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Eulerian path/cycle

- Seven Bridges of Koningsberg

- Eulerian path: visits each edge exactly once

- Eulerian cycle: starts and ends at the same
point

- Graph has Eulerian circuit iff (1) connected
and (2) all vertices have even degree.
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Complexity

- Euler vs. Hamilton

- Edges vs. Vertices

- Pvs. NP

- No necessary and sufficient conditions for a
Hamiltonian cycle

- No good algorithm for finding one (there are
known algorithms with running time O(n?2")
and O(1.657"), so exponential
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- The problem: Suppose that P knows a
Hamiltonian Cycle for a graph G. How can
she prove this to V in zero-knowledge?

- Difference cycle and Hamiltonian cycle

- Permuting: Create a graph F that is
isomorphic to G
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Zero Knowledge (2)

- Step 1: P randomly creates F isomorphic to G

- Step 2: P commits to F (how?)

- Step 3: V chooses between revealing (1) the
isomorphism or (2) the Hamiltonian cycle

- Step 4: P reveals (1) F completely plus the
isomorphism or (2) the Hamiltonian cycle
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Completeness, Soundness

- Completeness: if P knows a Hamiltonian
cycle, V will accept in all cases

- Soundness: if P does not know, the best he
can do is either create an isomorphic F, or
create a Hamiltonian cycle. V will accept
50% of the times -> repeat to pass
soundness
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- Suppose V choses ‘isomorphism’. Then all she sees is
a ‘'scrambled’ version of G. A simulator does not need P
to create a random permutation of G

- Suppose V choses ‘cycle’. Then all she sees is a cycle
between some n vertices. Since the permutation was
random, a simulator that generates random cycles for n
vertices would have the same output distribution
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Zero Knowledge

- Suppose V choses ‘isomorphism’. Then all she sees is
a ‘'scrambled’ version of G. A simulator does not need P
to create a random permutation of G

- Suppose V choses ‘cycle’. Then all she sees is a cycle
between some n vertices. Since the permutation was
random, a simulator that generates random cycles for n
vertices would have the same output distribution

- 'V does not learn anything!
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Turing Machines (1)

- Input for both P and V is the graph G (for
example represented as a matrix)

- P knows a Hamiltonian cycle for G. Uses
random tape to create F, isomorphic to G

- P commits F using some fancy encryption
stuff

- V randomly selects 1 or 0
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Turing Machines (2)

- If 0, P shows the entire committed
graph/matrix and how it is isomorphic to G

- If 1, P shows the cycle (in the case of a
matrix, this means that every row and every
column contains two 1s)

- Verifier checks whether prover is correct
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Travelling Salesman

- Famous variant of Hamilton cycle: given a
weighted graph (i.e. edges have a certain
value), find the shortest Hamiltonian cycle

- NP Hard -> Not only check whether the path
Is @ Hamiltonian cycle, but also whether it is
the shortest




Holiday

Shortest path
through all US
towns/cities with
more than 500
citizens




