 1999

Combiner for Pseudorandom Functions

CPRF1,PRF2([K1,K2],M) = PRF1(K1,M)⊕ PRF2(K2,M)

M

K1 PRF1 PRF2 K2

⊕

Combiners for Pseudorandom Permutations

CPRP1,PRP2([K1,K2],M) = PRP2(K2,PRP1(K1,M))

K1 K2

M PRP1 PRP2

Combiner for Message Authentication Codes

F : Kn × Xn → Yn is a secure MAC if for all efficient A

PrK←Kn[A
F (K ,.) → (φ,M) ∧ φ = F (K ,M)] = negl(n)

Here A is not allowed to query F (K , .) on its output M.

Combiner for Message Authentication Codes

CMAC1,MAC2([K1,K2],M) = MAC1(K1,M)‖MAC2(K2,M)

M

K1 MAC1 MAC2 K2

Combiner for Encryption

CENC1,ENC2([K1,K2],M) = R‖ENC1(K1,R)‖ENC2(K2,M ⊕ R)

Where a fresh random R is picked for every

encryption.
R R ⊕M

K1 ENC1 ENC2 K2

ASMUTH, C. A., AND BLAKLEY, G.R. An efficient

algorithm for constructing a cryptosystem

which is harder to break than two other

cryptosystems. Comput. Math. Appl. 7 1981.

Collision Resistant Hash Functions

H : Kn × Xn → Yn is a CRHF if for all efficient A

PrK←K[A(K) = M,M ′ where HK (M) = HK (M
′)] = negl(n)

CRHFs are not known to be equivalent to OWFs, in the
sense that there exists no black-box construction of
CRHFs from OWFs (Simon EC’98).

Combiner For CRHFs

CH1,H2([K1,K2],M) = H1(K1,M)‖H2(K2,M)

M

K1 H1 H2 K2

Note that any collision M,M ′ for CH1,H2([K1,K2], .) is also a
collision for H1(K1, .) and H2(K2, .).

Bit-Commitment

A Bit-Commitment Scheme is a function

BC : {0, 1} × Rn → Cn

Binding: It is hard to find r , r ′ where

BC(0, r) = BC(1, r ′)

Hiding: For uniformly random r , BC(0, r) and BC(1, r)
are indistinguishable.

Bit-Commitment

A Bit-Commitment Scheme is a function

BC : {0, 1} × Rn → Cn

Binding: It is hard to find r , r ′ where

BC(0, r) = BC(1, r ′)

Hiding: For uniformly random r , BC(0, r) and BC(1, r)
are indistinguishable.

Perfectly Binding: ¬∃r , r ′ : BC(0, r) = BC(1, r ′)

Perfectly Hiding: ∆(BC(0, r),BC(1, r)) = 0

A BC scheme can be either perfectly binding or perfectly
hiding, but not both.

Combiner for the Hiding Property
s s ⊕ b

r BC1 BC2 r ′

CBC1,BC2

H (b, [r , r ′, s]) = BC1(s, r)‖BC2(b ⊕ s, r ′)

Combiner for the Hiding Property
s s ⊕ b

r BC1 BC2 r ′

CBC1,BC2

H (b, [r , r ′, s]) = BC1(s, r)‖BC2(b ⊕ s, r ′)

Not Binding: BC1 or BC2 not binding⇒ C
BC1,BC2

H not binding.

Combiner for the Hiding Property
s s ⊕ b

r BC1 BC2 r ′

CBC1,BC2

H (b, [r , r ′, s]) = BC1(s, r)‖BC2(b ⊕ s, r ′)

Not Binding: BC1 or BC2 not binding⇒ C
BC1,BC2

H not binding.

Hiding: C
BC1,BC2

H is hiding if either BC1 or BC2 is hiding.

Combiner for the Hiding Property
s s ⊕ b

r BC1 BC2 r ′

CBC1,BC2

H (b, [r , r ′, s]) = BC1(s, r)‖BC2(b ⊕ s, r ′)

Not Binding: BC1 or BC2 not binding⇒ C
BC1,BC2

H not binding.

Hiding: C
BC1,BC2

H is hiding if either BC1 or BC2 is hiding.

◮ Assume C
BC1,BC2

H is not hiding: ∃ efficient A

Pr [A(BC1(s, r)‖BC2(b ⊕ s, r ′)) = b] = 1/2 + δ

Combiner for the Hiding Property
s s ⊕ b

r BC1 BC2 r ′

CBC1,BC2

H (b, [r , r ′, s]) = BC1(s, r)‖BC2(b ⊕ s, r ′)

Not Binding: BC1 or BC2 not binding⇒ C
BC1,BC2

H not binding.

Hiding: C
BC1,BC2

H is hiding if either BC1 or BC2 is hiding.

◮ Assume C
BC1,BC2

H is not hiding: ∃ efficient A

Pr [A(BC1(s, r)‖BC2(b ⊕ s, r ′)) = b] = 1/2 + δ

◮ To break BC1: Given com = BC1(b, r), sample s, r ′.

Combiner for the Hiding Property
s s ⊕ b

r BC1 BC2 r ′

CBC1,BC2

H (b, [r , r ′, s]) = BC1(s, r)‖BC2(b ⊕ s, r ′)

Not Binding: BC1 or BC2 not binding⇒ C
BC1,BC2

H not binding.

Hiding: C
BC1,BC2

H is hiding if either BC1 or BC2 is hiding.

◮ Assume C
BC1,BC2

H is not hiding: ∃ efficient A

Pr [A(BC1(s, r)‖BC2(b ⊕ s, r ′)) = b] = 1/2 + δ

◮ To break BC1: Given com = BC1(b, r), sample s, r ′.

◮ Call A(com‖BC2(s, r
′))→ d and output b′ = d ⊕ s.

Combiner for the Hiding Property
s s ⊕ b

r BC1 BC2 r ′

CBC1,BC2

H (b, [r , r ′, s]) = BC1(s, r)‖BC2(b ⊕ s, r ′)

Not Binding: BC1 or BC2 not binding⇒ C
BC1,BC2

H not binding.

Hiding: C
BC1,BC2

H is hiding if either BC1 or BC2 is hiding.

◮ Assume C
BC1,BC2

H is not hiding: ∃ efficient A

Pr [A(BC1(s, r)‖BC2(b ⊕ s, r ′)) = b] = 1/2 + δ

◮ To break BC1: Given com = BC1(b, r), sample s, r ′.

◮ Call A(com‖BC2(s, r
′))→ d and output b′ = d ⊕ s.

◮ Pr[b = b′] = 1/2 + δ. BC2 is broken similarly.

Combiner for the Hiding Property

s s ⊕ b

r BC1 BC2 r ′

CBC1,BC2

H (b, [r , r ′, s]) = BC1(s, r)‖BC2(b ⊕ s, r ′)

Not Binding: BC1 or BC2 not binding⇒ C
BC1,BC2

H not binding.

Hiding: C
BC1,BC2

H is hiding if either BC1 or BC2 is hiding.

Combiner for the Hiding Property

s s ⊕ b

r BC1 BC2 r ′

CBC1,BC2

H (b, [r , r ′, s]) = BC1(s, r)‖BC2(b ⊕ s, r ′)

Not Binding: BC1 or BC2 not binding⇒ C
BC1,BC2

H not binding.

Hiding: C
BC1,BC2

H is hiding if either BC1 or BC2 is hiding.

Preserving for Binding: If BC1 and BC2 are binding, so is

C
BC1,BC2

H
.

Combiner for the Hiding Property

s s ⊕ b

r BC1 BC2 r ′

CBC1,BC2

H (b, [r , r ′, s]) = BC1(s, r)‖BC2(b ⊕ s, r ′)

Not Binding: BC1 or BC2 not binding⇒ C
BC1,BC2

H not binding.

Hiding: C
BC1,BC2

H is hiding if either BC1 or BC2 is hiding.

Preserving for Binding: If BC1 and BC2 are binding, so is

C
BC1,BC2

H
.

Combiner CH for the hiding property, is a robust combiner

for perfectly binding BC (as here binding is unconditional).

Combiner for the Binding Property
b

r BC1 BC2 r ′

CBC1,BC2

B (b, [r , r ′]) = BC1(b, r)‖BC2(b, r
′)

Combiner for the Binding Property
b

r BC1 BC2 r ′

CBC1,BC2

B (b, [r , r ′]) = BC1(b, r)‖BC2(b, r
′)

Not Hiding: BC1 or BC2 not hiding⇒ C
BC1,BC2

B not hiding.

Combiner for the Binding Property
b

r BC1 BC2 r ′

CBC1,BC2

B (b, [r , r ′]) = BC1(b, r)‖BC2(b, r
′)

Not Hiding: BC1 or BC2 not hiding⇒ C
BC1,BC2

B not hiding.

Binding: C
BC1,BC2

B is binding if either BC1 or BC2 is binding.

Combiner for the Binding Property
b

r BC1 BC2 r ′

CBC1,BC2

B (b, [r , r ′]) = BC1(b, r)‖BC2(b, r
′)

Not Hiding: BC1 or BC2 not hiding⇒ C
BC1,BC2

B not hiding.

Binding: C
BC1,BC2

B is binding if either BC1 or BC2 is binding.

◮ Assume C
BC1,BC2

B is not binding: ∃ efficient A

Pr [A→ (r , r ′, s, s′) : BC1(0, r)‖BC2(0, r
′) = BC1(1, s)‖BC2(1, s

′)

Combiner for the Binding Property
b

r BC1 BC2 r ′

CBC1,BC2

B (b, [r , r ′]) = BC1(b, r)‖BC2(b, r
′)

Not Hiding: BC1 or BC2 not hiding⇒ C
BC1,BC2

B not hiding.

Binding: C
BC1,BC2

B is binding if either BC1 or BC2 is binding.

◮ Assume C
BC1,BC2

B is not binding: ∃ efficient A

Pr [A→ (r , r ′, s, s′) : BC1(0, r)‖BC2(0, r
′) = BC1(1, s)‖BC2(1, s

′)

◮ This A breaks BC1 as BC1(0, r) = BC1(1, s), and it breaks

BC2 as BC2(0, r
′) = BC2(1, s

′).

Combiner for the Binding Property

b

r BC1 BC2 r ′

CBC1,BC2

B (b, [r , r ′]) = BC1(b, r)‖BC2(b, r
′)

Not Hiding: BC1 or BC2 not hiding⇒ C
BC1,BC2

B not hiding.

Binding: C
BC1,BC2

B
is binding if either BC1 or BC2 is binding.

Combiner for the Binding Property

b

r BC1 BC2 r ′

CBC1,BC2

B (b, [r , r ′]) = BC1(b, r)‖BC2(b, r
′)

Not Hiding: BC1 or BC2 not hiding⇒ C
BC1,BC2

B not hiding.

Binding: C
BC1,BC2

B
is binding if either BC1 or BC2 is binding.

Preserving for Hiding: If BC1 and BC2 are hiding, so is

C
BC1,BC2

B .

Combiner for the Binding Property

b

r BC1 BC2 r ′

CBC1,BC2

B (b, [r , r ′]) = BC1(b, r)‖BC2(b, r
′)

Not Hiding: BC1 or BC2 not hiding⇒ C
BC1,BC2

B not hiding.

Binding: C
BC1,BC2

B
is binding if either BC1 or BC2 is binding.

Preserving for Hiding: If BC1 and BC2 are hiding, so is

C
BC1,BC2

B .

Combiner CB for the binding property, is a robust combiner for

perfectly hiding BC (as here hiding is unconditional).

Open Problem

Efficient Robust (1,2)-Combiner for general BC (inefficient

exist via OWFs).

Open Problem

Efficient Robust (1,2)-Combiner for general BC (inefficient

exist via OWFs).

For any t ∈ N, Efficient Robust (t+1,2t+1)-Combiner Exist
(Herzberg). We will prove the case t = 1.

Robust (2,3)-Combiner for BC

Given: BC1,BC2,BC3 two of which are secure (binding &
hiding).

Let C12 = CBC1,BC2

H ,C13 = CBC1,BC3

H ,C23 = CBC2,BC3

H , where

C
BC1,BC2

H (b, [r , r ′, s]) = BC1(s, r)‖BC2(b ⊕ s, r ′)

is the combiner for the hiding property.

The following is a robust (2, 3)-combiner for BC.

CBC1,BC2,BC3(b, [r , r ′, r ′′]) = C12(b, r)‖C13(b, r
′)‖C23(b, r

′′)

b

r1 C12 r2 C13 r3 C23

where Cij is

s s ⊕ b

r BCi r ′ BCj

CBC1,BC2,BC3(b, r) = CC12,C13,C23

B (b, r) where Cij = C
BCi ,BCj

H

.

b

r1 C12 r2 C13 r3 C23

where Cij is

s s ⊕ b

r BCi r ′ BCj

CBC1,BC2,BC3(b, r) = CC12,C13,C23

B (b, r) where Cij = C
BCi ,BCj

H

.
If two of the BCi are secure, all Cij are hiding, and one is
also binding.
Hiding & Binding/ Hiding/ None.

b

r1 C12 r2 C13 r3 C23

where Cij is

s s ⊕ b

r BCi r ′ BCj

CBC1,BC2,BC3(b, r) = CC12,C13,C23

B (b, r) where Cij = C
BCi ,BCj

H

.
If two of the BCi are secure, all Cij are hiding, and one is
also binding.
Hiding & Binding/ Hiding/ None.

◮ CC12,C13,C23

B (b, r) is hiding, because all Cij are.

◮ CC12,C13,C23

B (b, r) is binding, because CB is a (1, 3)
robust combiner for the binding property.

Part 2

(1, n)-Combiners from (1, 2)-Combiners
and Universal Schemes

D. Harnik, J.Kilian, M.Naor, O.Reingold, A.Rosen, On

Robust Combiners for Oblivious Transfer and other

Primitives, EUROCRYPT 2005

(1, n) combiners from (1, 2) combiners

Many robust (1, 2) extend easily to (1, n) combiners.

E.g. for OWFs
X1 X2 Xn

F1 F2 . . . F2

(1, n) combiners from (1, 2) combiners

Generic construction of a (1, n) combiner C̃ from a (1, 2)
combiner C.

(1, n) combiners from (1, 2) combiners

Generic construction of a (1, n) combiner C̃ from a (1, 2)
combiner C.

Obvious Idea: use binary tree to combiner P1, . . . ,P2t .
Pij = CPi ,Pj .

P1 P2 P3 P4

P12 P34

P1234

(1, n) combiners from (1, 2) combiners

Generic construction of a (1, n) combiner C̃ from a (1, 2)
combiner C.

Obvious Idea: use binary tree to combiner P1, . . . ,P2t .
Pij = CPi ,Pj .

P1 P2 P3 P4

P12 P34

P1234

(1, n) combiners from (1, 2) combiners

Generic construction of a (1, n) combiner C̃ from a (1, 2)
combiner C.

Obvious Idea: use binary tree to combiner P1, . . . ,P2t .
Pij = CPi ,Pj .

P1 P2 P3 P4

P12 P34

P1234

Efficiency: If CP,P
′

makes k calls to

its components, then C̃P1,...,P2t makes
k t calls.

(1, n) combiners from (1, 2) combiners

A robust (1, 2) combiner is very efficient, if it calls its

components at most a constant number of times.

Lemma (HKNRR05)

If C is a very efficient robust (1, 2) combiner, then C̃ is a

robust (1, n) combiner.

If C calls each of its components k times, then C̃ calls
each of the components k log(n) = poly(n) times.

(1, n) combiners from (1, 2) combiners

A robust (1, 2) combiner is very efficient, if it calls its

components at most a constant number of times.

Lemma (HKNRR05)

If C is a very efficient robust (1, 2) combiner, then C̃ is a

robust (1, n) combiner.

If C calls each of its components k times, then C̃ calls
each of the components k log(n) = poly(n) times.

Thus for all primitives considered so far, robust (1, n)
combiners exist... except for BC.

(1, n) combiners from (1, 2) combiners for BC

For bit commitment

◮ Very inefficient (1, 2) combiners exist via the
reduction to OWFs.

◮ Very efficient (2, 3) combiners exist (the combiner
calls its components 6 times).

(1, n) combiners from (1, 2) combiners for BC

For bit commitment

◮ Very inefficient (1, 2) combiners exist via the
reduction to OWFs.

◮ Very efficient (2, 3) combiners exist (the combiner
calls its components 6 times).

Lemma (HKNRR05)

If there exists a robust (1, 2) combiner for P, and a very

efficient (2, 3) combiner, then a robust (1, n) combiner for

P exists.

(1, n) combiners from (1, 2) combiners for BC

Construction of a robust (1, k) combiner Ĉ from a very

efficient (2, 3) combiner C̃ and a (1, 2) combiner C.

◮ If k = 2 use the (1, 2) combiner C.

◮ If k > 2, divide k candidates into 3 groups such that
each candidate is in at least 2 groups of size 2k/3.

Invoke Ĉ recursively on each group and use C̃ to
combine the three groups.

(1, n) combiner Ĉ from very efficient (2, 3) combiner C̃

and (1, 2) combiner C

P1 P2

P3 P4

P5 P6

P1 P2

P3 P4

P1 P2

P5 P6

C̃

P3 P4

P5 P6

P1 P2

P3

P1 P2

P4
C̃

P3 P4

P1 P2

P1 P3

C̃

P2 P3

P1C

P2

C

(1, n) combiner Ĉ from very efficient (2, 3) combiner C̃

and (1, 2) combiner C

P1 P2

P3 P4

P5 P6

P1 P2

P3 P4

P1 P2

P5 P6

C̃

P3 P4

P5 P6

P1 P2

P3

P1 P2

P4
C̃

P3 P4

P1 P2

P1 P3

C̃

P2 P3

P1C

P2

C

(1, n) combiner Ĉ from very efficient (2, 3) combiner C̃

and (1, 2) combiner C

P1 P2

P3 P4

P5 P6

P1 P2

P3 P4

P1 P2

P5 P6

C̃

P3 P4

P5 P6

P1 P2

P3

P1 P2

P4
C̃

P3 P4

P1 P2

P1 P3

C̃

P2 P3

P1C

P2

C

(1, n) combiner Ĉ from very efficient (2, 3) combiner C̃

and (1, 2) combiner C

P1 P2

P3 P4

P5 P6

P1 P2

P3 P4

P1 P2

P5 P6

C̃

P3 P4

P5 P6

P1 P2

P3

P1 P2

P4
C̃

P3 P4

P1 P2

P1 P3

C̃

P2 P3

P1C

P2

C

(1, n) combiner Ĉ from very efficient (2, 3) combiner C̃

and (1, 2) combiner C

P1 P2

P3 P4

P5 P6

P1 P2

P3 P4

P1 P2

P5 P6

C̃

P3 P4

P5 P6

P1 P2

P3

P1 P2

P4
C̃

P3 P4

P1 P2

P1 P3

C̃

P2 P3

P1C

P2

C

(1, n) combiner Ĉ from very efficient (2, 3) combiner C̃

and (1, 2) combiner C

P1 P2

P3 P4

P5 P6

P1 P2

P3 P4

P1 P2

P5 P6

C̃

P3 P4

P5 P6

P1 P2

P3

P1 P2

P4
C̃

P3 P4

P1 P2

P1 P3

C̃

P2 P3

P1C

P2

C

Efficiency of Ĉ

Let t(k) denote the running time of CCCP1,...,Pk , where
each Pi runs in time poly(n).

◮ t(2) = nd for some d > 0, as ĈP1,P2 = CP1,P2.

◮ t(k) = 3c · t(2k
3
).

Where c is the number of calls that C̃P1,P2,P3 makes to its
components (e.g. c = 6 for the BC combiner).
Solving the recursion gives:

t(k) = (3c)log3/2 k · nd

This is polynomial in n for k = poly(n).

Universal Schemes

Definition

A universal scheme U for a cryptographic primitive P is an
explicit construction with the property that if the primitive
P exists, then U is a secure implementation of P.

Universal Schemes

Definition

A universal scheme U for a cryptographic primitive P is an
explicit construction with the property that if the primitive
P exists, then U is a secure implementation of P.

Levin [Combinatorica’87] gave a universal scheme U for
OWFs, which on input x ∈ {0, 1}n2

is defined as

U(x1‖ . . . ‖xn) = M1[x1]‖ . . . ‖Mn[xn]

◮ Mi is the i ’th Turing Machine.

◮ Mi [x] is the output of Mi on input x , where we stop
after at most |x |2 steps.

Universal Schemes

U(x1‖ . . . ‖xn) = M1[x1]‖ . . . ‖Mn[xn]

Mi [x]: output of i ’th TM after |x |2 steps.

Universal Schemes

U(x1‖ . . . ‖xn) = M1[x1]‖ . . . ‖Mn[xn]

Mi [x]: output of i ’th TM after |x |2 steps.

Efficiency: U(x1‖ . . . ‖xn) runs in time n3.

Universal Schemes

U(x1‖ . . . ‖xn) = M1[x1]‖ . . . ‖Mn[xn]

Mi [x]: output of i ’th TM after |x |2 steps.

Efficiency: U(x1‖ . . . ‖xn) runs in time n3.

Hard to Invert (if OWFs exist)
◮ Assume OWF exist, then there exist OWF ’s which

run in quadratic time (use padding).
◮ If TM Mm[.] is a OWF which runs in quadratic time,

then U is at least as hard to invert on inputs of length
n ≥ m2 as Mm[.] on inputs of length n.

Universal Schemes

U(x1‖ . . . ‖xn) = M1[x1]‖ . . . ‖Mn[xn]

Mi [x]: output of i ’th TM after |x |2 steps.

Efficiency: U(x1‖ . . . ‖xn) runs in time n3.

Hard to Invert (if OWFs exist)
◮ Assume OWF exist, then there exist OWF ’s which

run in quadratic time (use padding).
◮ If TM Mm[.] is a OWF which runs in quadratic time,

then U is at least as hard to invert on inputs of length
n ≥ m2 as Mm[.] on inputs of length n.

Because

C f1,...,fn(x1‖ . . . ‖xn) = f1(x)‖ . . . ‖fn(xn)

is a robust (1, n) combiner for OWFs.

Universal Schemes

Lemma (HKNRR05)

For any primitive P, if:

1. We know a polynomial p(.) s.t. if P exists, there

exists an implementation which runs in time p(n).

2. We have a (1, n) robust combiner for P.

Then we can provide a Universal scheme for P

Universal Schemes

Lemma (HKNRR05)

For any primitive P, if:

1. We know a polynomial p(.) s.t. if P exists, there

exists an implementation which runs in time p(n).

2. We have a (1, n) robust combiner for P.

Then we can provide a Universal scheme for P

Universal schemes for all all primitives we saw so far
exist!

OT Combiner???

Lemma (HKNRR05)

A very efficient (2, 3) combiner for oblivious transfer

exists.

The construction is very similar to the (2, 3) BC combiner,
but unlike for BC, no (1, 2) combiner is known.

Open Problem

Does there exist a (1, 2) combiner for OT?

Such a combiner would imply a (1, n) combiner for OT,
and further

Lemma

Any (1, 2) combiner for OT can be used to construct a

universal OT-scheme.

Part 3

Combiners for Collision Resistance

D.Boneh, X.Boyen: On the Impossibility of Efficiently

Combining Collision Resistant Hash Functions. CRYPTO
2006

K.Pietrzak: Non-trivial Black-Box Combiners for

Collision-Resistant Hash-Functions Don’t Exist.

EUROCRYPT 2007

R.Canetti, R.Rivest, M.Sudan, L.Trevisan, S.Vadhan,
H.Wee: Amplifying Collision Resistance: A

Complexity-Theoretic Treatment. CRYPTO 2007

MAC Combiner Revisited
M

K1 MAC1 MAC2 K2

CMAC1,MAC2([K1,K2],M) = MAC1(K1,M)‖MAC2(K2,M)

Unfortunately output length is doubled...

MAC Combiner Revisited
M

K1 MAC1 MAC2 K2

CMAC1,MAC2([K1,K2],M) = MAC1(K1,M)‖MAC2(K2,M)

Unfortunately output length is doubled...
M

K1 MAC1 MAC2 K2

⊕

CMAC1,MAC2([K1,K2],M) = MAC1(K1,M)⊕MAC2(K2,M)

One can XOR the outputs, and the combiner stays robust!

MAC Combiner Revisited
M

K1 MAC1 MAC2 K2

⊕

CMAC1,MAC2([K1,K2],M) = MAC1(K1,M)⊕MAC2(K2,M)

is a robust combiner:

MAC Combiner Revisited
M

K1 MAC1 MAC2 K2

⊕

CMAC1,MAC2([K1,K2],M) = MAC1(K1,M)⊕MAC2(K2,M)

is a robust combiner:
◮ Assume ACMAC1,MAC2 ([K1,K2],.) outputs forgery with

non-negligible probability.

MAC Combiner Revisited
M

K1 MAC1 MAC2 K2

⊕

CMAC1,MAC2([K1,K2],M) = MAC1(K1,M)⊕MAC2(K2,M)

is a robust combiner:
◮ Assume ACMAC1,MAC2 ([K1,K2],.) outputs forgery with

non-negligible probability.
◮ To break MAC1(K , .): Sample key K ′ for MAC2.

MAC Combiner Revisited
M

K1 MAC1 MAC2 K2

⊕

CMAC1,MAC2([K1,K2],M) = MAC1(K1,M)⊕MAC2(K2,M)

is a robust combiner:
◮ Assume ACMAC1,MAC2 ([K1,K2],.) outputs forgery with

non-negligible probability.
◮ To break MAC1(K , .): Sample key K ′ for MAC2.
◮ Let A attack MAC1(K , .)⊕MAC2(K

′, .).

MAC Combiner Revisited
M

K1 MAC1 MAC2 K2

⊕

CMAC1,MAC2([K1,K2],M) = MAC1(K1,M)⊕MAC2(K2,M)

is a robust combiner:
◮ Assume ACMAC1,MAC2 ([K1,K2],.) outputs forgery with

non-negligible probability.
◮ To break MAC1(K , .): Sample key K ′ for MAC2.
◮ Let A attack MAC1(K , .)⊕MAC2(K

′, .).
◮ A outputs forgery (M, φ) for CMAC1,MAC2([K ,K ′], .)

MAC Combiner Revisited
M

K1 MAC1 MAC2 K2

⊕

CMAC1,MAC2([K1,K2],M) = MAC1(K1,M)⊕MAC2(K2,M)

is a robust combiner:
◮ Assume ACMAC1,MAC2 ([K1,K2],.) outputs forgery with

non-negligible probability.
◮ To break MAC1(K , .): Sample key K ′ for MAC2.
◮ Let A attack MAC1(K , .)⊕MAC2(K

′, .).
◮ A outputs forgery (M, φ) for CMAC1,MAC2([K ,K ′], .)
◮ Output forgery (M, φ′) for MAC1(K , .), where

φ′ = φ⊕MAC2(K ,M))

CRHF Combiner Revisited

M

H1 H2

CH1,H2(M) = H1(M)‖H2(M)

CRHF Combiner Revisited

M

H1 H2

CH1,H2(M) = H1(M)‖H2(M)

Output length doubled, unfortunately (unlike for MACs)
M

H1 H2

⊕

is not robust.

CRHF Combiner Revisited
M

H1 H2

⊕

CH1,H2([K1,K2],M) = H1(K1,M)⊕H2(K2,M)

Is not robust. Let H1,H2 : {0,1}m → {0,1}n \ {A,B} be CRHFs.

For all keys K and any X ,Y ∈ {0,1}m redefine

H1(K ,X) = A H1(K ,Y) = B

H2(K ,X) = B H2(K ,Y) = A

Then the inputs X and Y collide in CH1,H2 :

CH1,H2([K1,K2],X) = A⊕ A = 0n

CH1,H2([K1,K2],Y) = B ⊕ B = 0n

