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1. Euler Phi Function: Exercise 7.4 in [KL]

2. Calculations:

(a) Compute (by hand) the final two (decimal) digits of 31000 (Exercise 7.5 in [KL]). Hint:
The answer is [31000 mod 100].

(b) Compute [1014
′800′000′023 mod 35] by hand (Exercise 7.6 in [KL]).

(c) Find a x ∈ Z9999 that fulfills the following system of congruences:

13x ≡ 4 mod 99

15x ≡ 56 mod 101 .

Hint: First use the Extended Euclidean Algorithm to invert 13 mod 99 and 15 mod 101
in order to obtain a system of congruences where the coefficients of x are 1, then apply
the Chinese Remainder theorem. You may want to use a calculator, there are many
(simple) calculations in this exercise.

3. Efficient Test for Perfect Powers: Exercise 7.11 in [KL]. Give an explicit algorithm for
(b), and show (informally) that it is polytime. Hint: (a) ‖N‖ is the number of bits required
to represent N .

4. Index Calculus “Light”: Let p = 227. p is prime, so α = 2 is a generator of Z∗p.

(a) Compute α32, α40, α59 and α156 modulo p, and factor them over the integers. The prime
factors should all be in the “factor base” {2, 3, 5, 7, 11}.

(b) Using the fact that log 2 = 1, compute log 3, log 5, log 7 and log 11 from the factorizations
obtained above (all logarithms are discrete logarithms in Z∗p with respect to the base α).

(c) Now suppose we wish to compute log 173. Multiply 173 by 2177 mod p (this algorithm
requires a random power of 2, and fails for some “unlucky” values. We selected a random
“lucky” value for you.) Factor the result over the factor base, and proceed to compute
log 173 using the previously computed logarithms of the numbers in the factor base.

5. Hybrid Encryption

(a) Computational Indistinguishability: Show that computational indistinguishability
of probability ensembles (as defined in Definition 6.34 of [KL]) is transitive. Show that

if both X
c≡ Y and Y

c≡ Z hold, we also have X
c≡ Z.



(b) Reduction: Using the notation from the lecture, show that (pk,Encpk(k), Ẽnck(m0))
c≡

(pk,Encpk(0n), Ẽnck(m0)). Consider a distinguisher D which distinguishes the above
ensembles with probability εD(n), i.e.

εD(n) =
∣∣Pr[D(pk,Encpk(k), Ẽnck(m0)) = 1]− Pr[D(pk,Encpk(0n), Ẽnck(m0)) = 1]

∣∣ .
In order to show that εD(n) ≤ negl(n), construct a CPA-attacker A on Π which uses
D as a subroutine. Hint: Look at the proof of Theorem 10.13 in [KL]. Note that the
solution must be in your own words.

6. Impossibility Of Public-Key Encryption that is

(a) perfectly-secure: Exercise 10.1 in [KL]

(b) deterministic and secure: Exercise 10.2 in [KL]

7. Factoring RSA Moduli: Let N = pq be a RSA-modulus and let (N, e, d) ← GenRSA.
In this exercise, you show that for the special case of e = 3, computing d is equivalent to
factoring N . Show the following:

(a) The ability of efficiently factoring N allows to compute d efficiently. This shows one
implication.

(b) Given φ(N) and N , show how to compute p and q. Hint: Derive a quadratic equation
(over the integers) in the unknown p.

(c) Assume we know e = 3 and d ∈ {1, 2, . . . , φ(N)− 1} such that ed ≡ 1 mod φ(N). Show
how to efficiently compute p and q. Hint: Obtain a small list of possibilities for φ(N)
and use (b).

(d) Given e = 3, d = 29′531 and N = 44′719, factor N using the method above.
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