
Formal analysis of Bitcoin-like protocols
The original paper does not contain formal proofs of the security of Bitcoin.
A recent paper by Garay, Kiayias and Leonardos attempts to do so: https://eprint.iacr.org/2014/765.pdf
These notes are based on their paper, I recommend reading it.
They define the blockchain process (public blockchain, mining, fork resolving),
which they call the Bitcoin Backbone protocol, and provide security proofs in 
a somewhat idealized setting, called the  -bounded synchronous setting.
They have abstracted the application of Bitcoin by yet-undefined functions V(), R() and I()
that are used by the Bitcoin Backbone protocol to verify, output and contribute to the blockchain, 
respectively.

Model and definitions

There are a fixed number  of nodes in network, 
the number  is considered unknown and the protocol may not depend on this value.
The network communication graph is not fully connected, but messages are forwarded to all 
(P2P).
Thus each node can issue a BROADCAST command that sends a message via the P2P-network.
Also, nodes can receive INPUT() (e.g., user generated transaction) and read network messages via 
RECEIVE().
The network is synchronous, i.e.,  in 1 round everybody may broadcast 1 message to all which is 
received by all by the start of the next round.
The rounds are thus defined in network connectivity. E.g., in the Bitcoin network it has been 
measured that it takes about 3 seconds for a BROADCAST to reach every node, one can thus think 
of as 1 round lasting 3 seconds.

The Adversary is adaptive (i.e., it can take control of nodes on the fly under the given bounds), 
as well as rushing (i.e., it can see all other messages first before it sends its own).
The number of nodes cannot be depended on as source information of messages can be spoofed,
to model this, the adversary is allowed to alter source information on every message. 
However, the adversary is restricted from altering contents of honest nodes, nor block their 
messages.
Do note that adversary can abuse BROADCAST and send different messages to different nodes.

The q-bounded synchronous setting

All nodes have access to a global Oracle H(.) and are allowed to perform a number of queries q per 
round.
So the hashing power of all nodes are assumed equal, but 'real world' cases of varying hashing 
power can be seen as parties having different number of nodes under their control.
The adversary is allowed     queries, where    is the number of corrupted nodes.

Blockchain notation

           

A block is a triple of the form            , where                             

satisfying predicate            
    :

Let G(.), H(.) be cryptographic hash functions with output in       . (Imagine both be SHA-256.)

Formal analysis of Bitcoin-like protocol
zondag 12 oktober 2014
21:22

   Formal analysis of Bitcoin-like protocol Page 1    

https://eprint.iacr.org/2014/765.pdf


                 

Parameter    is the difficulty level and parameter  with       is to ensure    is suitably short, 
e.g.,     .
The restrictions on    are a bit arbitrary, in general one can restrict    to any subset of all bitstrings as 
long as it has at least  elements.
Note that lower  will actually be more difficult, the probability of success is     .
Here  will form the link to the preceding block in the chain,  will be the added content to the chain, 
and    will provide the freedom in finding a block satisfying the predicate               . 

- A blockchain  is a sequence of blocks. Its rightmost block is the head or end of the chain, denoted 
       .

- An empty string  is also a chain, by convention:          .
- A chain  with                   can be extended to a longer chain 

by appending a valid block          with                 .
For    , any block may extend it, i.e., no restriction on  , e.g., set    .
Then the extended chain        has             .

- The length of a chain       is the number of blocks.

- For chain  of length  , for any     , we denote    the chain by removing  times its head, 
i.e., pruning the   rightmost blocks.

- For         ,      .

- If   is a prefix of   , i.e.,            
  

 , we denote      .

Blockchain

Bitcoin has chains of variable difficulty, i.e.,   changes across different blocks, 
which is determined by the contents of the chain up to that block (which includes time stamps).
In their analysis, as the number of nodes as well as the hashing power per node per round is fixed, 
also a fixed difficulty  is assumed.

Bitcoin Backbone protocol
The Bitcoin Backbone protocol is defined with the following functions.

     returns true if the vector of block contents        ,          , forms a valid vector in 
the application setting, e.g., Bitcoin: the contents forms a valid ledger of valid transactions. And 
returns false otherwise.
The Bitcoin Backbone protocol will use this function to confirm whether a Blockchain is valid.

-

     returns the vector of block contents in an application specific formatted form, this is 
how the application on top of the Bitcoin Backbone protocol can access the content in the 
Blockchain.

-

                                    returns a pair        , where   and    are the old 
and updated state, respectively.  further receives the current Blockchain, user-input as well 
as network-input.
The Bitcoin Backbone protocol calls this application dependent function to determine the 
contents         to put into the block which it will try to extend the Blockchain with.

-

They depend on application specific functions          and     :

This function verifies whether a chain of blocks is valid:

      1.
                (empty vector)2.
while      do3.
                     4.

5.    if                       then
                     6.

          

Function Validate(  

   Formal analysis of Bitcoin-like protocol Page 2    



           7.
8.       if    then
9.                               

                                 10.

11.       end if
   else12.
             13.
   end if14.
end while15.
return        16.

Note that their paper actually contains some errors: 
There is no break and without removing the head like in step 6, the function will be caught in an endless 
loop.
Also, they don't actually verify whether the value  is correct.

This function returns the 'largest' blockchain from a set.

      1.
for       to     do2.
   if                then3.
                        4.
   end if5.
end for6.
return     7.

Function maxvalid         

This function defines the comparison (which of two blockchains is 'larger'):

       1.
if                   then2.
          3.
end if4.
return     5.

Function max       

Other options exist for tie-breaking in case of equal length: lexicographic order, random picking.
Note that Bitcoin actually uses a different definition of 'length' within this function and for a very good 
reason,
however in the q-bounded synchronous setting they are essentially equivalent.

This function attempts to solve the proof-of-work and extend the chain with a block with contents  , 
otherwise it just returns the input chain.

if      then1.
       2.
else3.
                      4.
end if5.
         6.

for             do7.
   if              then8.
                   9.
          10.
      break11.
   end if12.
end for13.
return  14.

Function pow     

   Formal analysis of Bitcoin-like protocol Page 3    



return  14.

The following Bitcoin Backbone algorithm is run by all nodes indefinitely:

   1.
    2.
       3.
while        do4.

                                                 5.

                                             6.

                 7.

   if          then8.
            9.
                  10.
   end if11.
                12.
   if                          then13.
      OUTPUT(      )14.
   end if15.
end while16.

Bitcoin Backbone protocol

Step 5 determines the longest known chain which it will try to extend
Step 6 determines the content of the block it will try to append
Step 7 attempts the proof of work
Step 8 broadcasts any update in the chain in that round (e.g., via RECEIVE() or pow())
Step 13-15 allows the application to query the contents of the blockchain
Also note that every node that runs the protocol maintains its own version of the chain 
that may differ between nodes.

Protocol security properties

The protocol has the Common Prefix Property with parameter    

  
        and      

     

If for any pair of honest players      that maintain chains      it holds that

Definition Common Prefix Property

In other words, the common prefix property ensures that blocks at depth  or deeper are definitively 
agreed upon between all honest players, and cannot be changed anymore.
This means that at some points blocks become 'written in stone', but doesn't mean they will contain 
meaningful information (e.g., a very powerful adversary may cause all blocks to be empty, preventing 
any transactions from occuring). The authors therefore consider the following property:

For all  consecutive blocks in  , the ratio of adversarial blocks it at most  .

The protocol has the Chain Quality Property with parameters        
if for any honest party  with chain  it holds that

Definition Chain Quality Property

In other words, the chain quality property guarantees that information by honest parties will eventually 
be part of the blockchain.

Let           
 

  ,       
 

  ,             

   are the upper bounds on the expected number of solutions that the honest parties / 
adversary can compute in one round.
The ratio    denotes the ratio in computer power between honest parties and the adversary.

Notation

   Formal analysis of Bitcoin-like protocol Page 4    



The ratio    denotes the ratio in computer power between honest parties and the adversary.
When  is small (e.g., when  is small), then     

To put some things in perspective, it takes about 3 seconds for a message to reach all nodes in 
Bitcoin, so assume a round lasts 3 seconds, while on average a solution is found every 10 minutes. 

Then   
 

     
       and    .

Assume    and            , for some        and    such that           
Let  be the set of chains of the honest parties at a given round of the protocol.
Then the probability that  does not satisfy the Common Prefix Property with parameter  is at 

most         

Theorem 1 (CPP)

See the paper
Proof

Less precisely, if      for    with          , then the probability that the chains of 
the honest parties do not satisfy the CPP with parameter  drops exponentially in  .
If  is very close to 0, i.e., high network synchronicity, then  can be chosen very close to 1 and 
thus establish the CPP as long as an honest majority of nodes is guaranteed, i.e., the adversary 
controls strictly less than 50% of the hashing power.
On the other hand, when the network has low synchronicity and  gets closer to 1, achieving a 

CPP requires          
 

   , which sets much stricter bounds on the adversary.

Discussion

Assume    and            for some        .
For any honest player  with chain  , and any  consecutive blocks in  , 

the probability that the adversary contributed more than 
           

 
of these blocks is less than 

        .

Theorem 2 (CQP)

See the paper
Proof

Less precisely, if        for some    then the ratio of blocks contributed by honest players 

in the chain of any honest player is at least    
 

 
  If  is close to 1, we obtain that the 

blockchain maintained by honest players is guaranteed to have few, but still some, blocks 
contributed by honest players.
Selfish mining indeed allows the adversary to achieve this ratio.

Discussion

On top of the Bitcoin Backbone protocol actually various kinds of applications can be implemented.
In particular, we will look at a simple Byzantine Agreement protocol as well as a Bitcoin-like Public 
Ledger protocol.

Byzantine Agreement
A number of parties        each having their own input         .

Agreement: There is a round after which all honest parties return the same output.-

Validity: The output returned by an honest party equals the input of a honest party that has not 
been non-corrupted till the end.

-

A protocol solves Byzantine Agreement in the q-bounded synchronous setting if it satisfies the 2 
properties:

A solution against (1/3)-bounded adversaries, i.e.,      , is instantiated upon the Bitcoin Backbone 
protocol as follows:

   Formal analysis of Bitcoin-like protocol Page 5    



    : input validation:                  iff             with                   for 
all  .

-

    : chain reading: If                  and     , return the majority bit of         
Otherwise return  .

-

    : input contribution:                       returns      , where  is the parties 
original input and  is a random  -bit string.

-

protocol as follows:

I.e., each node tries to extend the blockchain with a block containing its own private input bit.
The protocol is run at least    rounds, aiming for the CPP with parameter  , meaning all honest players 
should agree on at least the first        blocks.

It aims at the CQP with parameters    and   
 

 
, such that of those first  blocks the adversary has 

no majority. The majority bit thus has to be equal to some honest players input.

Suppose    and            , for        . Then this BA-protocol satisfies Agreement 

in     rounds with probability at least           .

Lemma Agreement

In order for Agreement to be violated, at least two honest parties should have upon termination 

chains      such that   
     

  . In particular, the set of chains        belonging to honest 
parties does not satisfy the CPP. The lemma follows directly from Theorem 1 (CPP).  

Proof

Suppose    and            , for        . Then this BA-protocol satisfies Validity in 

    rounds with probability            

Lemma Validity

For the property to be satisfied we only need to ensure that in  , the chain from any honest party 
upon termination, the majority of the inputs        was computed by the honest parties. 
Theorem 2 with    and     provides this:
           

 
 

 

 
 

 

 
 

   implies that security is limited to (1/3)-bounded adversaries:      .
  

Proof

The paper actually also describes a more complicated Byzantine Agreement Protocol secure against a 
(1/2)-bounded adversary, i.e.,      , for which I refer to their paper.

Public ledger
The paper also describes a Public Ledger application on top of the Bitcoin Backbone protocol,
however it has abstracted the precise description of transactions and the ledger, and they have left out 
the mining reward.
They use the above theorems to prove security of the Public Ledger:
In particular, the CPP can be used to prove Persistence of a Public ledger, i.e., transactions are 
permanent and ordered against a (1/2)-bounded adversary.
Furthermore, the CQP can be used to prove Liveness of a Public ledger, i.e., transactions of honest 
parties are eventually included against a (1/2)-bounded adversary.

Let  be the set of valid transactions and  be the set of valid ledgers     .
A transaction     may be associated with one or more accounts        
The Bitcoin Backbone protocol process sequences of transactions into a block and subsequently in the 
blockchain. The ledger is the concatenation of the sequences of each block in the blockchain.
The global activity in the ledger is modeled in one single public stateful oracle      that will control a 
set of accounts and issue transactions on their behalf:

   Formal analysis of Bitcoin-like protocol Page 6    



Function               : generates an account  -

Function                   : generates a transaction   provided that    is a suitably formed 
string

-

set of accounts and issue transactions on their behalf:

Transactions        are conflicting i.f.f.             .
Transactions need to be unmalleable into conflicting transactions, i.e., for any PPT  with access to 
     the probability that it produces a transaction    such that            for some   generated 
by      is negligible.
A transaction    is neutral iff                    , e.g., a nonce. These are used below for the sole 
purpose of ensuring independence between the POW instances for each node. 
In Bitcoin this is actually achieved with the reward (i.e., each node uses a different reward destination 
address).

    : input validation:                   iff            .-

    : read chain: if                  , return          , otherwise return  .-

Read to-be-processed-transactions              from INPUT() and RECEIVE().1.
Retain largest subsequence     that is valid with respect to   (i.e.,   that do not 
conflict with any transaction in   and are not already present in   )

2.

Return           , where    is a random neutral nonce transaction.3.

    :                       :-

To use the Bitcoin Backbone protocol, we have to define three functions:

This defines the protocol    .

The protocol has the Persistence property for some    if in a certain round an honest player 
reports a ledger that contains a transaction   in a block more than  blocks away from the end of 
the ledger, then   will always be reported in the same position in the ledger by any honest 
players from this round on.

Definition Persistence

The protocol has the Liveness property for      ('wait time' and 'depth') when, provided that 
an honest player transaction is reported for  consecutive rounds, there exists an honest party 
who will report this transaction at a block more than  blocks from the end of the ledger.

Definition Liveness

A protocol   implements a robust public transaction ledger in the q-bounded synchronous setting 
if it satisfies both Persistence and Liveness.

Definition Robust Public Transaction Ledger

Suppose    and            , for        and    and          . Protocol 

   satisfies Persistence with parameter   with probability           .

Lemma (Persistence)

See paper
Proof

Suppose    and            , for        and    . Let    and assume 
transactions are unmalleable into conflicting transactions (see above). Then    satisfies Liveness 

with wait time            and depth parameter  with probability at least            .

Lemma (Liveness)

See paper
Proof

The above lemma's essential allow the Public Ledger to be secure against a (1/2)-bounded adversary, 
i.e.,       when  is close to 0.
When the network has lower connectivity, or the difficulty is such that solutions are found more 

   Formal analysis of Bitcoin-like protocol Page 7    



When the network has lower connectivity, or the difficulty is such that solutions are found more 
frequently, then  will be further away from 0.
And thus stricter bounds on the adversary are required for security.
In particular this affects the security of various alternate coins (Litecoin, etc.) that boast of faster 
transaction confirmation times.

   Formal analysis of Bitcoin-like protocol Page 8    


