Introduction to Modern Cryptography Exercise Sheet #5

University of Amsterdam, Master of Logic, 2012 Lecturer: Christian Schaffner TA: Maria Velema

27 November 2012 (to be handed in by Wednesday, 5 December 2012, 11:00)

1. Euler Phi Function: Exercise 7.4 in [KL]

2. Calculations:

- (a) Compute (by hand) the final two (decimal) digits of 3^{1000} (Exercise 7.5 in [KL]). Hint: The answer is $[3^{1000} \mod 100]$.
- (b) Compute $[101^{4'800'000'023} \mod 35]$ by hand (Exercise 7.6 in [KL]).
- (c) Find a $x \in \mathbb{Z}_{9999}$ that fulfills the following system of congruences:

 $13x \equiv 4 \mod{99}$ $15x \equiv 56 \mod{101}.$

Hint: First use the Extended Euclidean Algorithm to invert 13 mod 99 and 15 mod 101 in order to obtain a system of congruences where the coefficients of x are 1, then apply the Chinese Remainder theorem. You may want to use a calculator, there are *many* (simple) calculations in this exercise.

- 3. Efficient Test for Perfect Powers: Exercise 7.11 in [KL]. Give an explicit algorithm for (b), and show (informally) that it is polytime. Hint: (a) ||N|| is the number of bits required to represent N.
- 4. Index Calculus "Light": Let p = 227. p is prime, so $\alpha = 2$ is a generator of \mathbb{Z}_p^* .
 - (a) Compute α^{32} , α^{40} , α^{59} and α^{156} modulo p, and factor them over the integers. The prime factors should all be in the "factor base" $\{2, 3, 5, 7, 11\}$.
 - (b) Using the fact that $\log 2 = 1$, compute $\log 3$, $\log 5$, $\log 7$ and $\log 11$ from the factorizations obtained above (all logarithms are discrete logarithms in \mathbb{Z}_p^* with respect to the base α).
 - (c) Now suppose we wish to compute log 173. Multiply 173 by $2^{177} \mod p$ (this algorithm requires a random power of 2, and fails for some "unlucky" values. We selected a random "lucky" value for you.) Factor the result over the factor base, and proceed to compute log 173 using the previously computed logarithms of the numbers in the factor base.

5. Hybrid Encryption

(a) **Computational Indistinguishability:** Show that computational indistinguishability of probability ensembles (as defined in Definition 6.34 of [KL]) is transitive. Show that if both $X \stackrel{c}{\equiv} Y$ and $Y \stackrel{c}{\equiv} Z$ hold, we also have $X \stackrel{c}{\equiv} Z$.

(b) **Reduction:** Using the notation from the lecture, show that $(pk, \operatorname{Enc}_{pk}(k), \widetilde{\operatorname{Enc}}_k(m_0)) \stackrel{c}{\equiv} (pk, \operatorname{Enc}_{pk}(0^n), \widetilde{\operatorname{Enc}}_k(m_0))$. Consider a distinguisher \mathcal{D} which distinguishes the above ensembles with probability $\varepsilon_{\mathcal{D}}(n)$, i.e.

$$\varepsilon_{\mathcal{D}}(n) = \left| \Pr[\mathcal{D}(pk, \mathsf{Enc}_{pk}(k), \mathsf{Enc}_{k}(m_{0})) = 1] - \Pr[\mathcal{D}(pk, \mathsf{Enc}_{pk}(0^{n}), \mathsf{Enc}_{k}(m_{0})) = 1] \right|.$$

In order to show that $\varepsilon_{\mathcal{D}}(n) \leq \mathsf{negl}(n)$, construct a CPA-attacker \mathcal{A} on Π which uses \mathcal{D} as a subroutine. **Hint**: Look at the proof of Theorem 10.13 in [KL]. Note that the solution must be in your own words.

6. Impossibility Of Public-Key Encryption that is

- (a) **perfectly-secure:** Exercise 10.1 in [KL]
- (b) deterministic and secure: Exercise 10.2 in [KL]
- 7. Factoring RSA Moduli: Let N = pq be a RSA-modulus and let $(N, e, d) \leftarrow$ GenRSA. In this exercise, you show that for the special case of e = 3, computing d is equivalent to factoring N. Show the following:
 - (a) The ability of efficiently factoring N allows to compute d efficiently. This shows one implication.
 - (b) Given $\phi(N)$ and N, show how to compute p and q. Hint: Derive a quadratic equation (over the integers) in the unknown p.
 - (c) Assume we know e = 3 and $d \in \{1, 2, ..., \phi(N) 1\}$ such that $ed \equiv 1 \mod \phi(N)$. Show how to efficiently compute p and q. **Hint:** Obtain a small list of possibilities for $\phi(N)$ and use (b).
 - (d) Given e = 3, d = 29'531 and N = 44'719, factor N using the method above.

Adi Shamir, Ron Rivest, and Len Adleman as MIT-students and in 2003 Image credit: http://www.ams.org/samplings/feature-column/fcarc-internet, http://www.usc.edu/dept/molecular-science/RSA-2003.htm.