
Introduction to Modern Cryptography

Exercise Sheet #5

University of Amsterdam, Master of Logic, 2014
Lecturer: Christian Schaffner

TA: Malvin Gattinger

Monday, 29 September 2014

(to be handed in by Monday, 6 October 2014, 11:00)

Homework
10 p.

1. Man-In-The-Middle Attacks: Exercise 9.2 in [KL]: Describe in detail a man-in-the-middle
attack on the Diffie-Hellman key- exchange protocol whereby the adversary ends up sharing
a key kA with Alice and a (different) key kB with Bob, and Alice and Bob cannot detect
that anything has gone wrong. What happens if Alice and Bob try to detect the presence
of a man-in- the-middle adversary by sending each other (encrypted) questions that only the
other party would know how to answer?

2. Key Exchange with Bit Strings: Exercise 9.3 in [KL]: Consider the following key-exchange 15 p.

protocol:

(a) Alice chooses k, r ← {0, 1}n at random, and sends s := k ⊕ r to Bob.

(b) Bob chooses t← {0, 1}n at random and sends u := s⊕ t to Alice.

(c) Alice computes w := u⊕ r and sends w to Bob.

(d) Alice outputs k and Bob computes w ⊕ t.

Show that Alice and Bob output the same key. Analyze the security of the scheme (i.e., either
prove its security or show a concrete attack).

3. CDH and DDH: 25 p.

(a) Give an example of a (not necessarily multiplicative) group G relative to which the
CDH-Problem is easy.

(b) Prove formally that the hardness of the CDH problem relative to a group G implies the
hardness of the discrete logarithm problem relative to G. (Exercise 7.15 in [KL])

(c) Prove formally that the hardness of the DDH problem relative to a group G implies the
hardness of the CDH problem relative go G. (Exercise 7.16 in [KL])

A Good Read

Read and enjoy the paper “New Directions in Cryptography” by Whitfield Diffie and Martin
Hellman from November 1976, available from the course webpage.

Diffie-Hellman Key Exchange Using Buckets of Paint
Image credit: wikimedia.org.

even more on the next page

2

Group and (Algorithmic) Number Theory

[Thanks to Boaz Barak for his kind permission to use his exercises.] The following exercises in-
troduce some group and number theory in order to prepare you for the treatment of public-key
cryptography.

As mathematicians, we expect you to be able to solve the group theory exercises 4.-8. with ease.
Exercises 4.-8. are optional: we will correct them (if you decide to hand in solutions), but not
grade them. If you are not completely confident in your abilities, we recommend that you hand
them in, though. Exercises 9. and 10. are not optional and will be graded.

The exercises are self-contained, so you can solve them without reading outside sources. If you
want to brush up your knowledge, the following are recommended references: (1) [KL], Chapter
7 and Appendix B, (2) Victor Shoup’s book “A Computational Introduction to Number Theory
and Algebra” (also available online at http://www.shoup.net/ntb/) and (3) The mathematical
background appendix of the “Computational Complexity” book by Sanjeev Arora and Boaz Barak
also contains some basic number theory background.

A group (S, ◦) is a set S with a binary operation ◦ defined on S for which the following properties
hold:

(i) Closure: For all a, b ∈ S it holds that a ◦ b ∈ S.

(ii) Identity: There is an element e ∈ S such that e ◦ a = a ◦ e = a for all a ∈ S.

(iii) Associativity: (a ◦ b) ◦ c = a ◦ (b ◦ c) for all a, b, c ∈ S.

(iv) Inverses: For each a ∈ S there exists an element b ∈ S such that a ◦ b = b ◦ a = e.

The order of a group, denoted by |S|, is the number of elements in S. If the order of a group is a
finite number, the group is said to be a finite group. If a group (S, ◦) satisfies the commutative law
a ◦ b = b ◦ a for all a, b ∈ S then it is called an Abelian group.

4. (Optional) Let +n denote addition modulo n (e.g., 5 +3 6 = [5 + 6 mod 3] = 2). Let
Zn = {0, 1, 2, . . . , n − 1}. Prove that (Zn,+n) is a finite Abelian group for every natural
number n.

5. (Optional) Prove that for every group:

(a) The identity element e in the group is unique.

(b) Every element a has a single inverse.

6. (Optional) Let a be an element in a group and let a−1 denote the (unique) inverse of a. Then,
for every integer k we define:

ak :=

a ◦ a ◦ . . . ◦ a︸ ︷︷ ︸

k

if k > 0;

e if k = 0;
(a−1)−k if k < 0.

Prove that for any integers m,n (not necessarily positive) it holds that:

3

http://www.shoup.net/ntb/

(a) am ◦ an = am+n.

(b) (am)n = amn.

7. (Optional) Let (S, ◦) be a group and let S′ ⊆ S. If (S′, ◦) is also a group, then (S′, ◦) is called
a subgroup of (S, ◦). Prove that:

(a) If (S, ◦) is a finite group and a ∈ S then there exists m ≥ 1 such that am = a−1.

(b) If (S, ◦) is a finite group and S′ is a subset of S such that a ◦ b ∈ S′ for every a, b ∈ S′,
then (S′, ◦) is a subgroup of (S, ◦).

8. (Optional) Let a and b be two positive integers. We denote by gcd(a, b) the greatest common
divisor of a and b; i.e, d = gcd(a, b) if d is the largest integer that divides both a and b. The
Euclidean algorithm computes the gcd as follows:

input: a > b > 0

r−1 ← a

r0 ← b

for i = 1, 2, . . . till ri = 0

ri ← [ri−2 mod ri−1]

output ri−1

(a) Prove that this algorithm indeed outputs the gcd of a and b.

(b) Prove that if d is the gcd of a and b, then there exist (not necessarily positive) integers
x, y such that d = xa + yb. How can you compute these numbers?

9. Let ×n denote multiplication modulo n (for instance, 5×7 3 = [15 mod 7] = 1). 30 p.

(a) Prove that for every n, the set Z∗n = {k ∈ {1, . . . , n − 1} ; gcd(k, n) = 1} with the
operation ×n is an Abelian group.

(b) Give an algorithm that on input a ∈ Z∗n computes a−1 (with respect to the group
operation ×n). Can you find an algorithm that runs in time polynomial in |n|?

(c) If n is a prime number, how many elements exist in Z∗n ?

(d) If n = p · q is the product of two different prime numbers p and q, how many elements
exist in Z∗n ?

10. Square-And-Multiply, Efficient Modular Exponentiation: Exercise B.3 in [KL]: De- 10 p.

velop an iterative algorithm for efficient (i.e., polynomial-time) computation of [ab mod N].
An iterative algorithm does not make recursive calls to itself. Argue why your algorithm is
efficient.

Corrected hint: Let y = [ab mod N] denote the answer. Use auxiliary variables x (ini-
tialized to a) and t (initialized to 1), and maintain the invariant t · xb = y mod N while
decreasing b and squaring x. The algorithm terminates when b = 0 and t is equal to the
answer.

4

