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Complementarity Property of DES

In this exercise, we show that DES has the complementarity property, i.e., that DESk(x) =
DESk(x) for every key k and input x (where z denotes the bitwise complement of z) and how
we can exploit that property.

1. Let f be the DES mangler function. Show that for every subkey k and message x, it holds
that f(k, x) = f(k, x).

2. Use the above property to conclude that after every round i in the Feistel network, Li(x, k) =

Li(x, k) and Ri(x, k) = Ri(x, k). Conclude that DESk(x) = DESk(x) for every key k and

input x. (Note that for all “permutations” P in DES, P (x) = P (x).)

3. Use a chosen-plaintext attack with two messages x and x to argue that it is possible to find
the secret key in DES (with probability 1) using 255 local computations of DES.

Feistel Network and mangler function of DES
Image credit: wikimedia.org.



Group and Number Theory

[Thanks to Boaz Barak for his kind permission to use his exercises.] The following exercises in-
troduce some group and number theory in order to prepare you for the treatment of public-key
cryptography after the break.

As mathematicians, we expect you to be able to solve the group theory exercises 1.-4. with ease.
Exercises 1.-4. are optional: we will correct them (if you decide to hand in solutions), but not
grade them. Anyone who is not completely confident in his/her abilities should do them, though.
Exercises 5. and 6. are not optional and will be graded.

The exercises are self-contained, so you can solve them without reading outside sources. If you
want to brush up your knowledge, the following are recommended references: (1) [KL], Chapter
7 and Appendix B, (2) Victor Shoup’s book “A Computational Introduction to Number Theory
and Algebra” (also available online at http://www.shoup.net/ntb/) and (3) The mathematical
background appendix of the “Computational Complexity” book by Sanjeev Arora and Boaz Barak
also contains some basic number theory background.

A group (S, ◦) is a set S with a binary operation ◦ defined on S for which the following properties
hold:

1. Closure: For all a, b ∈ S it holds that a ◦ b ∈ S.

2. Identity: There is an element e ∈ S such that e ◦ a = a ◦ e = a for all a ∈ S.

3. Associativity: (a ◦ b) ◦ c = a ◦ (b ◦ c) for all a, b, c ∈ S.

4. Inverses: For each a ∈ S there exists an element b ∈ S such that a ◦ b = b ◦ a = e.

The order of a group, denoted by |S|, is the number of elements in S. If the order of a group is a
finite number, the group is said to be a finite group. If a group (S, ◦) satisfies the commutative law
a ◦ b = b ◦ a for all a, b ∈ S then it is called an Abelian group.

1. (Optional) Let +n denote addition modulo n (e.g., 5 +3 6 = [5 + 6 mod 3] = 2). Let
Zn = {0, 1, 2, . . . , n − 1}. Prove that (Zn,+n) is a finite Abelian group for every natural
number n.

2. (Optional) Prove that for every group:

(a) The identity element e in the group is unique.

(b) Every element a has a single inverse.

3. (Optional) Let a be an element in a group and let a−1 denote the (unique) inverse of a. Then,
for every integer k we define:

ak :=


a ◦ a ◦ . . . ◦ a︸ ︷︷ ︸

k

if k > 0;

e if k = 0;
(a−1)−k if k < 0.

Prove that for any integers m,n (not necessarily positive) it holds that:
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(a) am ◦ an = am+n.

(b) (am)n = amn.

4. (Optional) Let (S, ◦) be a group and let S′ ⊆ S. If (S′, ◦) is also a group, then (S′, ◦) is called
a subgroup of (S, ◦). Prove that:

(a) If (S, ◦) is a finite group and a ∈ S then there exists m ≥ 1 such that am = a−1.

(b) If (S, ◦) is a finite group and S′ is a subset of S such that a ◦ b ∈ S′ for every a, b ∈ S′,
then (S′, ◦) is a subgroup of (S, ◦).

5. Let a and b be two positive integers. We denote by gcd(a, b) the greatest common divisor of
a and b; i.e, d = gcd(a, b) if d is the largest integer that divides both a and b. The Euclidean
algorithm computes the gcd as follows:

input: a > b > 0

r−1 ← a

r0 ← b

for i = 1, 2, . . . till ri = 0

ri ← [ri−2 mod ri−1]

output ri−1

(a) Prove that this algorithm indeed outputs the gcd of a and b.

(b) Prove that if d is the gcd of a and b, then there exist (not necessarily positive) integers
x, y such that d = xa + yb. How can you compute these numbers?

6. Let ×n denote multiplication modulo n (i.e., 5×7 3 = [15 mod 7] = 1).

(a) Prove that for every n, the set Z∗n = {k ∈ {1, . . . , n − 1} ; gcd(k, n) = 1} with the
operation ×n is an Abelian group.

(b) Give an algorithm that on input a ∈ Z∗n, computes a−1 (with respect to the group
operation ×n). Can you find an algorithm that runs in time polynomial in |n| ?

(c) If n is a prime number, how many elements exist in Z∗n ?

(d) If n = p · q is the product of two different prime numbers p and q, how many elements
exist in Z∗n ?

Fun Stuff

Read and enjoy the paper “New Directions in Cryptography” by Whitfield Diffie and Martin
Hellman from November 1976, available from the course webpage (see course schedule, midterm
break).
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