
Theoretical constructions of pseudorandom objects

Leanne Streekstra

We want to built our proofs of security on the mildest assumption possible. The assumption that one-way
functions exist is milder than the assumption that pseudorandom objects exist.

What is a one-way function?
A one-way function is easy to compute, but hard to invert. A candidate one-way function is prime fac-
torization.

Definition
A function f: {0,1}*→{0,1}* is a one-way function if:
1. There exists a PPT algorithm computing f.
2. For all PPT algorithms A, there exists a negligible function negl s.t.:

Pr
x←{0,1}n

[A(f(x)) ∈ f−1(f(x))]≤ negl(n).

To go from one-way functions to pseudorandom objects we first need to define hard-core predicates.

What is a hard-core predicate?
A hard-core predicate is a single bit that is efficiently computable given x, but infeasible given only f(x).

Definition
A function hc: {0,1}*→{0,1} is a hard-core predicate of a function f if:
1. hc can be computed in polynomial time.
2. For all PPT algorithms A, there exists a negligible function negl s.t.:

Pr
x←{0,1}n

[A(f(x)) = hc(x)]≤ 1/2 + negl(n).

Note that it is always possible to correctly guess hc(x) with probability 1/2.

It is not sure whether there exists a hard-core predicate for every one-way function. The following
does hold:
- If f is a one-way function, then there exists a one-way function g along with a hard-core predicate hc:

g(x,r)
def
= (f(x),r), for |x|=|r|.

hc(x,r)
n
⊕
i=1

xi · ri

Where r is a random string and xi is the i-th bit of x. Note that hc(x,r) outputs the XOR of a random
subset of x. We can see r as selecting these random bits.
We now have the ingredients to construct a pseudorandom generator.

From one-way functions to pseudorandom generators

Pseudorandom generators with expansion factor l(n) = n+1
If f is a one-way permutation, we can construct a pseudorandom generator G in the following way:

G(x)
def
= (f(x),hc(x))

Intuitively, G is pseudorandom as hc(x) is infeasible to compute from f(x) and thus looks random (=pseu-
dorandom). f(x) is truly random when x is chosen uniformly at random, by the fact that f is a permutation.

1

Pseudorandom generators with arbitrary expansion
Take G to be a pseudorandom generator with expansion factor l(n)=n+1, then we can construct a pseu-

dorandom generator
∼
G, with expansion factor

∼
l (n)=p(n) for any polynomial p(n), by iteration of G.

The idea here is that given a random input, G outputs a pseudorandom string. If we now output one
of the n+1 bits, we can use the remaining n bits as input for G again. As these bits are pseudorandom,
they are essentially as good as a truly random input. Iterating G in this way will give a pseudorandom
∼
G for any desired polynomial expansion factor.

From pseudorandom generators to pseudorandom functions
Let G be a PRG with expansion factor l(n)=2n. Denote G(k)=(G0(k), G1(k)), where |k|=|G0(k)|=|G1(k)|.
We can now define a pseudorandom function F which takes one bit as input, in the following way:
Fk(0)=G0(k) Fk(1)=G1(k)

As G is a pseudorandom function, the output of F defined in this way is pseudorandom as well, as
it simply outputs half of G’s output.
We can now define an F’ that takes two bits as input as:
F’k(00)=G0(G0(k)) F’k(01)=G1(G0(k)) F’k(10)=G0(G1(k)) F’k(11)=G1(G1(k))

As G(k)=(G0(k), G1(k)) is indistinguishable from random, G(G(k)) will look as random as G(r) for
a random string r. As F’ outputs a part of the output of G(G(k)), it must hold that F’ is indistinguish-
able from a random function. To construct a PRF which takes an input string of length n, we can apply
G n times:
Fk(x1x2 . . . xn)=Gxn

(. . .(Gx2
(Gx1

(k)))).
By the same reasoning as above, this function is a pseudorandom function.

From pseudorandom functions to pseudorandom permutation
-Combining a pseudorandom function with a 3-round Feistel network yields a pseudorandom permutation.

A strong PRP is indistinguishable from a random permutation even when given oracle access to both the
permutation and its inverse.
-Combining a pseudorandom function with a 4-round Feistel network yields a strong pseudorandom per-
mutation.

Concluding remarks
We can now conclude that the existence of one-way functions is a sufficient condition for CCA-secure
encryption schemes and MACs that are unforgeable under chosen message attacks.
From the following statements we can conclude that it is also a necessary condition (see K& L for proofs).

-If there exists a pseudorandom generator, then there exists a one-way function.

However, it does not follow from this that one-way function are necessary, as we might be able to
construct secure encryption schemes without pseudorandom generators or functions.

- If there exists a private-key encryption scheme that has indistinguishable encryptions in the pres-
ence of an eavesdropper, then there exists a one-way function.

We conclude that the existence of one-way functions is both necessary and sufficient for all private-
key cryptography.

Reference
- Katz, J., Lindell, Y. (2008). Introduction to modern cryptography, ch 6.

2

