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Abstract

Machine translation is a challenging task that its difficulties arise from several char-

acteristics of natural language. The main focus of this work is on reordering as one of

the major problems in MT and statistical MT, which is the method investigated in this

research. The reordering problem in SMT originates from the fact that not all the words

in a sentence can be consecutively translated. This means words must be skipped and

be translated out of their order in the source sentence to produce a fluent and gram-

matically correct sentence in the target language. The main reason that reordering is

needed is the fundamental word order differences between languages. Therefore, re-

ordering becomes a more dominant issue, the more source and target languages are

structurally different.

The aim of this thesis is to study the reordering phenomenon by proposing new meth-

ods of dealing with reordering in SMT decoders and evaluating the effectiveness of

the methods and the importance of reordering in the context of natural language pro-

cessing tasks. In other words, we propose novel ways of performing the decoding to

improve the reordering capabilities of the SMT decoder and in addition we explore

the effect of improving the reordering on the quality of specific NLP tasks, namely

named entity recognition and cross-lingual text association. Meanwhile, we go beyond

reordering in text association and present a method to perform cross-lingual text frag-

ment alignment, based on models of divergence from randomness.

The main contribution of this thesis is a novel method named dynamic distortion,

which is designed to improve the ability of the phrase-based decoder in performing

reordering by adjusting the distortion parameter based on the translation context. The

model employs a discriminative reordering model, which is combining several fea-
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tures including lexical and syntactic, to predict the necessary distortion limit for each

sentence and each hypothesis expansion. The discriminative reordering model is also

integrated into the decoder as an extra feature. The method achieves substantial im-

provements over the baseline without increase in the decoding time by avoiding re-

ordering in unnecessary positions.

Another novel method is also presented to extend the phrase-based decoder to dynami-

cally chunk, reorder, and apply phrase translations in tandem. Words inside the chunks

are moved together to enable the decoder to make long-distance reorderings to capture

the word order differences between languages with different sentence structures.

Another aspect of this work is the task-based evaluation of the reordering methods and

other translation algorithms used in the phrase-based SMT systems. With more suc-

cessful SMT systems, performing multi-lingual and cross-lingual tasks through trans-

lating becomes more feasible. We have devised a method to evaluate the performance

of state-of-the art named entity recognisers on the text translated by a SMT decoder.

Specifically, we investigated the effect of word reordering and incorporating reorder-

ing models in improving the quality of named entity extraction.

In addition to empirically investigating the effect of translation in the context of cross-

lingual document association, we have described a text fragment alignment algorithm

to find sections of the two documents in different languages, that are content-wise re-

lated. The algorithm uses similarity measures based on divergence from randomness

and word-based translation models to perform text fragment alignment on a collection

of documents in two different languages.

All the methods proposed in this thesis are extensively empirically examined. We have

tested all the algorithms on common translation collections used in different evalua-

tion campaigns. Well known automatic evaluation metrics are used to compare the

suggested methods to a state-of-the art baseline and results are analysed and discussed.
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CHAPTER 1

Introduction

Machine Translation1 is the task of translating text or speech from one natural lan-

guage to another by means of a computer software. Machine translation has been

a challenging problem in artificial intelligence for decades. Several approaches have

been researched and investigated since 1950s, however because of translation’s dif-

ficult nature, the efforts had not been very successful until recently. In early 1990s,

researchers at IBM started an approach based on information theory called Statistical

Machine Translation (SMT). Statistical machine translation or SMT tries to perform

translation by using statistical methods and learning how to translate based on pre-

viously manually translated texts. The state-of-the art SMT is a supervised machine

learning approach to translate sentences from source to target by using a bilingual par-

allel corpus of source to target sentences.

An ideal statistical machine translation system for sentence translation is consisted of

a sentence dictionary with all the possible sentences with their correct translations.

However, apart from computational complexities of such a system, building such a

system is not practical, because language vocabularies are not finite and contain open

word classes. In addition, there is no limit for sentence length in practice. Therefore,

SMT approaches need to employ a method to segment sentences into smaller units and

maintain dictionaries to translate those units. The pioneering work in IBM, considered

words as these units and translated sentences word by word. Later, phrase-based mod-

1Also called automatic translation or MT.

14



CHAPTER 1: INTRODUCTION

els which take a sequence of words as the basic unit were proposed that substantially

improved the quality of translation over the previous word based model. In this re-

search, we explore methods to improve the quality of phrase-based statistical machine

translation and evaluate SMT quality beyond automatic metrics.

There are several factors that make MT in principle a difficult task. For a few examples:

words in different languages do not always have a one-to-one relationship. Sometimes

concepts are expressed differently in different languages. There are many ambigu-

ous phrases and terms that need a very wide context to resolve. Additional to above

examples, different languages differ in their syntactical structure and one of the impor-

tant syntactical differences is word ordering. Even languages with similar main word

order may not have the same word order in expressing the same concept. Recent stud-

ies show that word reordering accounts for a large portion of performance variability

among European languages [Birch et al., 2008]. For an example of the effect of reorder-

ing on the output structure and also correct phrase translation, consider the example in

Figure 1.1. This example shows a German sentence translated into English. The SMT

decoder can not easily skip the distance between will and erfahren to correctly trans-

late them into wants to know, because there are more than 182 words between the two

phrases and considering all the permutations possible is intractable.

Current state-of-the art statistical machine translation approach is called phrase-based

SMT. The basic unit for translation in PBSMT is a phrase or a sequence of words. There

are different types of PBSMTs. Firstly, non-syntactic models that consider any sequence

of words as a phrase ad generate the translation by composing target phrases. The

source and target phrases for these models can be contiguous or with gaps that can be

filled later by other phrases. The sequence of words does not need to be a syntactic

unit. This characteristic gives the PBSMT systems the ability to learn a vast number of

phrases including non-syntactic phrases that have been shown to be very useful in cap-

turing obscure and complex phrase translations across different languages. Secondly,

there are models which are based on phrases, but with restrictions on source or target

sides to be syntactic units. The syntactic constraints prevents these models to benefit

218 non-tokenised words; if the sentence is tokenised, based on the method of tokenisation there will
be more than 18 words.
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DE Der SPD-Haushaltsexperte Johannes Kahrs will
von Kanzlerin Angela Merkel Einzelheiten über
die Feier im Kanzleramt anlässlich des 60.
Geburtstages von Deutsche-Bank-Chef Josef
Ackermann erfahren .

MT The SPD budget expert Johannes Kahrs wishes of
Chancellor Angela Merkel in the Chancellery of
details of the ceremony to mark the 60th Birthday
of German Bank chief Josef Ackermann learned .

HUM The SPD budget expert Johannes Kahrs
wants to know from Chancellor Angela Merkel the
details of the ceremony in the Chancellery to
mark the 60th birthday of Deutsche Bank CEO Josef
Ackermann.

Figure 1.1: A German sentence that requires a long distance reordering to cor-
rectly translate the verb. DE is the German sentence, MT is the
output of the machine translation system and HUM is the human
translation.

from the useful non-syntactic phrase, however allows them to generate more grammat-

ically correct translation and easily take advantage of syntax in reordering decisions.

In all the models and experiments described in this work, the former approaches are

used and investigated.

The main focus of this research is the problem of reordering in phrase-based statistical

machine translation. Because of the core role of reordering in machine translation, it af-

fects several aspects of translation. On one hand, better reordering directly influences

the quality of the output. On the other hand, the reordering method has a signifi-

cant impact on determining the performance of the translation algorithm in terms of

speed. In addition to improving and investigating reordering, we explore the prob-

lem of cross-lingual text fragment alignment, which is not directly affected by reorder-

ing. For this problem, the focus is the effectiveness of similarity measures based on

divergence from randomness and word-based translation models without reordering

constraints.

In the following chapters of this thesis, we present methods of performing reordering

that lead to better translations, while investigating their effect on the speed of the main

16
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algorithm. In addition, we analyse the effect of reordering on the quality of translation

for specific natural language tasks. In other words, apart from automatic evaluation

of the algorithms and the contribution of the reordering models by general evaluation

metrics, we evaluate the quality of the generated translations for specific applications

such as named entity recognition. Further than that, word-based translation models

are combined with similarity measures based on models of randomness to perform

mono-lingual and cross-lingual text fragment alignment and analyse the effectiveness

of the models in the aforementioned settings.

In this research, we aim to improve the quality of statistical machine translation with re-

spect to automatic evaluation metrics by focusing on the reordering phenomenon. The

models proposed in this work are independent from the source and target languages

and solely rely on statistics collected from the bilingual parallel data. In addition, com-

mon natural language applications such as named entity recognition and text fragment

alignment have been selected for evaluation to go beyond the general automatic met-

rics and explore the effectiveness of the models in improving translation quality for

particular tasks. Likewise, the method to perform text fragment alignment is language

independent and relies on word statistics in the documents. The word-based transla-

tion models are built using parallel corpus and similarity measures use DFR models

and the word-based translation models to estimate the text fragment similarities.

Throughout this thesis all the models and methods have empirically been evaluated.

Human evaluation of machine translation can be very expensive to perform and im-

practical in evaluating several methods repeatedly. We have used automatic evaluation

metrics and test collections provided by international evaluation campaigns for the ex-

periments. All the proposed approaches are compared to the state-of-the-art baselines,

trained and tuned on the same data. The baselines are all well-established approaches

in the community with strong performances at the time of experiments. Even though,

the benchmarking experiments can not fully show that our approaches are always and

on all data superior to other methods, they are providing a level field for comparing the

proposed models with established ones. Additionally, we have tried to perform the ex-

periments across different language pairs and several test sets to make the experiments

17
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representative of real world applications.

1.1 Research Questions

1. How can one take advantage of the fact that words tend to move together when

they are translated across languages?

2. Is chunking and grouping words together a helpful solution for long-distance

reordering?

3. How important and effective is language modelling in dealing with the reorder-

ing problem?

4. Are distortion constraints influence the quality of translation significantly and

how can an important parameter such as distortion limit be tuned to avoid using

the same parameter for sentences with different structure?

5. What kind of features in a reordering model help to relax the reordering con-

straints3 in phrase-based SMT without degrading the performance of the algo-

rithm in terms of speed and quality?

6. Does adjusting the distortion limit improve quality of the translation compared

to manual tuning?

7. What is the effect of being cross-lingual on text fragment alignment and is the

difference between the performance of the mono-lingual algorithm and cross-

lingual algorithm substantial enough to rule out the full translation as a viable

approach in performing fragment alignment?

8. Is translating to English and using available tools in English to perform NLP tasks

such as named entity recognition a viable alternative to multi-lingual tools?

9. What is the effect of improving reordering on different NLP tasks for different

language pairs? and is improving the reordering going to improve the quality of

these tasks for all language pairs?
3such as distortion limit (see Chapter 2, Section 2.5)
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1.2 Contributions

We present an approach to extend the phrase-based decoder that dynamically chunks,

reorders, and applies phrase translations in tandem. By grouping words and moving

them together, we try to enable the decoder to consider long-distance re-orderings and

avoid unnecessary short distance permutations. In addition, our method does not rely

on language-dependent parsers or chunkers and uses the word alignment information

to build the chunker. To keep the search space manageable, phrases inside the chunks

are monotonically translated, thus by eliminating the unnecessary local re-orderings, it

is possible to perform long-distance re-orderings beyond the common fixed distortion

limit.

To overcome the issue of setting the optimum distortion parameters in the phrase-

based decoders and the fact that different sentences have different reordering require-

ments, a method to predict the necessary distortion limit for each sentence and each

hypothesis expansion is proposed. A discriminative reordering model is built for that

purpose and also integrated into the decoder as an extra feature. Many lexicalised and

syntactic features of the source sentences are employed to predict the next reordering

move of the decoder. The model scores each reordering before the sentence translation,

so the optimum distortion limit can be estimated based on these score.

We devise a method to evaluate the performance of state-of-the-art named entity

recognisers on the text translated by a SMT. Specifically, we investigate the effect

of word reordering and incorporating reordering models in improving the quality of

named entity extraction.

Finally, we propose an approach to automatically align fragments of texts of two doc-

uments in different languages. A text fragment is a list of continuous sentences and

an aligned pair of fragments consists of two fragments in two documents, which are

content-wise related. Cross-lingual similarity between fragments of texts is estimated

based on models of divergence from randomness. A set of aligned fragments based on

the similarity scores are selected to provide an alignment between sections of the two

documents.
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1.3 Thesis Outline

The thesis is structured as follows:

• Chapter 2 provides the background on statistical machine translation needed for

the rest of the thesis. It gives a brief overview of word-based models and in-

troduces the main concepts of phrase-based models and their variations. We also

describe some of the main evaluation metrics currently used in the machine trans-

lation community and the discussions on their effectiveness.

• Chapter 3 discusses the reordering phenomenon in machine translation. We

present a description of the problem and various reordering requirements of dif-

ferent language and overview the previous and current approaches proposed to

deal with reordering so far.

• Chapter 4 introduces an approach of dynamically chunking and translating in

tandem. The proposed method enables the decoder to consider permutations

which include long distance re-orderings. Several examples are shown to demon-

strate that by grouping words and moving them together, the decoder is able to

consider long-distance re-orderings and avoid unnecessary short distance per-

mutations.

• Chapter 5 presents a new method that aims to dynamically adjust the distortion

limit in phrase-based decoding. Adjusting the distortion limit prevents the de-

coder to explore undesirable parts of the search space. The performance of this

approach is compared to several other systems in an evaluation campaign and

the results are discussed in this chapter.

• Chapter 6 describes an approach to evaluate the models and MT in general in the

context of several NLP tasks. Since the quality of even the best SMT systems dif-

fers for different language pairs and heavily depends on the available language

resources, it is important to evaluate the performance of different NLP tasks on

machine translation output.
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• Chapter 7 presents an approach to align text fragments of two documents in two

different languages. One aim of the chapter is to investigate the effectiveness of

divergence of randomness model in the context of cross-lingual fragment align-

ment.

• Chapter 8 concludes the work done in the thesis and proposes some directions

for future research.

1.4 Publications

The work presented in Chapter 4 is also described in “Decoding by dynamic chunking for

statistical machine translation” presented at MT Summit XII [Yahyaei and Monz, 2009].

Chapter 5 was presented as “Dynamic distortion in a discriminative reordering model for

statistical machine translation” in the seventh International Workshop on Spoken Lan-

guage Translation (IWSLT) [Yahyaei and Monz, 2009]. Chapter 7 is accepted as “Cross-

lingual text fragment alignment using divergence from randomness” to be presented in the

18th edition of the International Symposium on String Processing and Information Re-

trieval (SPIRE) [Yahyaei et al., 2011], which is a joint work with Marco Bonzanini.
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CHAPTER 2

Statistical Machine Translation

The subject of this thesis it to explore and examine methods and models to improve

and evaluate reordering in statistical machine translation. In this chapter, we briefly

introduce the basic foundations of machine translation and specifically discuss statis-

tical MT concepts and methods used throughout the rest of the thesis. Since there are

several different approaches to machine translation and even various views in statisti-

cal MT, we do not touch upon all the methods and approaches in this chapter. The main

aim of this chapter is to clearly introduce the terminology used in this work. First, we

give an introduction to statistical machine translation and various stages used in train-

ing the models. Then we discuss the procedure of evaluation in machine translation

and describe the most common used automatic metrics available today. Finally, we ex-

plain the in-house decoder developed during this research and its main components.

2.1 Machine Translation

Machine translation is the task of translating text or speech from one natural language

to another by means of a computer software. Due to the complex nature of natural lan-

guage, there are many challenges in statistical machine translation. For example, lexical

ambiguity which occurs due to the limitation of fully modelling of the context; differ-

ent languages have different word orders; in many cases, syntactic structures are not

preserved across translation; treatments of tenses are different in different languages

and so on. There have been several approaches to perform machine translation since
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the beginning of computers. Recently the use of statistical methods in translation, as

well as natural language processing tasks, has been very successful.

Statistical machine translation tries to perform translation by using statistical meth-

ods. The process is mapping sentences from the source language into sentences from

the target language. The main idea of statistical machine translation is automatically

translating by means of models estimated from parallel and mono-lingual corpora. A

parallel corpus is a set of source-target documents that are translation of each other.

Huge amount of text in different languages and the existence of massive computa-

tional power and distributed algorithms have made SMT a very strong candidate in

the MT industry1.

2.2 Statistical Machine Translation

Although the idea of using statistical methods was first suggested in 1949 [Weaver,

1955], the current SMT approaches are based on the pioneering work started in early

1990s in IBM [Brown et al., 1990, 1993]. The initial models by IBM, were called word-

based models. In word-based models, translation units are words and the selection of

translation options is mainly done by a combination of translation probabilities and the

fluency of the generated output.

Later, phrase-based models which consider a sequence of words as the basic unit, were

proposed [Och et al., 1999; Koehn et al., 2003] that substantially improved the quality

of translation. The improvement was achieved by automatically taking into account

the local context for many of replacements and implicitly addressing many of the local

reorderings. Here, we formally define the machine translation problem and introduce

the main methods of solving it.

Assume we want to translate a foreign sentence f = f J
1 = f1, ..., f J into a target sentence

e = eI
1 = e1, ..., eI . The problem of statistical machine translation can be written as the

following equation:

1At the time of writing, Google translate provides a free online service for translation between 63
languages (http://translate.google.com)
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ê(f) = arg max
e

{Pr(e|f)} (2.2.1)

where arg max is the search problem for finding the target sentence. There are many

approaches to solve the equation 2.2.1: Syntax-based methods that deal with the prob-

lem as a tree-to-tree [Yamada and Knight, 2001], tree-to-string or string-to-tree [Galley

et al., 2004] mapping. Phrase-based models such as [Koehn et al., 2003; Och and Ney,

2004] use aggressive methods to learn contiguous phrases from the parallel corpus and

use them during translation. A modified version of phrase-based models is hierarchi-

cal phrase-based model which learns both contiguous and non-contiguous phrases and

differently use them for translating [Chiang, 2005, 2007].

Independent of general approach to the search problem, they all mainly rely on two

models called translation model and language model. A translation model consists of two

elements. Firstly, a series of rules that describe the steps to transform a source sentence

to a target sentence [Lopez, 2009]. Secondly, a set of parameters that are used to score

the unweighted ruleset, mentioned before. The process of assigning values to these

parameters is called parameter estimation [Lopez, 2008]. A language model is an order

n Markov chain model that assigns a probability to each string. Languages models are

built for the target language to score the produced hypothesis at each step. We will

discuss each model further later in this chapter.

Apart from the two main models mentioned above, many other models and penalties

have been suggested to guide the search process. All these models are integrated in a

uniform way as features and their importance is determined though empirical means.

Equation 2.2.1 can be rewritten as:

ê(f) = arg max
e

(Sili fi(e, f)) (2.2.2)

where fi is a feature and li is its weight in this log-linear model. Current SMT models

employ a wide range of features to perform the task of translation. For an example of a

set of features, the following list is a standard list used in many baseline phrase-based
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systems:

• phrase translation probabilities and lexical probabilities for both directions.

• an n-gram language model.

• phrase and word penalties.

• distance-based reordering penalty.

2.3 Translation Model

To build translation models, we need to extract a ruleset, which as defined before is a

set of mapping from the source strings to the the target strings. In word-based models,

the ruleset is basically a dictionary of source words to target words. After extracting

the ruleset, a weight function must be defined to score each rule and assign a weight or

several weights to each rule.

2.3.1 Word-Based Models

The word-based models, as a first statistical approaches to machine translation, were

introduced in the late of 1980s and early 1990s by IBM [Brown et al., 1990, 1993]. Since it

is difficult to manually align enough sentences to be used for learning the probabilities

for each language pair, the word alignment process starts with non-aligned parallel

sentences and most of the times an unsupervised machine learning algorithm such

Expectation Maximisation [Dempster et al., 1977] to iteratively learn the probabilities.

In the IBM models, Model 1 is the simplest model and later models extend and improve

on it. Model 1 is relatively easy to integrate into the EM algorithm and is fast to train.

The generative story of IBM Model 1 goes like this: given an English sentence, choose

a length for a French sentence. Then for each position in the French sentence uniformly

connect it to an English position and decide what French word to be there. All the

connections in this model are equally likely and order of the words is irrelevant. Since
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Model 1 is an easy and fast model to train, it is a good start to provide initial estimations

for higher models.

In Model 2, the ordering and position of the words relative to the length of the sentence

is added. The HMM Model of [Vogel et al., 1996] is not an IBM model, but it is widely

used for word-alignment in a mixture with IBM models. This model adds a relative

ordering model compared to the absolute model of Model 2. Model 3 adds fertility

probabilities that give the probability of how many French words are generated by

an English word. Model 4 adds a relative reordering model and Model 5 fixes the

deficiency of models 3 and 4.

Although the word-based models are not state of the art any more, most of the concepts

and methods are still used. The above word-based models are widely employed to

produce word alignments that are used to make learning phrases practical in phrase-

based models.

Figure 2.1 shows a visualisation of a word alignment between a German sentence and

its translation in English. The alignments between words are shown by black cells in

the matrix. As you can see, words may have multiple or no alignment points. Un-

fortunately, finding the perfect alignment between a sentence and its translation is not

always possible. Sometimes, function words do not have a clear correspondence in the

other language, but still make changes to the other words. Another source of problem

is words inside idioms that can have a completely different equivalent outside of the

idiom.

A common approach to improve the alignment quality is called symmetrisation of

word alignments, which is finding the alignments in both directions and then using

a method such as intersection or union to combine both alignments [Och and Ney,

2003, 2004]. Figure 2.1 shows the result of the symmetrisation process after taking the

union, while Figure 2.2 shows the same sentence pair and the word alignment pro-

duced by the intersection. It is clear from the figures that the number of aligned points

are less in the intersection method, which is mostly used to produce high precision

word alignments. On the other hand, to achieve high recall the union method is prefer-

able. A middle-ground approach which is commonly used in phrase-based models is a
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heuristic approach that starts with the intersection method and adds new alignment

points based on a few criteria [Och et al., 1999; Koehn et al., 2003]. Figure 2.3 shows the

previous sentence pair aligned by the heuristic approach called grow-diag-final-and

[Koehn, 2009]. In grow-diag-final-and, the reliable alignment points of intersection

are taken and some of the points produced by the union method are added. This ap-

proach is based on the observation that good alignment points are in the neighbour-

hood of other points. diag in grow-diag-final-and means that diagonal neighbours

that are in union, but not in intersection are added. In the final step, alignment for

still unaligned words are added, however, the and tag restricts this step to alignment

points that both words are unaligned.

Apart from symmetrisation, there have been many suggestions to improve the word

alignment quality [Cherry and Lin, 2003; Moore, 2004] and even completely different

approaches to the original IBM models [Ittycheriah and Roukos, 2005; Moore, 2005],

however some studies have shown that word alignment quality has a minor impact on

the translation quality of phrase-based models [Ayan et al., 2005].

2.3.2 Phrase-Based Models

The next generation of statistical machine translation systems after word-based models

is phrase-based models which translation units are multi-words or phrases. As men-

tioned before, there are several models based on phrases. A string-to-string model, that

both source and target phrases are contiguous, are simply called phrase-based models

[Koehn et al., 2003]. Another model that uses phrases with gaps that can be filled with

other phrases is called hierarchical phrases-based model [Chiang, 2007]. In addition

there are several models that constraint phrases of one or both sides to constitute a

syntactic unit. These models are models are generally called syntax-based models [Ya-

mada and Knight, 2001; Galley et al., 2004; Marcu et al., 2006].

Figure 2.4 shows a translation process in a phrase-based model2. One of the advantages

of phrase-based models over word-based models is resolving the problem of multiple

2This is an example of phrase-based models that is not hierarchical and phrases are contiguous strings
without gaps
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Figure 2.1: Word alignment between a German sentence and an English sen-
tence; symmetrisation is done by the union method.
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Figure 2.2: Word alignment between a German sentence and an English sen-
tence; symmetrisation is done by the intersection method.
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Figure 2.3: Word alignment between a German sentence and an English
sentence; symmetrisation is done by the grow-diag-final-and
method.

2

nur

1

ihre fraktion hat

3

das vertreten

4

, was

5

sie jetzt sagen .

your group was

1

alone

2

in advocating

3

what

4

you are saying now .

5

Figure 2.4: An example of translation by phrase-based models.
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mappings. Since there are a lot of one-to-many or many-to-one mappings in transla-

tion, words as base units are not enough to resolve them. Additionally, translating a

group of words together helps to incorporate more context and resolve many trans-

lation ambiguities. As we will discuss later, a big advantage of phrase-based models

over word-based models is capturing the local re-orderings in phrase pairs.

As mentioned before different phrase extraction methods are available in the literature.

[Marcu and Wong, 2002] present a joint SMT model to learn phrases from parallel cor-

pus. However, despite its mathematical foundation, the search space is too large to be

practical for current collections. Instead, here we explain a heuristic approach which is

widely used in the community. Our description is based on [Koehn et al., 2003].

For each sentence pair, we collect all the phrases that are consistent with the word

alignment of the sentence pair. A phrase pair ( f̃ , ẽ) is consistent with alignment A, if

all the words in f̃ and ẽ have alignment points with each other. In other words, we

extract following set of phrases:

{(ẽ, f̃ )| 8ei 2 ẽ : (ei, f j) 2 A! f j 2 f̃

^ 8 fj 2 f̃ : (ei, f j) 2 A! ei 2 ẽ

^ 9ei 2 ẽ, fj 2 f̃ : (ei, f j) 2 A}

where the last constraint ensures that, there is at least one alignment point between the

words inside the phrase pair.

Figures 2.5, 2.6 and 2.7 show the extracted phrases from the sentence pair in Figures

2.1, 2.3 and 2.2 respectively. Since there are less alignment points in the intersection

method, there are more extracted phrases compared to the other two word alignment

methods. As you can see, there might be more than one mapping for some of the

phrases or no mapping at all. Note that, this method of phrase extraction does not

require any kind of syntactic structure from a string of words for being a phrase. Sur-

prisingly, this is one of the main strengths of phrase-based models over syntax-based

models. In Section 3.2.2, we compare these approaches on this feature.
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nur ||| group ||| 0-0
nur ihre ||| group was ||| 0-0 1-1

nur ihre fraktion ||| group was alone ||| 0-0 1-1 2-2
ihre ||| was ||| 0-0

ihre fraktion ||| was alone ||| 0-0 1-1
fraktion ||| alone ||| 0-0

hat ||| your ||| 0-0
vertreten ||| advocating ||| 0-0

vertreten ||| advocating what ||| 0-0
was ||| are ||| 0-0

sie jetzt sagen ||| saying now ||| 0-0 1-1 2-0
jetzt ||| now ||| 0-0

. ||| . ||| 0-0

Figure 2.5: All the extracted phrases from a word alignment matrix produced
by the union method symmetrisation in Figure 2.1. The third col-
umn is the inside phrase word alignment links.

das ||| in ||| 0-0
das vertreten ||| in advocating ||| 0-0 1-1

das vertreten ||| in advocating what ||| 0-0 1-1
vertreten , ||| advocating what you ||| 0-0 1-2

, ||| you ||| 0-0
, ||| what you ||| 0-1

, was ||| you are ||| 0-0 1-1
, was ||| what you are ||| 0-1 1-2

Figure 2.6: Extra phrases extracted from a word alignment matrix produced
by the grow-diag-final-and method symmetrisation in Figure 2.3.
Note that all the phrases extracted in Figure 2.5 is also extracted in
this method.
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ihre fraktion ||| was alone in ||| 0-0 1-1
das vertreten ||| advocating what ||| 1-0

das vertreten ||| in advocating ||| 1-1
das vertreten , ||| advocating what you ||| 1-0 2-2

vertreten ||| in advocating ||| 0-1
vertreten ||| in advocating what ||| 0-1
jetzt sagen ||| saying now ||| 0-1 1-0

jetzt sagen . ||| saying now . ||| 0-1 1-0 2-2
sagen ||| saying ||| 0-0

Figure 2.7: A few examples of extra phrases extracted from a word alignment
matrix produced by the intersection method symmetrisation in
Figure 2.2. These are phrases in addition to the phrases extracted
in 2.5 and 2.6.

To estimate a probability for each pair, we simply use relative frequency:

f( f̃ |ẽ) = count(ẽ, f̃ )
S f̃i

count(ẽ, f̃ )
(2.3.1)

In addition to relative frequency probabilities, many smoothing methods have been

proposed to overcome the problem of sparse data [Zens and Ney, 2004; Foster et al.,

2006].

Despite their success over word-based models, phrase-based models have some limita-

tions. Firstly, according to the phrase extractor algorithm non-contiguous phrases can

not be extracted. For example, in the German sentence, “Ich habe das Haus gekauft”

and English sentence “I bought the house“, a very good phrase is (habe...gekauft,

bought). However, the phrase extraction algorithm is not able to capture the phrase

without including (das Haus, the house) pair. An alternative approach to address this

issue is proposed in [Chiang, 2005] which will be discussed in Section 3.2.4. Secondly,

as it will be discussed in detail later, despite their effectiveness in reordering of the

words inside phrases, phrase-based models are not very good in capturing the reorder-

ing requirements between phrases.

32



CHAPTER 2: STATISTICAL MACHINE TRANSLATION

2.4 Language Model

An important component of each statistical machine translation system is the language

model. Generally, a language model estimates how likely is a sentence or a sequence of

words to be uttered by a native speaker. A statistical language model gives a probabil-

ity to a sequence of words based on the context of sequence. The most common type of

language model is n-gram language models. An n-gram language model is a Markov

model of order n which gives the probability of seeing a given word only based on the

last n� 1 words preceding it [Manning and Schtze, 1999]:

P(wk
1) := Pk

1P(wi|wi�1
i�n+1) (2.4.1)

where wk
1 represents a sequence of k words w1, w2, · · · , wk. N-gram language mod-

els are very effective in word selection of tasks such as Automatic Speech Recognition

[Bahl et al., 1990]. For an example a good language model should give “this is a small

house” a higher probability than “this is a small home”. This example shows, how a lan-

guage model feature aids a statistical machine translation system in choosing words

in different contexts. Lexical probability feature might give “home” a higher probabil-

ity than “house”, but the language model steps in to select the better overall hypoth-

esis. Another area that language models help statistical machine translation is word

reordering. For example, suppose we have two hypotheses “this is a house” and “this a

is house”. A language model must give the first sentence a higher probability, so the de-

coder prefers the hypothesis with the correct word order over the other one. In general,

a language model feature selects a reordering choice only if it leads to a translation that

seems to be a better sentence than the other alternatives. In other words, for a language

model feature the source sentence is irrelevant and the origin of the reordering is not

taken into account. It only scores the generated target hypotheses and favours the ones

that are more likely.

In Chapter 3 we argue that despite the relative effectiveness of language models in

selecting words and in local reorderings, they are not sufficient to address the general

problem of reordering.
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2.5 Decoding

Recalling Figure 2.4, to translate a sentence, apart from finding equivalent phrases from

the phrase table. we need to reorder the phrases to build a grammatically correct tar-

get sentence. Due to the problems of the alignment process and aggressive nature of

phrase extraction algorithm, there are many, usually more than 30, candidates for each

phrase. Considering the number of possible permutations even for a short sentence and

possible translations for each phrase, the search space is overwhelmingly big. [Knight,

1999] shows that searching among all possible translation options is an NP-complete

problem. The state-of-the-art SMT systems employ a set of features to model different

aspects of the translation problem and use a dynamic programming approach to ex-

plore a part of search space and maximise the right hand side of equation 2.2.1. One

way to limit the number of translation options is to constraint the window size that

words can permute in. However, still the search space is large enough to make the

translation process on modern machines impractical. A widely used technique for de-

coding in statistical machine translation systems is Beam Search.

To translate a sentence with beam search decoding, we try to find a chunk of words, a

phrase, that we know how to translate, which means we have at least one equivalent

phrase in our phrase table for it. After generating a hypothesis for each equivalent

phrase of this phrase, the next phrase is selected to translate. Meanwhile, to enable

reordering of the phrases, the next phrase is selected from a window with a specific

length 3, around the previous phrase. Continuing this approach, each hypothesis is

expanded by selecting and translating a next phrase. In beam search technique, we

want to keep the best partial translation and discard those which are worse than a

threshold. According to equation 2.2.2 we can compute the score for each hypothesis to

compare to others and discard some of them, which means, we do not expand them any

more. Since while we translate more, the score of hypotheses get lower, we organise

the hypotheses based on the number of the words that have been translated so far, so

we can compare the candidates that have done a same amount of job.

3distortion limit
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2.6 Evaluation

How we can measure the quality of a statistical machine translation system is a very

crucial question. An intuitive method to evaluate machine translation output is manual

evaluation where human annotators understand at least the target language and eval-

uate the output in adequacy and fluency. Obviously, due to huge amount of human

effort requirement and also disagreement between annotators, even inconsistency of

the judgements of one annotator over time, this is not a practical approach to evaluate

a system. For example, during development of a system we need to evaluate the output

several times a day, therefore having an automatic, easy to use and cheap evaluation

method is essential.

A good evaluation measure should be fast, automatic and consistent. In addition, we

need a measure that correlates well with human judgement. Some evaluation measures

are borrowed from Automatic Speech Recognition such as Word Error Rate [McCowan

et al., 2004], however because they have been designed for another task, they do not

measure all the aspects of the translation quality and do not correlate well with human

judgements.

Many evaluation measures have been proposed in the SMT community. Here we

briefly introduce the most important ones:

• BLEU It measures the precision of uni-gram, bi-gram, tri-gram and four-gram

of the output with respect to one or more reference translations. Additionally, it

has a penalty for short sentences. BLEU measures the accuracy, so higher BLEU

scores are better. The BLEU-4 metric is defined as:

BLEU-4 = brevity-penalty
4

’
i=1

precisioni (2.6.1)

where brevity-penalty, as we said, is used to penalise dropping words and gener-

ating short sentences. In other words, it is simply measuring the recall. precisionn
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is the n-gram precision which is:

precisionn =
number of correct n-grams

number of n-grams in the reference sentence
(2.6.2)

[Papineni et al., 2001]

• NIST Very similar to BLEU, it is a weighted n-gram precision with penalty for

short sentences [Doddington, 2002].

• METEOR In this metric evaluation is done through a sequence of stages, which

in each stage a set of matching uni-grams will be found and scored. For exam-

ple, the first stage is the exact matches and the second is the match of stemmed

words. METEOR is based on the weighted harmonic mean of Precision and Re-

call [Banerjee and Lavie, 2005; Lavie and Agarwal, 2007].

• TER This metric measures the number of edits required to transform an output

into one of the translation references. Edits include insertions, deletions, substi-

tutions and shifts. Also, capitalisation and punctuation errors can be included.

TER is equal to the number of above edits divided by the average number of

reference words, where the main reference, which edit operations are calculated

against it, is the closest one to the output [Snover et al., 2006].

Although, there are many debates about the best evaluation measure in machine trans-

lation community [Callison-Burch et al., 2006], BLEU is currently widely used and al-

most all researchers report their experiments based on the BLEU metric. The state of

the art SMT system achieves BLEU scores in different ranges for different language

pairs. Some language pairs are more difficult and the BLEU scores are lower com-

pared to others. In addition, the number of reference translations affects the range of

the BLEU score achieved by the state of the art systems. For example in WMT 2011,

the best performing system achieved the BLEU score of 0.25 for the German to English

task and 0.17 for the English to German task [Callison-Burch et al., 2011]. On the other

hand in this thesis, we report experiments on Arabic to English with BLEU scores close

0.60. The test data set for Arabic to English has 16 reference translation compared to 1
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reference translation for the German to English data set. Although the automatic met-

rics are designed for comparing systems and most of the times the absolute values do

not have specific meanings, a 0.1 BLEU points improvements is very likely to mean

noticeable positive changes in the translation quality.

To evaluate the translation systems, apart from the training data which is used to build

the translation and language models, we generally use two different sets, including

source sentences and their references, namely development and test sets. The develop-

ment set is used to tune the parameters of the system, particularly the weights of the

features in the log-linear model. The test set is the set that the final score is reported

and is used to in comparison of the systems. Usually, a test or development set contain

1000 sentence with 4 reference translation for each sentence, and if 4 reference transla-

tions are not available, a 2000-sentence set is used to make the result of the tuning and

testing reliable.

2.7 TAGINE: Phrase-based Decoder

Similar to other natural language processing tasks, in statistical machine translation, to

empirically verify every new approach or idea to get accepted by the community as an

effective approach, it needs to be compared to valid baseline. Therefore, along the liter-

ature study we implemented a state of the art phrase-based decoder as a foundation for

our future experiments. We re-implemented the existing phrase-based decoder in the

group with focusing on modularity and speed. To reach a good speed performance and

also taking advantage of object orientation for modularity, we developed the system in

Java and C++ programming language.

Tagine4, is a phrase-based multi-stack, multi-beam decoder with ability to add more

features very easily. Main features are categorised in three classes: Translation model,

language model and distortion model. Additional features such as phrase penalty 5

can be integrated without affecting other components of the system. All the features

are managed by a component which acts as an interface between the features and the
4TrAnslation enGINE
5A simple feature that encourages applying longer phrases during decoding.
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main decoder. Tagine has a component to manage all the constants and parameters

of the decoder through configuration files, so many adjustments can be made without

recompiling the system. It reads a generated phrase table in a widely used format as

its translation model and has an interface to interact with SRILM [Stolcke, 2002] and

IRSTLM [Federico and Cettolo, 2007] language model tool-kits.

We have developed a web application which connects to Tagine through a socket and

can perform the translation online. This version has an implementation of the binary

phrase table of [Zens and Ney, 2007], so it can use very large phrase tables or multiple

languages simultaneously.

As described in Section 2.2 the problem of statistical machine translation can be written

as:

ê(f) = arg max
e

(Sili fi(e, f)) (2.7.1)

where fi is a feature and li is its weight in this log-linear model. The performance of

the this translation system is largely dependent on the finding proper weights for the

features (ls). To optimise the weights, we use Minimum Error Rate Training algorithm

of Franz Och [Och, 2003]. To find the best weights for the features, MERT algorithm

needs a large amount of candidate translations, so it iteratively runs the decoder with

the best weights from the previous iteration and cumulatively use the translations to

find the minimum points.

Summary

In this chapter, we briefly introduced machine translation and the main ideas of statisti-

cal MT. The word-based models of IBM and their application in the heuristic phrase ex-

traction method of phrase-based models were also discussed. We pointed out that the

two main models of statistical MT are translation and language models and described

some of their attributes. In addition in Section 2.6, some of the main automatic met-

rics and the logic behind MT evaluation were discussed. This chapter was concluded

by a description of our implementation of a phrase-based decoder and experimental

framework used for the rest of the thesis.
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Reordering in Statistical Machine

Translation

There are several factors contributing to the difficulty of machine translation. For ex-

ample, different levels of morphology between the source and target languages can

make it difficult to generate the right verb, with correct morphology, in the target side.

Another problem is the issue of unknown words. If both languages are using the same

alphabet and are historically related, there is a chance of success in translating un-

known words, if simply the unknown word is reproduced in the target side. However,

if the languages are historically distant or more importantly the alphabets are different,

this approach has a little chance to succeed.

One of the major problems in MT is different word orders between the source and the

target language. In translating a source sentence to a target sentence, reordering is the

requirement of the decoding algorithm to skip words and cover them after translating

later words in the sentence. In other words, reordering in statistical machine translation

is the need for not necessarily sequentially translate all the phrases in a source sentence.

The main reason that reordering is needed is the fundamental word order differences

between languages. The main word order in some languages is Subject-Object-Verb

such as Persian1 and in some it is Subject-Verb-Object such as English. There are other

word order differences, such as the order of noun modifiers and the noun between
1Although most of the sentences are in the form of SOV, the word order is almost free and many

sentences can be written in different order while pertaining the same meaning.
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different languages.

In this chapter, we define different types of reordering and overview the current ap-

proaches proposed to deal with the problem. In the rest of this chapter, we discuss the

difference between the main SMT approaches in tackling the word order differences

and the role of syntactic knowledge in some of these works.

3.1 Different Types of Reordering

We categorise different reorderings based on the width of the distance between the

words that are moved to be translated consequently. There are many ways to categorise

them into a few classes such as short, medium and long distance reorderings. Here, we

discuss short and long distance reorderings and show examples of both to demonstrate

the difference between them and the reason different methods are used to deal with

them.

3.1.1 Short Distance Reordering

An intuitive difference in word order between languages is the location of noun modi-

fiers with respect to the noun. For example, in English adjectives precede the noun, but

in French they follow the noun. Figure 3.1 shows an alignment for a translation from

French to English2.

As you can see from the alignment matrix, to translate such a sentence, the decoder

should allow a jump over the word group and a jump back to translate pse. This kind of

permutation that requires a skip of a few words, less than three, is called short distance

or local reordering. Fortunately, phrase-based models are relatively successful in this

kind of reordering. Three different features of phrase-based models enable it to handle

this situation effectively. Firstly, it is likely to extract the phrase groupe pse during train-

ing and translate this phrase in one phrase application, hence with correct word order.

Secondly, n-gram language models are very effective to assign a higher probability to

the correct permutation of the words in such a short distance. Finally, the distance
2< s > in some of the alignment figures represents the beginning of the sentence.
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Figure 3.1: A French to English translation with a local reordering.

based reordering model (see Section 3.2.1) does not penalise short distance jumps such

as 1 and �1 too harsh, consequently, there is chance for other features like language

model to compensate the penalty.

3.1.2 Long Distance Reordering

Although, a good language model or a lexicalised distortion model (see Section 3.2.3),

can deal with local reordering problem, they are not usually sufficient for long dis-

tance reorderings. A long distance reordering3 is needed, where one is dealing with

languages with very essential different word orders. For example, many German sen-

tences are in SOV order which is very different from English word order, SVO. In these

cases, the problem is a long distance between the subject and the verb. After translat-

ing the subject, the decoder has to skip rather a large number of words to reach the

verb and consequently jump back after translating the verb. Figure 3.2 shows an exam-

ple of German to English translation which requires a long distance jump to correctly

translating the verb.

3.2 Current Approaches to Tackle Reordering

In general, there are two main approaches to SMT: non-syntactic phrase-based and

syntax-based. In both approaches there are different strategies to address the issue of
3Also called global reordering
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Figure 3.2: A German to English sentence with a very big difference in word
order.

reordering. Non-syntactic phrase-based models, which are simply called phrase-based

models, are divided into two classes: hierarchical and non-hierarchical or string-to-

string phrase-based models.

Recently, there have been many efforts to incorporate syntax in statistical machine

translation, particularly in word reordering. In syntax-based models the reordering

problem is principally addressed by learning a ruleset that is constrained by syntactic

rules. Generating a syntactically correct output with combining the phrase rules from

the ruleset leads to implicitly performing the required reordering moves. Later in this

chapter, we overview some of the ways of integrating syntactic information into SMT

systems.

On the other hand, in phrase-based models there is no syntactic restrictions on phrases

and reordering is mostly addressed by lexical models and features. Most of the phrase-

based models rely on n-gram language models for their reordering decisions. As we

will see later, the commonly used distance-based reordering model, prefers monotone
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translation over reorderings, unless there is enough evidence by the language model

to show that the reordering is the case. As n-gram language model only considers the

last n� 1 words as context, they are not effective for distances longer than n. Another

issue with current phrase-based models is distortion limit. To control the size of the

search space, most phrase-based models, limit the length of the window that words

can be reordered in. For similar languages in word order, this might be harmless, but

for languages with totally different word order such as SVO and SOV languages, this

limitation makes the finding of proper word order almost impossible. In summary,

current phrase-based systems have a relatively limited ability to capture the word or-

der differences between languages and require extra models to guide the decoder in

making reordering decisions.

3.2.1 Basic Distance-based Penalties

IBM Distortion Models

A very basic and simple reordering model is first introduced by [Berger et al., 1996].

This models completely relies on the language model to select among the reordering

options. A constant k is defined and the decoder is allowed to skip up to k words to

translate the next word or phrase. [Zens et al., 2004] provide an overview of the effect of

this simple reordering model on translation quality compared to monotone decoding.

Distance-based Reordering Model

Similar to the IBM distortion model, distance-based reordering model considers re-

ordering relative to the previous phrase. We define the start position of the next phrase

(the phrase we are about to translate) as starti and endi�1 as the end position of the

previous phrase and i is the index of corresponding English phrase. So, the distortion

cost of translating ith English phrase after (i� 1)th, is:

d(i) = starti � endi�1 � 1 (3.2.1)
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This model penalises more as the skips increases. If a phrase is translated exactly after

the previous phrase, then the distortion cost is 0, because starti = endi�1 + 1. Although,

it is not necessary, we can convert d(x) to a probability distribution by rewriting it as

d(x) = a|x| where a 2 [0, 1] [Koehn, 2009]. Despite its simplicity, distance-based re-

ordering is widely used in many baseline systems. The publicly available SMT system

pharaoh [Koehn, 2004] uses distance-based reordering model and it is also the default

reordering model of the open source SMT system, Moses [Koehn et al., 2007].

3.2.2 Syntax-based Approaches

Syntax-based SMT

Recently, many SMT systems started to incorporate syntactic information to capture the

word order differences between the languages. [Yamada and Knight, 2001] allow re-

ordering operations on syntactic parse-trees of the source sentence. Their model trans-

forms a source parse-tree into a target string by applying learnt rules on the nodes of

the tree. They define three operations, reordering, inserting extra words and translating

leaf nodes, to transform the tree to a target string. The operations are applied based

on probabilities learnt from the training data. Their syntax-based translation model

was tested on translation from English to Chinese. Although, their SMT system were

outperformed by phrase-based decoders [Koehn et al., 2003; Och and Ney, 2004], new

generation of syntax-based decoders such as [Marcu et al., 2006; Galley et al., 2006]

perform very well and in some cases better than phrase-based systems. [Galley et al.,

2004] propose a linear algorithm to define a minimal set of syntax-based translation

rules from word alignments. They explain a method to extract complex rules in a way

to address the problems raised by [Fox, 2002]. In contrast to [Yamada and Knight, 2001]

in [Galley et al., 2004] parse-trees of the target sentences are generated and reordering

operations are taken place by extracted rules from the training data. [Galley et al., 2004]

prepared a background theory to build a system which is able to properly explain the

data and derive sufficient rules to perform the translation. In [Galley et al., 2006], they

extend the framework to acquire not only a minimal set of rules, but a large number
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of more contextually richer rules. In addition, a method to estimate probabilities from

training data is developed. Despite the success of the approach in modelling long dis-

tance reorderings with means of syntactic information, incapability of the approach to

extract as much phrase rules as a phrase-based model do, leads it to a lower perfor-

mance in some of the experiments.

[DeNeefe et al., 2007] compare the number of extracted phrases by syntax-based mod-

els and phrase-based models and try to find the reason of the issue of phrasal cover-

age in syntax-based models. With some modifications in [Galley et al., 2006] approach

such as [Wang et al., 2007b] and combining rules extracted by another approach [Marcu

et al., 2006], they report significant improvement over the baseline phrase-based sys-

tem.

[Xiong et al., 2008] in a different approach integrated linguistic knowledge of syntac-

tic and non-syntactic phrases into a BTG-based SMT system [Wu, 1997]. A maximum

entropy based reordering model is built based on the lexicalised and syntax-based in-

formation of the phrases, to determine the order of the phrases in the BTG decoder,

which are inverted and straight.

Reordering of the Source Sentence

In some approaches that have tried to employ syntactic information, transformation

rules are applied to the source sentence to make it in an order similar to the target lan-

guage. Transformation rules can be general syntax-based or specific lexicalised rules.

Usually, in these approaches, source sentences of the training set are transformed and

the reordered versions are used to learn the word alignments and phrases. [Xia and Mc-

Cord, 2004] proposed a method to learn transformation rules from a parallel corpora.

In their work, an algorithm is designed to extract re-write patterns, apply them to the

source sentence and monotonically carry out the translation. At training time, to learn

the rewrite patterns, source sentences are parsed, phrases are aligned and lexicalised

and unlexicalised patterns are extracted. A simple rewrite pattern for reordering the

adjective, noun phrases in English to noun, adjective phrases in French is as follows:
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(NP �! Adj N) =) (NP �! N Adj)

where NP represents a noun phrase. Because there are many conflicting patterns during

extraction, an organising and filtering method is applied to them. Also, a probability

score is assigned to each pattern based on its count in the training data. Patterns in a

group are sorted from the most specific patterns to the more general ones and are ap-

plied sequentially. Same pattern application is used to transform the source sentences

of the test set and a phrase-based decoder is employed to monotonically translate them.

Although, they have reported 10 percent improvement over the baseline phrase-based

model, it is not mentioned in their paper the type of the reordering model in the base-

line. It is good to know the amount of improvement of the approach over a simple

reordering model such as distance-based reordering (see Section 3.2.1), since even this

simple model significantly outperforms a model without any reordering model.

[Collins et al., 2005] present a similar approach to [Xia and McCord, 2004], but with

hand crafted rules to re-write the source sentence. They argue that baseline phrase-

based models are unable to perform the reorderings such as those of between German

and English. As they show, the main differences in German clause structure with En-

glish, it is clear that some of the reorderings require long distance skips which is usually

penalised very high by phrase-based decoder, that makes it almost impossible to occur.

In addition, [Collins et al., 2005] highlight another benefit of source reordering which

is able to bring together sets of words in the source sentence that can be extracted as a

phrase, but without source reordering, they are not contiguous or they are far from each

other to be considered as a phrase. They had six clause reconstructing rules which are

sequentially applied to a German sentence. Sentences in the training set are reordered

as well as test set. Phrases extracted by the baseline phrase extraction methods [Koehn

et al., 2003] and test sentences are monotonically decoded. Following this work, [Wang

et al., 2007a] apply the same method to Chinese, English pairs. Totally, eleven rules in

three categories are selected and the gain of each rule in translation quality is exam-

ined. Despite a discussion in the paper about having a better word alignments with

source reordering, it is still unclear how much source reordering helps to have better
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alignments.

A similar technique is used in [Badr et al., 2009] to reorder the source side in an English

to Arabic statistical machine translation system. The difficulty of this work is that it is in

the direction of generating a morphologically highly complex language such as Arabic.

Their rules are mainly for Subject-Verb order in sentences that are translated into Verb-

Subject in Arabic and noun phrase structures. Application of the rules require parsing

the source side and syntactic reordering with poor quality parsers are not effective

[Habash, 2007], however since the source language is English and there are reliable

parsers for English, the reordering rules can be effective and the experiments show it.

Although all the above works reported improvements over the baseline, we believe re-

ordering the source sentence makes hard decisions that eliminates the impact of n-gram

language models. Thus, we prefer to make reordering decisions during the decoding.

In the above source reordering methods either a small set of rules were manually

crafted [Collins et al., 2005] or a very large set of rules were automatically learnt [Xia

and McCord, 2004]. An approach which automatically learns a small set of rules is

presented in [Elming, 2008; Elming and Habash, 2009]. One important distinction be-

tween source reordering approaches is whether the source sentence is deterministically

reordered and the decisions are made before the decoding or the reordered source sen-

tence is used with the original sentence to be decoded. This non-deterministic method

can also be done by producing a weighted lattice of source sentences, including the

reordered ones and the original. [Elming, 2008] argue that a non-deterministic method

is superior and propose a learning method to to learn reordering rules based on a set

of linguistic information. In [Elming and Habash, 2009], a rule-based classifier is used

to learn a small set of rules based on the linguistic features. A lattice is generated from

all the possible reorderings permitted by the rule-set plus the original source sentence.

The lattice is unweighted, however during the decoding the cost of the reorderings by

the rules are estimated and taken into account for each hypothesis. This method of in-

tegrating the rule-based reorderings during the decoding enables the decoder to score

the reorderings originated from the phrase-table too.

Another non-deterministic method, which uses an n-best list for providing the decoder

47



CHAPTER 3: REORDERING IN STATISTICAL MACHINE TRANSLATION

with a list of reordered source sentences is proposed by [Li et al., 2007]. The train a

maximum entropy model to decide whether two sister nodes in a binary syntax tree

should be inverted or kept in the same order. Several features for each source phrase,

including leftmost, rightmost, head, context words and their POS, were used in the

maximum entropy binary classifier.

Another group of methods of source reordering are based on Part-of-Speech (POS) tags

or statistically classified word classes4. [Chen et al., 2006] extract rules at the POS level

from the word alignments and apply them to reorder the source sentences. [Rottmann

and Vogel, 2007] use a combination of POS and POS with word context rules and a lat-

tice as an input to the decoder. [Crego and Marino, 2006] extract rewrite patterns at POS

level, however, instead of reordering the source sentence, the reordering operations are

integrated into decoding process.

An approach that employs a method between full parsing and POS tags is [Zhang

et al., 2007a] which is based on chunk-level. They apply a method similar to other

source reordering methods, however in an intermediate level called syntactic chunks.

A rule is composed of chunk and POS tags and word segmentation, POS tagging and

chunking are the steps before extracting the rules. Table 3.1 shows some of the [Zhang

et al., 2007a] rules which are extracted based on word alignments and source chunks of

Chinese, English pair.

NP0 PP1 u2 n3 0 1 2 3
NP0 PP1 u2 n3 3 0 1 2
DNP0 NP1 VP2 0 1 2
DNP0 NP1 VP2 1 0 2
DNP0 NP1 m2 0 1 2
DNP0 NP1 m2 ad3 3 0 1 2
DNP0 NP1 m2 ad3 v4 4 3 0 1 2

Table 3.1: Examples of reordering rules in chunk-based source reordering
[Zhang et al., 2007a].

Due to the large number of the rules and also conflicting between some of them, a set

of reordered sentences are passed to the decoder as a lattice. In their following work
4For a method to obtain bilingual word classes see [Och, 1999]
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[Zhang et al., 2007b] the lattice weighting approach, which was based on only a trigram

language model, is improved to incorporate the rules probabilities. In addition, they

report further improvement by reordering the source sentences in the training data and

extract an extra set of phrases to use along the original phrase table. In [Vilar et al., 2008]

the extended the system to accept an n-best list instead of a lattice, which is claimed

to have two advantages over the previous version. Firstly, it does not need a decoder

which is able to process a lattice and a normal decoder can be used for the translation.

Secondly, the number of reordering options in the n-best list is substantially lower than

the lattice, but still it contains the best distinct paths, which increases the performance

of the system.

3.2.3 Lexicalised Reordering Models

In lexicalised reordering models, a model is built to predict the word or phrase orien-

tation during the decoding. These models assign a cost to the next candidate skip. The

aim is to build a model that predicts the natural jump and penalise that jump less than

other possible jumps by giving a lower cost to it. In this set of method, the models are

mostly built based on word and phrase frequencies. A few simple syntactic features

have been used in some of the proposed models, however the main source of evidence

for these models are lexicalised statistics from the training data.

The two main branches of lexicalised reordering models are distortion models based

on jumps between the words and phrase orientation models based on the orientation

of the next phrase with respect to the last translated phrase.

Word-based Distortion Model

[Al-Onaizan and Papineni, 2006] argue that n-gram language models are not enough to

deal with even local reorderings, thus they propose a distortion model to give a cost to

each jump based on the words participated in the jump, The model computes the costs

in word level, then combines the costs of the words to estimate the cost of the phrases.

The model consists of three components: outbound, inbound and pairwise distortions.
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The outbound component tries to capture the skip length immediately after translat-

ing a particular word. Correspondingly, the inbound distortion captures the length of

the jump before translating a particular word. The pairwise distortion considers both

words to estimate the cost. Equations 3.2.2, 3.2.3 and 3.2.4 show the estimation of the

probabilities of each distortion model for a jump with length d between words fi and

f j:

po(d| fi) =
count(d| fi)

Sk count(d = k| fi)
(3.2.2)

pi(d| f j) =
count(d| f j)

Sk count(d = k| f j)
(3.2.3)

pp(d| fi, f j) =
count(d| fi, f j)

Sk count(d = k| fi, f j)
(3.2.4)

Here, count(d| fi) is the count of occurrence of a jump with length d after word fi. All

the probabilities are directly estimated from word alignments. For example, in Figure

3.3, following counts will be incremented: po(+1| f1), po(�1| f3), pi(+1| f3), pi(�1| f2),

pp(+1| f1, f3) and pp(�1| f3, f2).

e1 e2 e3
f1
f2
f3

Figure 3.3: An example of frequencies which will be collected for word distor-
tion model.

[Al-Onaizan and Papineni, 2006] convert the probabilities to distortion cost (log space),

so they can be integrated into the phrase-based decoder as features. For example, pair-

wise cost is defined as:

Cp(d| fi, f j) = log(aPp(d| fi, f j) + (1� a)Ps(d)) (3.2.5)

where Ps(d) is a smoothing distribution5 and a is set empirically. The experiments of
5In their experiments the distribution is a geometrically distribution.
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[Al-Onaizan and Papineni, 2006] is on Arabic, English pair which they report improve-

ments over the baseline. We implemented a distortion model based on their description

and tested on German, English pair. Despite their report the improvements in our ex-

periments were not significant over the distance based reordering model. In Chapter 4

there is a plan to find the reason for this.

Lexicalised Phrase Orientation Model

Inspired by the fact that some phrases are more likely to be reordered, lexicalised re-

ordering models condition the reordering on the actual phrases. However, despite

word distortion models, in phrase orientation models, instead of all possible reorder-

ings between two particular phrases, only a set of reordering types are considered. The

first lexicalised reordering model proposed by [Tillmann, 2004] which conditions the

orientation of the phrase based on the phrase itself. There are three reordering types

in their work: Right, Left and Neither. [Tillmann and Zhang, 2007] follow the previous

work, by conditioning the orientation type on the previous and current phrase. Addi-

tionally, they add more features including a word distortion model based on the work

by [Al-Onaizan and Papineni, 2006] (see Section 3.2.3). A stochastic gradient descent

algorithm is provided to handle a large amount of features and predict the orientation

of future phrases.

Similar to [Tillmann, 2004]’s work, [Koehn et al., 2005b] have three possible orienta-

tions: monotone, swap and discontinuous. The model is learnt directly for phrases from

the alignment files. The probability po(a| f̂ , ê) is simply computed by counting how

often a phrase pair is found with the particular orientation:

po(a| f̂ , ê) =
count(a, f̂ , ê)

Socount(o, f̂ , ê)
(3.2.6)

where a 2 {monotone, swap, discontinuous}.

[Galley and Manning, 2008] argue that previous lexicalised reordering models fail

capturing long distance reorderings and propose a hierarchical lexicalised reordering

model. Despite dealing with hierarchical reordering rules, their method does not
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rely on cubic-time parsing algorithms such as those used in hierarchical phrase-based

models (see [Chiang, 2005, 2007]). The model analyses the alignments beyond adja-

cent phrases to extract reordering rules, which are more complex than predicting the

orientation between blocks of consecutive phrases. They classify lexicalised reorder-

ing models into word-based, phrase-based and hierarchical orientation models and

demonstrate that the latter performs significantly better than the others.

[Tromble and Eisner, 2009] have considered reordering in machine translation as a case

of Linear Ordering Problem and learnt the relative orders of words in a sentence based

on multiple features. A dynamic programming algorithm based on chart parsing is

developed to find the best reordering within a neighbourhood. They have used the

method as a preprocessing step to translate German to English and reported improve-

ments over a strong baseline equipped with a lexicalised reordering model.

[Zens and Ney, 2006] proposed a method based on maximum entropy principle to

combine different features and predict the word orientation. They combined multi-

ple lexicalised features and for generalisation, they considered features based on word

classes. Although, they reported results for {�1, 0, 1} possible jumps, their model is

general enough to predict longer jumps. They concluded that features based on the

source sentence words perform better than those based on the target and also more

context always helps.

3.2.4 Hierarchical Phrase-based Model

Recalling the example in Section 2.3.2, one of the shortcomings of phrase-based mod-

els is disability to learn non-contiguous phrases. [Chiang, 2005] proposed a method

to learn hierarchical phrases from the word alignments. In addition to learning non-

contiguous phrases, this approach learns a set of synchronous grammar translation

rules that can address the reordering problem in many cases. For example, in the Ger-

man, English pair “Ich habe das Haus gekauft” and “I bought the house“, apart from

normal phrases, we are able to extract “habe X gekauft”, “bought X” rule. In addition

to the good phrase pair, it nicely captures the reordering of the X in the rule. Decod-

ing process of synchronous grammar rules is different from the decoding process for
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phrase-based models (see Section 2.5). In phrase-based models we build the target sen-

tence from left to right, however, here rules with gaps generate words in disconnected

positions in the target sentence. Therefore, a chart parsing algorithm is used to decode

the sentence by synchronous grammar rules. A full description of the decoding process

is provided in [Chiang, 2007].

An extension to the string-based decoder is presented in [Galley and Manning, 2010]

that allows discontinuous phrases such as those explained above in addition to contin-

uous phrases be used without a CKY decoder. Their decoder [Cer et al., 2010] takes

advantage of the better generalisations and reordering capabilities of the discontinu-

ous phrases, which enables it to outperform both phrase-based decoders such Moses

[Koehn et al., 2007] and hierarchical decoders such as Joshua [Li et al., 2009].

Summary

This chapter defined and explored the reordering phenomenon and the proposed ap-

proaches to deal with it in the literature. Local or short-distance and long-distance

reorderings were discussed and it was argued that n-gram language models alone are

sufficient to address the problem and several other models have been presented to

compensate the lack of evidence provided by the language models. Many approaches

and models have been proposed to deal with the problem. Syntax-based approaches

rely on their syntactic rules to perform the reorderings and produce grammatically cor-

rect output. On the other hand, phrase-based approaches deal with most of the local

reorderings with the help of extracted phrases and rely on additional features or pre-

processing steps to tackle the rest of the reordering requirements.

We overviewed the lexical reordering models that are effective in phrase-based SMT

decoders and also discussed the hierarchical versions of these lexicalised models. Also,

some of the main syntax-based methods of SMT were presented that take a completely

different approach to reordering and the the output fluency compared to the phrase-

based models. We finished the chapter by the discussion of hierarchical phrase-based

models and the integration of their translation model in the non-hierarchical phrase-
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based models.
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CHAPTER 4

Decoding by Dynamic Chunking

4.1 Introduction

Despite the success of phrase-based statistical machine translation systems, fluency of

the output, particularly for long sentences still remains one of the main challenges in

current research on machine translation. Most of the errors in the MT output are caused

by word-order differences between the source and the target language. In this chapter,

we propose a method to guide the decoder in performing permutations and enable

long distance reorderings required in many language pairs. The aim of the chapter is to

outline an approach that is language independent and does not need any syntax-based

language dependent tools. The method is called dynamic chunking and is motivated

by the fact that words move together and groups of words can be translated without

reorderings longer than those that can be captured by the phrase-table.

We have mentioned before that compared to word-based statistical machine transla-

tion systems, phrase-based approaches perform very well in capturing local reorder-

ings. However, long distance reorderings remain a serious challenge. As Knight [1999]

showed, trying all the permutations is computationally intractable, and most phrase-

based MT systems restrict the search space by limiting the set of reorderings that are

explored during decoding. Zens et al. [2004] examine the effect of different constraints

on machine translation quality.

A constraint commonly used in phrase-based machine translation is the distortion
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limit, which restricts the distance between the next phrase and the previously trans-

lated phrase. Most approaches described in the literature report a distortion limit rang-

ing between 4 and 12 words. This limitation of course prohibits any word reordering

going beyond the set limit. This might not be a problem for language pairs with similar

word order such as English-French or Dutch-German [Birch et al., 2008]. A good lan-

guage model or a lexicalised reordering model [Koehn et al., 2005a] will be enough to

capture the word order differences in these cases. However, when translating between

languages with rather different word order, for example an SOV (subject-object-verb)

language into an SVO (subject-verb-object) language, the distortion limit restriction can

severely affect the decoder’s ability to capture those word order differences correctly.

When translating from German (an SOV language) into English (an SVO language),

it is not unusual that more than 20 words on the source side need to be jumped over

to translate the verb in the right position. Figure 4.1 shows a German sentence trans-

lated into English. The SMT decoder can not easily skip the distance between will and

erfahren to correctly translate them into wants to know. The two German phrases are

likely to separately be translated and hence generate a non-fluent English.

DE: Der SPD-Haushaltsexperte Johannes Kahrs will von Kanzlerin Angela Merkel
Einzelheiten über die Feier im Kanzleramt anlässlich des 60. Geburtstages von
Deutsche-Bank-Chef Josef Ackermann erfahren .

MT: The SPD budget expert Johannes Kahrs wishes of Chancellor Angela Merkel in
the Chancellery of details of the ceremony to mark the 60th Birthday of German
Bank chief Josef Ackermann learned .

REF: The SPD budget expert Johannes Kahrs wants to know from Chancellor An-
gela Merkel the details of the ceremony in the Chancellery to mark the 60th birth-
day of Deutsche Bank CEO Josef Ackermann.

Figure 4.1: A German sentence that requires a long distance reordering to cor-
rectly translate the verb. DE is the German sentence, MT is the
output of the machine translation system and REF is the human
translation.

While relaxing the distortion limit accordingly may seem a possible solution to this

problem, it has two severe shortcomings: Firstly, decoding time rapidly increases with
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more relaxed distortion limits. Secondly, wider distortion limits also allow for any re-

ordering within the distortion limit which increases the level of noise and puts a higher

burden on the language model to demote wrong reorderings.

In this chapter, we propose a method to enable the decoder to consider permutations

which include long distance reorderings. By grouping words and moving them to-

gether, we try to enable the decoder to consider long-distance reorderings and avoid

unnecessary short distance permutations. In addition, our method does not rely on

language-dependent parsers or chunkers and uses the word alignment information to

build the chunker. In this chapter we use the term chunk for contiguous group of

words. In phrase-based SMT models, a phrase is also a span of words, however there

are several differences between a phrase and a chunk. Firstly, the purpose of chunking

a sentence is to find a group of words that can be translated monotonically, but phrases

are extracted from the word alignment data regardless of the word orders. Secondly,

chunks may contain several phrases and therefore they are designed to be longer than

phrases, so multiple phrases can be translated during a chunk translation. Thirdly, the

method of identifying chunks, presented in Section 4.3.5 is different than the phrase

extraction algorithm. Finally, the chunks are only used to guide the decoder in reorder-

ing decisions and are not used for word replacements. On the other hand, the main use

phrases is to replace the source sentence with target words.

The rest of the chapter is organised as follows: Section 4.2 provides an overview of

the related work addressing the issue of word reordering in statistical machine trans-

lation and the use of chunking in particular. Section 4.3 explains the proposed method.

Section 4.4 discusses the experimental settings and results comparing the chunking

method to a baseline. In Section 4.5 we draw some conclusions and discuss open is-

sues. Furthermore, Section 4.5 analyses the shortcomings of the approach proposed in

this chapter and suggests a few extensions and modifications to improve the quality of

this approach.
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4.2 Related Work

We explained in the previous chapter that several phrase-based SMT systems use a very

simple distance-based reordering model [Koehn et al., 2003, 2007]. In such a distance-

based model, monotone translation and short jumps are preferred over longer jumps.

The cost in this model increases linearly by distance with a slight preference for jumps

to the right:

d(i) = starti � endi�1 � 1 (4.2.1)

where d(i) is the distortion cost of translating the ith phrase after the (i� 1)th.

More recently, there have been efforts to incorporate syntax into statistical machine

translation, or using syntactic means in order to address the issue of word reordering.

A method to incorporate syntactic information is to apply syntactically motivated rules

to render the word order of the source sentence similar to the target language. These

transformation rules can be syntax-based or lexicalised rules. A syntax-based rule is a

transformation rule that only contains syntactic tags [Collins et al., 2005; Wang et al.,

2007a], but a lexicalised rule contains at least one word as a constraint [Xia and Mc-

Cord, 2004]. Xia and McCord [2004] proposed a method to learn transformation rules,

lexicalised and syntax-based (unlexicalised), from a parallel corpus. Their approach

extracts re-write patterns, applies them to the source sentence after which the sentence

is translated monotonically. To learn the rewrite patterns, the source side of the bi-text

is parsed, phrases are aligned and lexicalised, and unlexicalised patterns consisting of

parent nodes with their children, plus their syntactic labels are extracted.

Zhang et al. [2007a] developed a method similar to other source reordering methods,

however their approach works on an intermediate level called ‘syntactic chunks’. A

syntactic chunk is a series of words that consist of a grammatical unit such as noun

and verb. They use a maximum entropy tool to build the chunking model with train-

ing data provided by converting sub-trees of Chinese treebank into chunks. A rule is

composed of chunk and POS tags, where a chunk tag for each word determines the

chunk type that the word belongs to and also whether the word is at the beginning of

the chunk. Before extracting the rules POS tagging and chunking is applied. As several
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conflicting rules can match a given sentence, the different rule applications are passed

to the decoder as a lattice.

For all of the the reordering approaches discussed above, a syntactic parser, chunker,

or POS tagger of the foreign language is required. Unfortunately, these resources (at

sufficient levels of accuracy) tend to be scarce for many languages.

On the other hand, we believe reordering the source sentence makes hard decisions that

cannot be undone. For example, Xia and McCord [2004] report a decrease in transla-

tion quality by allowing permutations after reordering the source sentence. Also, since

all reorderings are done beforehand, the impact of n-gram language models, which is

quite crucial in other approaches, is eliminated. To take advantage of the language

model feature, we prefer to make reordering decisions during decoding. In addition,

since one of the strengths of phrase-based models is to learn many phrases which do

not necessarily belong to any syntactic category [DeNeefe et al., 2007], we believe the

syntactic chunks may diminish this feature. Therefore, we suggest to consider all pos-

sible chunks and identify the optimal chunk boundaries during decoding.

There are also a number of reordering approaches that fully integrate reordering into

the decoding process, see for example [Al-Onaizan and Papineni, 2006; Tillmann, 2004]

as mentioned in Chapter 3. These models typically predict the jump orientation (and

sometimes distance) based on the previously translated phrase and the phrase that is

to be translated next. A few simple syntactic features have been used in some of these

models [Crego and Marino, 2006], however the fully lexicalised parameters remain the

main source of evidence. Our method differs from lexicalised reordering models as it

allows permutations beyond the fixed distortion limit and also removes the need for

considering many unnecessary local reorderings.

4.3 Integrating Chunking and Decoding

In this section we describe our approach which integrates chunking and decoding.

While all of the previous chunk-based decoders first apply chunking, then reorder the

chunks, and finally perform translation, our approach performs chunking and decod-
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ing at the same time. The advantage is that decisions at each level (chunking, chunk-

based reordering, and translation) are not made independently of each other.

Penalising the jumps according to the number of words in distance-based reordering

severely discourages making long distance reorderings and tends to bias the decoder

to translate most of the sentences monotonically [Collins et al., 2005]. Here, we group

words together and penalise the jumps based on the number of skipped chunks. This

enables the decoder to skip more than a fixed number of words and allows for long-

distance reorderings. On the other hand, we chunk the source sentence in a way that

words inside a chunk can be translated monotonically in either direction: right to left

or left to right. By eliminating local reorderings (apart from the local reorderings that

are captured by the phrase translations themselves) within the chunks the size of the

search size is kept manageable during decoding.

To accomplish this, we extended the standard phrase-based multi-stack decoding ap-

proach to simultaneously chunk and apply phrase applications. The approach consists

of two components: Firstly, a chunk scoring component which is a binary classifier that

gives each chunking candidate a score, and, secondly, an extension to the decoder that

either expands the current chunking decision or applies a phrase translation inside an

uncovered chunk.

We use a maximum entropy classifier to assign score to each chunking decision. In the

section, we first briefly discuss the principle of maximum entropy and describe how

the features are defined to be used in a classifier based on maximum entropy and then

explain the chunking scorer in detail.

4.3.1 Maximum Entropy Modeling

Statistical modelling is used to build a model to predict the behaviour of a process.

A labelled training set is employed to learn a model predict future behaviour of the

process [Berger et al., 1996]. The first modelling task is feature selection and the second

one is model selection. Firstly, a set of statistics is determined and then these statistics

will be employed to construct an accurate model of the desired process.
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One of the approaches to build that model is through maximum entropy modelling.

The idea behind maximum entropy method is very simple: model all that is known and

assume nothing about that which is unknown [Berger et al., 1996]. It means, choose a

model consistent with all the facts, but otherwise as uniform as possible.

Calculating the model for a very limited number of constraints is easy and the prob-

lem can be solved by simple mathematical operations. However, when there are many

constraints—which is typically the case in NLP problems—it can not be solved analyt-

ically and numerical methods have to be leveraged to find the model.

4.3.2 Representing Evidence

Consider a random process that produces output values y 2 Y which may be influ-

enced by contextual information x 2 X . The model that represents this process is a

method to estimate the conditional probability p(y|x), where p(y|x) is the probability

of seeing output y in presence of context x. On the other hand, take p̃(y|x) as the em-

pirical distribution of some number of samples (x1, y1), (x2, y2), ..., (xn, yn) which are

observed from the behaviour of the process. These samples, which are constraints on

distribution p, are extracted from training data. Even though large training sets usually

contain some occurrences of y and x together they are usually not sufficient to predict

p(y|x) for any (x, y) pair. Thus, one side of the problem is finding a distribution which

matches the constraints. To express these facts, any statistic from the samples is intro-

duced as a function f (x, y) which is called a feature:

fi(x, y) =

8
><

>:

1 if c(x, y)

0 otherwise
(4.3.1)

where fi is a function which is 1 if the predicate c is true for some x and y.

Although in some natural language processing tasks features are binary functions of

the form given in Equation (4.3.1), in many classification tasks, including text clas-

sification, usually the strength of evidence is taken into account. In other words, to

represent features, instead of a binary function that indicates the presence or absence

61



CHAPTER 4: DECODING BY DYNAMIC CHUNKING

of a contextual information, a real-valued function is used to indicate the strength of

context. Nigam et al. [Nigam et al., 1999] have shown that using strength of evidence

in text classification increases performance.

4.3.3 Maximum Entropy Principle

The probability distribution for the process based on maximum entropy has two char-

acteristics: Firstly, it is in accordance with the constraints, secondly it is as uniform as

possible. The first statement means the model’s expected value of the feature fi is equal

to the observed expectation of that feature. Thus, if Epx is p’s expected value of x and

we have n features { f1, f2, ..., fn}, then:

Ep fi = Ep̃ fi for i 2 {1, 2, ..., n} (4.3.2)

Equation (4.3.2) is called a constraint. p̃(y|x) is the observed probability of y given

x in the training data. Ep fi is the expected value of fi in model p, which is equal

to Âx,y p̃(x)p(y|x) fi(x, y), where p̃(x) is the empirical distribution of x in the train-

ing sample. For the second statement, suppose P is the set of all possible probability

distributions and C is the subset of P which are compatible with constraints:

C =
�

p 2 P|Ep fi = Ep̃ fi for i 2 {1, 2, ..., n}
 

(4.3.3)

According to the maximum entropy principle we have to select the most uniform prob-

ability distribution in C. The measure of uniformity for the conditional probability

p(y|x) is [Berger et al., 1996]:

H(p) ⌘ �Â
x,y

p̃(x)p(y|x) log p(y|x) (4.3.4)

So, the required distribution is the maximum of H(p):

p⇤ = arg max
p2C

H(p) (4.3.5)
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It can be shown that there is a unique distribution that satisfies Equation 4.3.5 and it is

always of the exponential form. Berger et al. [Berger et al., 1996] have shown that the

solution has the following parametric form:

pl(y|x) =
1

Zl(x)
exp

n

Â
i=1

li fi(x, y) (4.3.6)

Zl(x) = Â
y

exp
n

Â
i=1

li fi(x, y) (4.3.7)

where Zl(x) is a constraint to satisfy the requirement that Ây pl(y|x) = 1 for all x,

because it is a probability distribution.

4.3.4 Optimisation Algorithm

Apart from simple problems, Equation 4.3.6 can not be solved analytically and nu-

merical methods should be used to find the weights of the features. There are many

algorithms for estimating parameters of maximum entropy models. Generalised Iter-

ative Scaling [Darroch and Ratcliff, 1972] and its improved version Improved Iterative

Scaling [Berger et al., 1996] are widely used to optimise maximum entropy models,

however, in our experiment both algorithms performed very poorly which is also re-

ported by Malouf [Malouf, 2002]. Thus we decided to use Nocedal’s limited-memory

BFGS [Nocedal, 1980] which is a very efficient and robust method to solve large scale

optimisation problems [Liu and Nocedal, 1989]. L-BFGS is a version of quasi-Newton

method BFGS, which is provided to overcome the memory problem of BFGS algorithm

[Nocedal, 1980].

The L-BFGS algorithm has been implemented in Andrew McCallum’s MALLET library

[McCallum, 2002] and Zhang Le’s Maximum Entropy Toolkit [Le, 2004].

4.3.5 Chunking Scorer

We define a chunk as a contiguous group of words that can be translated monotonically

from left to right or right to left. Figure 4.2 shows an alignment matrix for a pair of
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sentences. Given a word alignment aJ
1 between a source sentence f = f1, ..., f J and

target sentence e = e1, ..., eI . We define a chunk boundary between f j and f j+1 if there is

a source word aligned to any i such that aj < i < aj+1 or aj > i > aj+1. Formally:

Definition 1. Suppose Aj is the set of all ajs, which is the set of all the positions that are aligned

to fj. We define a chunking boundary between fj and fj+1 if there is a source word aligned to

any i such that max(aj, aj+1) > i > min(aj, aj+1), where aj 2 Aj, aj+1 2 Aj+1 and |aj� aj+1|

is the minimum1.

For instance, in the example alignment, there is no chunk boundary between f6 and f7,

because there is no i such as a6 < i < a7. Analogously for f1 and f2, as there is no

source word aligned to e2. According to this definition there is, for example, a chunk

boundary between f2 and f3. The example in Figure 4.2 contains three chunks. With this

definition, a binary classifier will be learnt to classify every point between two foreign

words under two classes: ‘chunk boundary’ and ‘no chunk boundary’

f1 f2 f3 f4 f5 f6 f7
e1
e2
e3
e4
e5
e6
e7

Figure 4.2: An example of chunks with left to right, ( f1, f2), ( f6, f7) and right to
left ( f3, f4, f5) orientations.

We define a set of features based on the word alignments and above definition to be

used in the maximum entropy classifier. Our set of feature functions include:

• h1(d, fj, f j+1), where d 2 {1, 0}, + indicates that the words are in different chunks,

so the point between them is a chunk boundary. h1 gives the probability of being

a chunk boundary or not based on the collected frequencies. In the example of

1The following conditions ensure that the definition is consistent for positions with source words that
are aligned to more than one target words, which is Aj with more than one element: aj 2 Aj, aj+1 2 Aj+1
and |aj � aj+1| is the minimum
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Figure 4.2, we increment the count(1| f2, f3), count(1| f5, f6) and for all the other

pairs count(0| fj, f j+1).

• h2(d, fj), where d 2 {1, 0}, 1 indicates the word is a left border of a chunk. In the

example, f1, f3 and f6.

• h3(d, fj), where d 2 {1, 0}, 1 indicates the word is a right border of a chunk. In

the example, f2, f5 and f7.

• h4( f j, f j+1), which is a binary function indicating the significance of the pair in

the data.

Given the above feature functions, a first set of training sentences is used to collect the

lexicalised frequencies and train the model, the second part is used to generate features

for parameter estimation of the maximum entropy classifier. We use L-BFGS [Nocedal,

1980] implemented in [Le, 2004] to optimise the feature weights.

The above feature functions are combined to estimate the chunking scores in Equa-

tion 4.3.6 and the chunking scorer is integrated into the baseline decoder as an addi-

tional feature. The feature function to integrate into the decoder is:

hchunk( f J
1 , eI

1, C, S) =

log
J

’
1
(CjS(j) + (1� Cj)(1� S(j))) (4.3.8)

where C is a function that maps each position on the foreign side to the set {1, 0},

indicating whether there is a chunk boundary after this word. S is the chunking scorer

that assigns to each position the probability of being a chunk boundary.

4.3.6 Decoding by Chunking

The decoder is a multi-stack, multi-beam decoder that translates the sentence from left

to right, which can skip multiple chunks and translate them later to perform any kind

of reordering. For expanding each hypothesis either an uncovered chunk is picked
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and a phrase translation is applied or a new location is marked as a chunk boundary.

As the chunking decisions affect the way phrase translations are applied, we insert

hypotheses with the same covered words and the same last chunked position in the

same stack. For expanding each hypothesis, the first step is to label more chunks from

the last chunked position, which means expanding the current hypothesis by finding

more chunks and assigning to them the chunking cost. In the next step, if the current

position is inside an uncovered chunk, the decoder continues translating the chunk by

applying new phrase translations. Otherwise, it picks a new chunk to translate and

starts applying phrase translations within the chunk. No reordering inside the chunks

is allowed. Figure 4.1 sketches the algorithm.

Input: multiStack
1: for all hyp in multiStack do
2: current find current chunk {based on last foreign position}
3: if current is completely covered2 then
4: chunksToExpand chunk limit � available chunks
5: for i = 0 to chunksToExpand do
6: create new hypothesis from hyp and i
7: end for
8: for all chunk in uncovered chunks do
9: start translating chunk

10: end for
11: else
12: continue translating current
13: end if
14: end for

Algorithm 4.1: Decoding and chunking integration algorithm.

Figures 4.3 and 4.4 show an example of a chunk based derivation. Figure 4.3 is the step

by step derivation of the target sentence and Figure 4.4 shows the chunk movements

from the source sentence to the target sentence.

In state 1 of this example, the decoder labels the position between German words

‘muss’ and ‘die’ as a chunk boundary. This is a chunking state (C), which finds the

labels of the positions between the words and computes the chunking cost by the

chunking scorer component. For the next state, the decoder either labels more posi-

tions to be chunked or applies phrase translations to uncovered words. The latter is

2all the words in the chunk are translated
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done by translating the span ‘man muss’. A translation state (P) can be reached by

multiple phrase applications. In states 3 and 4, more positions are labelled as chunk

boundaries (between ‘wirkung’, ‘anerkennen’ and ‘anerkennen’, ‘.’). In the next state,

the decoder jumps over a chunk (9 words) to translate the verb. Grouping the words

together makes it possible to do long-distance reordering such as this. The remainder

of the decoding process is to translate the skipped chunk monotonically and finally

chunk and translate the full stop.

With extra information in every hypothesis, the recombination criteria are redefined to

consider the chunking status of a hypothesis. For two hypotheses to be recombinable

[Koehn, 2004], they should have identical chunk boundaries for the uncovered posi-

tions. This is in addition to commonly used recombination criteria such as identical

cover vectors, language model history, and last foreign position covered.

The chunking cost, estimated by the chunking scorer, is another feature along the base-

line features. Also, the future cost computation component includes the future chunk

distortion cost and future chunking cost together with the translation model and lan-

guage model costs.

The following feature functions are defined to incorporate chunking costs and chunk

reorderings costs:

• Chunking cost feature function which assigns to each chunk a probability accord-

ing to the classifier explained in the previous section.

• Chunking penalty which penalises or rewards each chunking application based

on the sign of its weight. The optimisation algorithm, configures this feature in a

way to encourage or discourage longer chunks.

• Chunk distortion model which penalises jumps over chunks similar to distance-

based reordering model, however instead of the number of words, it counts the

number of chunks.
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• DE man muss die schwierigkeiten bei der bestimmung von ursache und wirkung
anerkennen .

• REF the difficulties in determining cause and effect must be acknowledged .

• BL it must be the difficulties in the provision of cause and effect .

• man muss die schwierigkeiten bei der bestimmung von ursache und wirkung

anerkennen .

• we must recognise the difficulties in the provision of cause and effect .

Figure 4.4: An example of chunk movements during the decoding by dynamic
chunking. DE is the German sentence, REF is the reference transla-
tion and BL is the translation by the baseline decoder.

4.3.7 Parameters

To control the quality and the speed of the decoder for different language pairs, a few

additional parameters are introduced. Since decoding inside the chunks is monotone,

all baseline parameters3 apart from the distortion limit are also needed here.

• chunk length limit: determines the maximum allowed length for each chunk. A

large value, such as 100, lets the decoder try all available chunks. On the other

hand, for languages with many local word reorderings a smaller value can make

the decoding process faster without hurting the performance (Default: 100).

• chunk number minimum and maximum: These values control the number of un-

covered chunks before applying phrase applications. They can be used to control

the amount of permutations during decoding (Default: 1 and unlimited).

• chunk distortion limit: similar to distortion limit in the baseline, but based on the

chunks instead of words (Default: 6).
3This includes: stack limit, beam width, phrase length limit, and phrase table entries per source phrase.
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German English
Train Sentences 1.4M

Words 38M 40M
Vocabulary 344K 113K
Avg Sen. Length 26.17 27.51

Test(EP) Sentences 2,000
Words 56K 60K
Vocabulary 8844 6050
Avg Sen. Length 28.31 30.09

Test(NC) Sentences 2,028
Words 51K 49K
Vocabulary 9849 7163
Avg Sen. Length 25.31 24.63

Table 4.1: German to English corpus statistics. Europarl (EP) and News Com-
mentary (NC) test sets of ACL WMT 2008.

4.4 Experiments

4.4.1 Experimental Setup

To examine the effects of dynamic chunking on translation quality, we have chosen Ger-

man to English translation as it involves many long distance reorderings. The training

and test data sets are taken from the ACL WMT evaluation [Koehn and Monz, 2006].

The corpus statistics are shown in Table 4.1.

The preprocessing stage includes tokenisation and lower casing. The tokenisation pro-

cess separates words. In English and German words are mostly separated from each

other by whitespace. Our tokenisation algorithm uses whitespace and punctuations

and some simple rules for exceptions to tokenise the text. There is only one reference

translation for each sentence. The evaluation metrics used here are BLEU [Papineni

et al., 2001], NIST [Doddington, 2002] and TER [Snover et al., 2006].

The baseline system is a common multi-beam, multi-stack phrase-based decoder, de-

scribed in [Koehn et al., 2003] with the following features:

• phrase translation probabilities and lexical probabilities for both directions

• a trigram language model
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Run System BLEU NIST 1�TER
1 EP Baseline 0.2687 7.0063 0.3374
2 EP Chunk 0.2716 7.1084 0.3261
3 NC Baseline 0.2454 7.1591 0.3476
4 NC Chunk 0.2487 7.1798 0.3599

Table 4.2: Results on German to English task of ACL WMT 2008 translation
task, Europarl (EP) and News Commentary (NC) test sets. Since
TER is measuring the error, 1�TER is reported. Default values are
used for parameters of the chunking decoder (see Section 4.3.7).

• phrase and word penalty

• distance-based reordering penalty

The weights for the features are optimised by MER training [Och, 2003] to maximise

the BLEU [Papineni et al., 2001] score.

4.4.2 Results

The maximum entropy classifier is evaluated on the held-out data of the parallel cor-

pus. The average accuracy4 of 10-fold cross validation is 0.73, which means that around

25% of the chunk boundary decisions are incorrect. On the other hand, the classifica-

tion decisions are not the only source of evidence that we use to choose the chunking

boundaries. Both the language model and the translation models (phrases that cover

the span) contribute to this decision. The probability of being a chunk boundary in the

training data is 0.3, which is nearly identical to the probability of assigning a chunk

boundary during the decoding. However, in 32% of the cases the chunking decision

during decoding differs from the decision of the maximum entropy classifier. This

means, even though the classifier classifies a point as a chunking boundary, the de-

coder decides not to use that chunking decision, mainly based on the translation and

language model costs.

Table 4.2, shows the results of the chunking approach compared to the baseline. By

looking at the translation outputs of the chunking system and comparing it to the base-
4The accuracy is computed based on how many of the boundary points are classified correctly. Note

that, a sentence of length J, has J � 1 boundary point.
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• DE die anstrengungen können nicht von den erzeugern allein unternommen wer-
den .

• REF efforts cannot be made by producers alone .

• BL the efforts made by producers alone cannot be done .

• die anstrengungen können nicht von den erzeugern allein

unternommen werden .

• the efforts cannot be done by producers alone .

Figure 4.5: An example of useful chunk movements by the dynamic chunking
decoder. For the order of translation refer to Figure 4.3. DE is the
German sentence, REF is the reference translation and BL is the
translation by the baseline decoder.

line, we can observe that the chunking system generates very different translations to

the baseline and not in all cases captures the proper order of the chunks to translate. In

general, there are three main reasons for the chunking system to fail. Firstly, a wrong

classification decision by the chunking scorer may lead the decoder to jump or mono-

tonically translate in a wrong position. Secondly, although the classifier picks a proper

chunking boundary, the other features force the decoder to apply the wrong reorder-

ing. Finally, even with accurate chunk boundaries, the decoder can still fail to apply

the correct reorderings.

4.5 Discussion and Error Analysis

Inspired by previous work on integrating syntactic chunking into machine translation,

a decoder that dynamically chunks and translates the source sentences is developed.

The results show that the chunking system generates very different translations com-

pared to the baseline and it is effective for a language pair such as German to English

that needs long-distance reorderings. Dealing with data sparseness and more accurate

classification for detecting chunking boundaries seems very promising.

Although the current set of classification features is quite simple and it does not contain
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word classes or POS features, it performs well compared to the baseline. Incorporat-

ing more features and using word classes to deal with data sparseness could result in

better classifier decisions and higher translation quality. It is not entirely surprising

that the language model seems insufficient to accurately distinguish between correct

and incorrect reorderings of chunks in all cases. A lexicalised reordering model on the

chunk-level could help to improve this aspect of our approach.

Figures 4.3 shows examples of dynamic chunking derivations compared to the baseline

derivation and their reference translations. Figure 4.5 shows the chunk movements in

for the last example in Figure 4.3. After error analysis, we categorised the shortcom-

ings of the dynamic chunking approach into three classes: bad chunking decisions,

confusion in chunks translation order and slower decoding compared to the baseline

and difficulties in optimisation. We discuss each issue separately and propose our so-

lutions to each one of them.

• Bad chunking decisions: as mentioned in Section 4.4.2 the classifier has 0.73 pre-

cision in finding the ideal chunking boundaries. The ideal chunking boundaries

are based on the word alignment data and are not necessarily the best options,

nevertheless, in 25% of the times the classifier does not find the optimal solution

based on the learned model5. On the other hand, in some cases the ideal chunk-

ing boundary based proposed by the classifier is not a good boundary. There are

many cases that the decoder chooses a chunking boundary between two words

that can be covered by a useful phrase. One main reason for this problem is the

chunking boundary definition provided in Section 4.3.5. This definition is based

on the word alignments data and relies on the word statistics. However, the de-

coding process only deals with the phrases and does the reordering based on the

phrases.

To modify the definition and the classifier, we need a set of training data that

contains phrase alignment. To prepare this data, we modify the decoder to find

translations motivated by the reference sentences. Basically, we want to find the

closest translation that is possible to generate by the phrase-table and the decod-
5It is called search error.
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ing algorithm. To score each hypothesis, we consider the smoothed BLEU score6

contributed by this hypothesis as its score. Smoothed BLEU is a modification of

BLEU measure (see Section 2.6 in chapter 1), so it can be used on one sentence

basis. This method provides us the phrase alignment that we need to define the

chunking boundaries and also train the chunking classifier.

In addition to the revising the definition, another feature can be integrated into

the chunking scorer. Syntactic chunks alone are not very useful in capturing the

reordering requirements of machine translation, however, integrating them with

the current classifier might incorporate useful syntactic information into the re-

ordering decisions.

• The order of translating the chunks: the chunk expansion algorithm described

in Section 4.3.6, relies on the language model to find the order of translating the

chunks. To address this problem, we propose to build a model based on the first

word of each chunk or its POS tag. Therefore, a lexicalised model that scores

monotone, swap or discontinuous of chunks.

• Slower decoding and difficulty in optimisation: the main issue here is redun-

dant hypotheses which are considered by the decoder and will be recombined in

future. Basically, because the dynamic chunking decoding adds another dimen-

sion to the multi-stack, there are more similar hypotheses with different deriva-

tions. This not only hurts the performance of the decoding, it also fills the n-

best list, used for optimisation, with similar translations and different deriva-

tions. One approach to deal with this problem is having a graph of possible

chunking decisions (for the entire sentence) and use a 2 dimensional stack like

the baseline’s. Based on graph, the path of decoding is determined and redun-

dant derivations are avoided.
6Any other evaluation measures can be used.
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Summary

In this chapter we presented an extension of a phrase-based decoder that dynamically

chunks, reorders, and applies phrase translations in tandem. A maximum entropy

classifier is trained based on the word alignments to find the best positions to chunk

the source sentence. No language specific or syntactic information is used to build

the chunking classifier. Words inside the chunks are moved together to enable the de-

coder to make long-distance reorderings to capture the word order differences between

languages with different sentence structures. To keep the search space manageable,

phrases inside the chunks are monotonically translated, thus by eliminating the un-

necessary local reorderings, it is possible to perform long-distance reorderings beyond

the common fixed distortion limit. Experiments on German to English translation are

reported.
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CHAPTER 5

Dynamic Distortion in a

Discriminative Reordering Model

In the dynamic chunking approach explained in Chapter 4, the focus was on the long

distance reordering capabilities of the decoder and the short distance permutations

were left to be handled by the phrase-table. That approach is effective for translation

from languages such as German to English that need long distance reorderings because

of structural differences in their word order1. Among the shortcomings of the dynamic

chunking approach was the lack of local reordering in positions that are not captured

by the phrase-table.

In this chapter, we equip the decoder with a discriminative reordering modelling that

combines several features representing the context of the hypothesis expansion. The

reordering model helps the decoder to make better reordering decisions in general. In

addition, we improve the decoding by dynamically adjusting the reordering window,

so without ignoring the local permutations it becomes possible to make long distance

jumps.

As mentioned in Chapter 3, an important parameter in most phrase-based systems,

which controls the size of the search space explored by the decoder, is the so-called

distortion limit. The distortion limit specifies the size of the window which the decoder

considers to choose the next source phrase. The best value for this parameter is dif-

1Subject-Object-Verb to Subject-Verb-Object
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CHAPTER 5: DYNAMIC DISTORTION IN A DISCRIMINATIVE REORDERING MODEL

mn AY mkAn fY AlYAbAn Ant ?

where in japan are you from ?

Figure 5.1: A word alignment example of an Arabic to English sentence
pair. The Arabic sentence is romanised according to Buckwalter’s
method.

ferent for different language pairs. Language pairs such as French and English do not

need a long distortion span, since they are very similar in their word order differences

and most of the reorderings can be captured by the extracted phrases from the bi-text.

On the other side, there are language pairs such as Turkish and English with fundamen-

tally different word orders. Turkish is generally a Subject-Object-Verb (SOV) language,

which means for many of the sentences a long reordering is required to translate the

verb in the right place in the English sentence. However, with a very rich morphol-

ogy, Turkish word order can vary and some sentences may not need such long distance

reorderings.

To improve the phrase-based systems’ reordering capabilities, we aim to build a model

that scores different reordering decisions based on lexicalised and syntactic features.

In addition, we use this model to guide the decoder to dynamically change the size

of the reordering window according to the state of translation. Consider the example

sentence in Figure 5.1. We want a model to encourage the decoder to skip the first

word (mn), but translate the next four words monotonically (mkAn fY AlYAbAn Ant)

and finally jump back to translate the uncovered first word. Thus, we condition our

jumps not only on the start and end of the jump, but also on the words jumped over.

Additionally, in order to increase the size of the reordering window, we dynamically

adjust the distortion limit according the requirements of the reordering model. In other

words, the size of the window for hypothesis expansion in the decoder is determined

by the current state of the decoder. The latest translated phrase and all the phrases that

are about to be translated are taken into account to find the required distortion limit for

the next step.
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The rest of this chapter is organised as follows: Section 5.1 overviews some of the ap-

proaches close to this work. Section 5.2 investigates the importance of distortion pa-

rameters in translation quality and speed. Sections 5.3 and 5.4, explain our approach

to deal with reordering and Section 5.5 reports experiments done based on the pro-

posed models on several languages. In Section 5.7 onward our participation in IWSLT

evaluation campaign is described.

5.1 Related Work

Another category of reordering models, called lexicalised reordering, can be integrated

into the decoder as an additional feature or features, so the reordering scores are com-

bined with evidence provided by other features. Lexicalised reordering models were

first introduced by [Tillmann, 2004]. They condition the reordering on the previously

translated phrase and the next phrase to be translated considering the source and tar-

get sides. Different movements are grouped together to deal with data sparsity. [Al-

Onaizan and Papineni, 2006] conditioned the exact jumps on the source side words

(unigram) and had three features added to the decoder. [Koehn et al., 2005b] consid-

ered both source side and target side phrases and predicted three different types of

movements of the phrases2. In Section 5.3.1, we introduce a new model that in prin-

ciple is similar to these lexicalised models, however uses the statistics of all the words

involved in the jump including those in between.

[Zens and Ney, 2006] proposed a method based on maximum entropy principle to

combine different features and predict the word orientation. They combined multiple

lexicalised features and for generalisation, considered features based on word classes.

They concluded that features based on the source sentence words perform better than

those based on the target side and allowing for more context always helps. Since pre-

dicting the exact position is not easy, the next positions are grouped together and the

model predicts the class of the next jump. Although, they only report the results for a

2The model is implemented in the open source SMT system, Moses http://www.statmt.org/moses.
It is possible to configure the system to build the model with different contexts. For example, only source
side or only previous phrases.
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small set of classes (backward, monotone and forward), their model is general enough

to predict more fine-grained classes. Inspired by their work, [Green et al., 2010] have

built two models for each transition. One based on the features of the outbound word

(the word that has just been translated) and one model based on features of the inbound

word (the word, we are about to translate). Their feature set includes words, part of

speech (POS) tags and sentence length features. They argue that using the new models

renders the linear future distortion cost inappropriate and add future distortion cost

as another feature to be optimised through MERT. In [Xiong et al., 2006] a maximum

entropy based model is proposed to predict the orientation of neighbouring blocks in

their BTG3-based decoder. They have two types of BTG merging rules, straight or in-

verted and the reordering model weights the merging rules using lexicalised features

of the source and target side. Following [Xiong et al., 2008], they extend the model to

include linguistically-aware features.

With the same motivation as ours, that different sentence types require different re-

ordering treatments, [Zhang et al., 2008] classify the Chinese sentences under three

categories and build reordering models for each category. For sentence type identifica-

tion, a Support Vector Machine (SVM) classifier is built, with features including all the

words in the sentence. They report substantial improvements over the baseline for the

Chinese-to-English IWSLT 2007 task.

5.2 Distortion and Translation Quality

As mentioned before, due to the complex nature of decoding in machine translation

[Knight, 1999], many parameters are used to manage the size of the search space. Dis-

tortion limit or the skip widow size is one of the most important parameters that con-

trols the freedom of the decoder in permuting words to capture the word order dif-

ferences between the source and the target languages. The best results on different

language pairs need different settings for the distortion limit. It is common to set the

parameter according to the nature of languages involved and with respect to speed

3Bracketing Transduction Grammar
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and memory requirements. Longer limits lead the decoder to generate more hypothe-

ses and increase translation time. However, increase in time is not the only drawback

of having a longer distortion limit. More hypotheses are generated, therefore more

burden is put on the language model to choose the best reordering decision.

Figure 5.2 shows the result of decoding with distortion limits between 1 and 15. Al-

though both graphs show the results of an identical system on two data-sets, the best

result for each one of them is achieved by different parameters. One way to find the

best distortion limit is to run the tuning process with a range of distortion limits and

choose the one with the highest score. Apart from the substantial amount of work

required to perform the tuning several times, it is not even guaranteed that the best

distortion limit for the development set is the best for the unseen test set.

Another parameter related to distortion is the reordering constraint strategy, which

controls the decoder in how to skip words and return back for open positions. [Zens

et al., 2004] investigated different reordering constraints and reported their differences

on multiple translation tasks. [Dreyer et al., 2007] also proposed a method to find the

best reordering constraint independent of other features and solely based on the abil-

ity of the constraint to cover all the needed n-grams in a sentence. Figure 5.3 shows

the translation quality for two different reordering constraints on a Turkish-to-English

translation task. One graph of figure 5.3 is constrained by the so-called “Window

length” constraint, which restricts the decoder by not letting it to choose a phrase with

more than dl words distance from the first open position of the source sentence. The

constraint in the other graph is “Maximum distortion”, which is more relaxed and

the only restriction is the distance between the last translated phrase and the next one

[Lopez, 2009]. As one can see, the Turkish-English language pair requires relatively

long distortion limits, however, the maximum distortion strategy reaches the best re-

sults earlier than the window length strategy and overall has a higher score.

We propose a method of selecting the best distortion limit in each step of hypothesis

expansion. This method determines the size of the window required to be searched for

the next phrase to be translated. Adjusting the distortion limit prevents the decoder to

explore undesirable parts of the search space. This saves both time and improves the
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Figure 5.2: The effect of the distortion limit parameter on the quality of the
translation system. Both graphs are results of the baseline sys-
tem (see Section 5.5) on Arabic-English of BTEC task, tuned on
IWSLT03.ar-en.
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Figure 5.3: Results of two different reordering constraints on the Turkish-
English of the BTEC task. Both graphs are the BLEU score of the
baseline system on the IWSLT03.tr-en tuning set.

performance by avoiding extra noise during the search. In the next section, we first

describe a lexicalised reordering model to establish the main set of features required

for a discriminative reordering model.
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Figure 5.4: A word alignment example of a sentence from the Arabic-English
training data. The Arabic sentence is romanised according to Buck-
walter’s method.

5.3 Reordering Models

5.3.1 Lexicalised Reordering Model

We build a lexicalised reordering model based on [Al-Onaizan and Papineni, 2006]

with three additional features modelling the costs of jumping from, jumping to and

jumping over the words involved in the reordering. Assume we want to collect training

frequencies from the example sentence in figure 5.4. We loop over the target sentence

and collect the jump statistics by considering ei and ei+1, where 0 <= i < I. For

example, for i = 1, we consider e1 and e2, which are aligned to f0 and f3 respectively.

The following words are the local context of this jump (from f0 to f3) and their respected

frequencies will be increased by one:

1. f0 as outbound word

2. f3 as inbound word

3. f1 and f2 as jumped over words

To avoid collecting evidence for a jumped over word multiple times, the frequency of

being jumped over for a position only increases once. We collect the above frequencies

for all the jumps in one sentence and all the sentences in the training data.
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The training examples defined above will be used to add three additional features to

the decoder. As mentioned before, the jumps are binned together to have several jump

class. Each class represents a range of jumps, for example, 1 to 4 or 5 to 9. Suppose D

is the set of all jump classes and dj,j0 is a class associated with a range that the distance

between j and j0 belongs to. Therefore, counto( f j, dj,j0) is the number of times that a

jump that belongs to dj,j0 is occurred after the word f j. The outbound feature function

that is added to the decoder is:

lo( f J
1 , j, j0, dj,j0) =

counto( f j, dj,j0)

count( f j)
(5.3.1)

which is smoothed by a factor (a) as:

lo( f J
1 , j, j0, dj,j0) =

a
counto(dj,j0 )

Âd2D counto(d)
+ counto( f j, dj,j0)

counto( f j)
(5.3.2)

The distance between j and j0 is defined as:

distance(j, j0) =

8
>><

>>:

j� j0 � 1 if j � j0

j0 � j if j < j0
(5.3.3)

Two more features li (inbound) and lj (jumped-over), similar to this are also added for

inbound and jumped-over words.

We performed a small series of experiments to evaluate the effect of these features

on the translation quality and the system equipped with these features improved the

baseline (see Section 5.5) for the two best performing distortion limits of the baseline.

Table 5.1 shows the results.

5.3.2 Discriminative Reordering Model

The results in the previous section show that the distance-based distortion penalty plus

the language model are not enough for making the best reordering decisions. Lexi-

calised reordering models [Tillmann, 2004; Koehn et al., 2005a] have been shown to
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SET RUN DL=6 DL=10
BASELINE 0.5348 0.5449

IWSLT08(dev) LEX 0.5461 0.5534
BASELINE 0.5022 0.5128

IWSLT07(test) LEX 0.5121 0.5142

Table 5.1: Comparing the baseline and the lexicalised reordering model with
inbound, outbound and jumped-over features. The results are on
Arabic-English of BTEC task.

be effective for many language pairs in improving the translation quality. However,

because we want to predict the distortion limit, we need to calculate all the reorder-

ing costs before decoding the sentence. Additionally, we want to incorporate features

extracted from the whole sentence, along with surface features of the phrases we are

about to translate in the reordering model. Lexicalised reordering models rely on sur-

face forms of the source and target phrases that have been translated or the ones we

are about to translate. Factored models [Hoang and Koehn, 2009] have been proposed

to incorporate features such as POS-tags, however, global features such as chunk infor-

mation are not easily included.

Inspired by [Zens and Ney, 2006], we build a maximum entropy classifier [Berger et al.,

1996] that predicts the length of the next jump based on the local lexicalised features

and the sentence structure4.

To increase the classification accuracy, we divide the jumps into a set of classes. For

example, jumps with length 2 to 4 are in one class, those with length 5 to 9 in another,

etc. Feature functions are binary functions of the form:

hk( f J
1 , j, j0, dj,j0) (5.3.4)

where, f J
1 is the source sentence with all the syntactic information including POS and

chunking tags. hk is a binary function which is 1 when the feature is present for the

specific jump decision and 0, if it is not. j and j0 are source positions and dj,j0 is the

4For a an introduction to maximum entropy principle and the way features are engineered to build the
classifier, see 4.3.1.
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jump class between them. The decision formula is:

p(dj,j0 | f J
1 , j, j0) =

1
Z

exp (
N

Â
k=1

lkhk( f J
1 , j, j0, dj,j0)) (5.3.5)

where Z is a normalisation factor:

Z = Â
d2D

exp (
N

Â
k=1

lkhk( f J
1 , j, j0, d)) (5.3.6)

One of the main benefits of using a discriminative model for this classification task is

the ability of these models to learn millions of inter-dependent features. We define an

extensive set of features including mostly local context of each jump and some of the

characteristics of the sentence. The following list is the set of features used in training

the model for a jump from j to j0 in sentence f J
1 :

• inbound (IN) and outbound (OUT) words, fj and f j0

• both words together (PAIR), f j + f j0

• jumped over (OVER) words, all the words between j and j0 as described in Section

5.3.1

• part of speech tags of inbound, outbound, pairwise and jumped over words

(IN.POS, OUT.POS and . . . )

• bigram inbound (IN2) and outbound (OUT2), f j�1 + f j and f j0 + f j0+1

• are both j and j0 in the same syntactic chunk or not (1CHUNK and 2CHUNK)?

• does f J
1 contain a question mark (IS.Q)?

• is there a question mark or full stop between j and j0 (CROSS.FULL)?

• is there a punctuation mark between j and j0 (CROSS.PUNCT)?

Table 5.2 shows the contribution of each set of features to the quality of the model. We

used the Arabic-English training data for these experiments. 500 sentences were held-

out for validation and 500 sentences were set aside for testing. The rest of the collection

was used for training the model.
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Features Accuracy FM
1 p̂M r̂M

OUT, IN 0.7127 0.5306 0.6538 0.4935
+OVER 0.8337 0.6265 0.7720 0.5874
+PAIR 0.8460 0.6617 0.7940 0.6197

+(*.POS) 0.8826 0.6909 0.8496 0.6503
+(*.POS2) 0.9024 0.7666 0.8392 0.7290

+IS.Q,CROSS.* 0.9042 0.7806 0.8525 0.7404
+IN2,OUT2 0.9085 0.7964 0.8643 0.7566

ALL 0.9091 0.7958 0.8737 0.7503

Table 5.2: Classification results of the maximum entropy classifier with differ-
ent features and the contribution of each set of features. FM

1 , p̂M

and r̂M are macro F-measure, macro-precision and macro-recall re-
spectively. macro F-measure is calculated by averaging over the F-
measures of each class. *.POS means all the features that their name
end with .POS. The evaluation is done on the Arabic-English data
set.

5.4 Dynamic Distortion

In Section 5.2, we argued for the importance of determining the optimum distortion

limit. Both translation quality and decoding speed are influenced by changing this pa-

rameter. The discriminative model described in the previous section, provides us with

some information about the reordering needs of a sentence before starting to decode it.

This enables us to determine the best distortion limit for this particular sentence and

this particular hypothesis expansion.

Changing the distortion limit for each sentence or more specifically for each hypothesis

expansion, has a few advantages: Firstly, it removes the need for tuning the system

with many different distortion limit settings to find the best one. As it is clear from

the results of Section 5.2, the best value for the parameter on one data set may not be

the best for another. Secondly, the limit can be very long for some sentences or some

parts of a sentence. Changing it for each hypothesis expansion can compensate for long

distortion in terms of decoding speed. Basically, we increase the distortion when it is

needed and save time when there is no need for long distance reorderings. Thirdly,

adjusting the distortion limit reduces the amount of unnecessary jumps in some parts

of the sentence and hence decreases noise in the search process, which leads to better
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translation quality. Additionally, other parameters of the search algorithm that control

the size of the search space, such as beam width or stack size can be increased without

increasing the decoding time substantially.

Before decoding sentence f J
1 , we use the classifier described in the previous section to

compute the probability p(dj,j0 | f J
1 , j, j0) for each j and j0, where 0 <= j, j0 <= J + 1 and

for all d 2 D. 0 and J + 1 are also considered to include the initial move after the start

and the final jump before the end symbol. In the next step, the most probable jump

after each source position is calculated and the distance is saved as the best distortion

limit after that position. To score the jumps after each source position j, equation 5.4.1

is used:

sj(j0) =
j00=j0

’
j00=j

p(dj,j00 | f J
1 , j, j00)

j00=J+1

’
j00=j0+1

(1� p(dj,j00 | f J
1 , j, j00)) (5.4.1)

and the distortion limit estimated by this approach for position j equals to:

dl(j) = distance(j, arg max
j0

{sj(j0)}) (5.4.2)

where distance is defined in equation 5.3.3. This way we find the most likely jump after

f j and set the distortion limit at position j to length of the jump. The above equations

are for forward distortion and similar equations are used for backward distortions.

5.5 Experiments

To examine the effects of the discriminative reordering model and the dynamic dis-

tortion on translation quality, we have chosen the Arabic-to-English and Turkish-to-

English data sets from the IWSLT BTEC task as they involve many short, medium, and

long distance reorderings. Some of the statistics of the data sets are shown in Table 5.3.
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5.5.1 Baseline

The preprocessing stage for Arabic-to-English includes tokenisation of both sides and

lower casing of the English side. We removed all the diacritic characters from the

Arabic side and normalised punctuation. For tokenising Turkish, we used Morfessor

[Creutz and Lagus, 2005] to automatically analyse the morphology of the source side.

Lower casing was applied to both source and target sides of Turkish and English.

The decoder is a common multi-beam, multi-stack phrase-based decoder, described in

[Koehn et al., 2003] with the following features:

• phrase translation probabilities and lexical probabilities for both directions

• a 4-gram language model

• phrase and word penalties

• distance-based reordering penalty

The weights for the features are optimised by MERT [Och, 2003] to maximise the BLEU

[Papineni et al., 2001] score. We optimised the discriminative model using the L-BFGS

implementation within the MALLET toolkit [McCallum, 2002]. The built model is used

to score the reordering options before the decoding.

5.5.2 Results

For the Turkish-to-English task, we tune the baseline (BASELINE) and the discrimina-

tive reordering model (DISCRIM-REO) for distortion limits 0 to 17 and tune Arabic-

English for distortion limits 0 to 15. For both tasks dynamic distortion method

(DYNAMIC-DL) is tuned. Tables 5.4 and 5.5 show the results for the Turkish-to-English

and Arabic-to-English tasks, respectively. For both tasks we ran the baseline with

the lexicalised reordering model of Moses [Koehn et al., 2005b], with no significant

improvements, so we did not include the results of the lexicalised reordering model

here.
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In the Arabic-to-English task the window length constraint performs better than the

other constraints. In this constraint the size of the jump is restricted by the first un-

covered position of the source sentence. However, since we change the distortion limit

during decoding for the dynamic distortion method, an uncovered position outside

the window for one move can be inside the distortion limit window for another. There-

fore, we relax this restriction in the dynamic distortion method and allow the decoder

to make jumps, even if the first uncovered position remains outside the current distor-

tion. Also, we relax the backward distortion limit restriction if there is an uncovered

position outside it.

In most cases, DISCRIM-REO performs better than the baseline, particularly on longer

distortion limits, which is expected given the fact it has an extra feature to deal with

the large amount of reordering decisions. In all the experiments, confirming previous

findings [Green et al., 2010], we found that the future distortion cost is crucial for the

quality of the translation, particularly for systems with long distortion parameters.

Overall the discriminative model and the dynamic distortion method performed better

for Turkish-to-English compared to Arabic-to-English. This can be justified by the fact

that Turkish-to-English translation requires more reorderings than Arabic to English.

SET RUN DL=6 DL=11 DL=17
BASELINE 0.4500 0.4576 0.4574

IWSLT03(dev) DISCRIM-REO 0.4591 0.4641 0.4669
DYNAMIC-DL 0.4640 0.4640 0.4640

BASELINE 0.4273 0.4366 0.4363
IWSLT04(test) DISCRIM-REO 0.4378 0.4434 0.4412

DYNAMIC-DL 0.4492 0.4492 0.4492

Table 5.4: Experimental results on Turkish-English data sets. The first three
rows show the result on the development set and the rest of the re-
sults on the test set. set.
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SET RUN DL=3 DL=6 DL=9 DL=12 DL=15
BASELINE 0.5358 0.5348 0.5464 0.5383 0.5416

IWSLT08(dev) DISCRIM-REO 0.5338 0.5458 0.5507 0.5489 0.5489
DYNAMIC-DL 0.5571 0.5571 0.5571 0.5571 0.5571

BASELINE 0.6001 0.6024 0.6199 0.6076 0.6129
IWSLT03(test) DISCRIM-REO 0.6034 0.6053 0.6220 0.6123 0.6137

DYNAMIC-DL 0.6228 0.6228 0.6228 0.6228 0.6228
BASELINE 0.5619 0.5733 0.5765 0.5789 0.5784

IWSLT04(test) DISCRIM-REO 0.5534 0.5748 0.5794 0.5820 0.5844
DYNAMIC-DL 0.5856 0.5856 0.5856 0.5856 0.5856

BASELINE 0.5789 0.5875 0.5966 0.5841 0.6007
IWSLT05(test) DISCRIM-REO 0.5815 0.5922 0.6002 0.5941 0.5853

DYNAMIC-DL 0.6016 0.6016 0.6016 0.6016 0.6016
BASELINE 0.5010 0.5022 0.5103 0.5130 0.5098

IWSLT07(test) DISCRIM-REO 0.5047 0.5091 0.5196 0.5136 0.5141
DYNAMIC-DL 0.5242 0.5242 0.5242 0.5242 0.5242

Table 5.5: Experiment results on Arabic-English data sets. The first three rows
show the result on the development set and the rest of the results on
the test set.

5.6 Discussion

We showed that choosing the best distortion limit for a language pair or even a data

set can gain substantial improvements in phrase-based statistical machine translation

decoders. To avoid the difficulty of running with all possible settings, we proposed

a method of dynamically adjusting the distortion limit for each hypothesis expansion

in phrase-based decoders. To determine the best value for the distortion limit at each

move, a discriminative reordering model with numerous features is built and inte-

grated into the decoder as an extra feature.

Results of the experiments by DISCRIM-REO show that more features in the discrimina-

tive reordering model helps to improve the accuracy of the classification and the quality

of the translation, however, lexical features are more effective than POS or chunk-based

features.

Since there is no difference between the features of DISCRIM-REO and DYNAMIC-DL,

the improvements achieved by the latter is due to the change of the search space ex-

plored by the decoder. Therefore, guiding the decoder during the search can be effec-
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RUN ENGLISH SENTENCE

BASELINE what do you have a newspaper ?
DYNAMIC-DL what newspaper would you have ?
REFERENCE what newspapers do you have ?
BASELINE to the city center how much is it ?
DYNAMIC-DL how much is it to the city center ?
REFERENCE how much to downtown ?
BASELINE two nights i want to stay .
DYNAMIC-DL i ’d like to stay for two nights .
REFERENCE i ’d like to stay for two nights .
BASELINE sales section where can i find it ?
DYNAMIC-DL where can i find the sales department ?
REFERENCE where can i find the sales department ?
BASELINE after each meal take this three times a day .
DYNAMIC-DL take this three times a day after meals .
REFERENCE take it three times a day after meals .

Figure 5.5: A few examples of translation by the baseline and the dynamic dis-
tortion method.

tive in improving the quality of translation.

5.7 The System Description for an Evaluation Campaign

We as the QMUL5 team submitted runs at IWSLT 20106 evaluation campaign for all

the three language pairs of BTEC task. The BTEC standard translation task focuses

on frequently used utterances in the domain of travel conversations [Paul et al., 2010].

In 2010, the translation task was provided for the translation of Arabic, French and

Turkish spoken language text into English.

This section reports the technical details of the system used to perform the translation

and the particular improvements of the baseline system to make our submission more

competitive.

Our main focus in this submission was on improving the reordering capabilities of the

decoder, however, improvements were gained by experimenting with different word-

5Queen Mary, University of London
6The 7th International Workshop on Spoken Language Translation, iwslt2010.fbk.eu
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alignment strategies and dealing with out of vocabulary (OOV) words.

The training data provided for the IWSLT BTEC task was relatively small and since the

sentences are transcripts of conversations, most of them are very short. This enabled

us, to perform the cycle of training, tuning and testing more frequently and investigate

many small features and changes. A few of the modifications helped the translation

performance, while most of them had insignificant impact.

5.7.1 Baseline System

Preprocessing

For the Arabic-English task, we removed all the diacritics from the Arabic side and

normalised the numbers and the punctuations. Buckwalter’s morphological analyser

is used to tokenise the Arabic side and a simple English tokeniser and lower-caser for

the English side.

For French-English pair, we used a simple tokeniser, which works for all European

languages in addition to lowercasing both sides. It separates most of the words by

whitespace and punctuation characters, but keeps a few exceptions based on a manu-

ally created list.

For Turkish-English pair, we used Morfessor [Creutz and Lagus, 2005] to tokenise the

Turkish side. Morfessor finds segmentation of the words in an unsupervised manner.

The Turkish side of the bitext and all the development data are fed into the Morfessor

algorithm to produce segmentations for words which often are similar to linguistic

morphemes. Morfessor divides words into multiple morphs including prefixes, stems

and suffixes. We retain all the morphs and separate them by a whitespace. We avoided

using other publicly available Turkish morphological analysers, since they were using

extra training data. We lower-cased both sides of this language pair. Table 5.6 shows

the effect of the preprocessing step on the vocabulary size of the data sets.
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Arabic French Turkish English
Tokens w/o tokenisation 159k 160k 112k 153k
Tokens w tokenisation 170k 200k 162k 189k
Vocabulary w/o tokenisation 37516 35799 39545 32619
Vocabulary w tokenisation 14519 9212 6098 7182
Singletons w/o tokenisation 29852 28572 32410 26444
Singletons w tokenisation 7426 4232 711 3116

Table 5.6: The effect of preprocessing on the number of tokens and the vocabu-
lary size for all three language pairs. Singletons are words that occur
once in the collection.

Data set Source Words Vocabulary OOV before OOV after
IWSLT03.ar-en Arabic 3323 1095 111 64
IWSLT04.ar-en Arabic 3479 1189 101 47
IWSLT05.ar-en Arabic 3375 1182 124 56
IWSLT07.ar-en Arabic 3158 1100 165 78
IWSLT08.ar-en Arabic 3414 1130 153 77
IWSLT09.ar-en Arabic 3135 1039 155 82
IWSLT10.ar-en Arabic 3207 1096 127 54
IWSLT03.fr-en French 4063 957 92 69
IWSLT04.fr-en French 4068 1026 85 52
IWSLT05.fr-en French 4052 994 89 65
IWSLT09.fr-en French 3877 888 70 45
IWSLT10.fr-en French 3813 901 61 43
IWSLT03.tr-en Turkish 3131 1142 152 86
IWSLT04.tr-en Turkish 3096 1209 175 89
IWSLT09.tr-en Turkish 2944 1071 137 79
IWSLT10.tr-en Turkish 2910 1102 125 76

Table 5.7: Number of OOV tokens in the development set before finding re-
placements and after.

Out-of-Vocabulary Words

For a small size training data such as the one provided, unknown words are a sig-

nificant problem. Intuitively, many of the unknown words are morphological varia-

tions of known words, particularly for morphologically rich languages such as Arabic

and Turkish. Therefore, we used simple stemming algorithms to find matches of the

unknown words. We search to find a match for the unknown word in the test data

among the stemmed words in the training data, then we look for finding a match for
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the stemmed version of the unknown words in the original training data. Finally, the

search is done to find a match of the stemmed unknown words in the stemmed training

data. For any match found, the unknown word is replaced with the unstemmed word

in the training data. Table 5.7 shows the number of OOV tokens before and after the

replacement.

Decoder

The features of the baseline include:

• phrase translation probabilities and lexical probabilities for both directions. The

word alignment models were produced using Berkeley Aligner [Liang et al.,

2006]. For all three language pairs, we ran IBM model 1, IBM model 2 and HMM

jointly for 5 iterations.

• a 4-gram language model. SRILM toolkit [Stolcke, 2002], was used to build a 4-

gram language model, which includes all 4-grams. SRILM by default excludes 4-

grams that occur only once in the training data. Preliminary experiments showed

that including them improves the quality of the translation for the three language

pairs.

• phrase and word penalties.

• distance-based reordering penalty.

There are two distortion parameters in our decoder. The distortion limit, which deter-

mines the window size of the reordering and the distortion constraint, which controls

the decoder movement mainly based on the first uncovered position. Figures 5.6 and

5.7 show the BLEU score for different values of the distortion limit for Arabic-English

and French-English. The best distortion limit for Arabic in average is 13, which is not

the best performing on the tuning data. In other words, the best distortion limit chosen

based on the tuning data is not the best for the testing data. Figure 5.3 shows the BLEU

score for Turkish-English with two different distortion constraints. One is the so-called

“Window” constraint [Lopez, 2009] and the other is called “Max distortion” [Moore
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and Quirk, 2007]. As mentioned before, the window constraint restricts the decoder

by not letting it choose a phrase with more than dl words away from the first open

position of the source sentence, while the max distortion constraint is relaxed about the

first open position and only restricts the decoder to select the next phrase in a window

of length 2⇥ dl. For all experiments the future distortion cost was also estimated and

showed to be crucial, particularly for long distance reorderings.
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The decoder was tuned using Minimum Error Rate Training [Och, 2003], implemented

in ZMERT [Zaidan, 2009] to maximise BLEU [Papineni et al., 2001].

Post-Processing

The final output of the decoder was generated through Minimum Bayes Risk Decoding

[Kumar and Byrne, 2004], which produced a small, but consistent improvement for all

the language pairs. We built a true-caser language model based on the target side of

the training data to predict the words that need to be cased. In addition, a detokeniser

is used to reverse the tokenisation process.

5.7.2 Reordering Models

The discriminative reordering model of Section 5.3.2 and the dynamic distortion

method of Section 5.4 were used to help the reordering capabilities of the decoder. In

the discriminative reordering model, the jumps are divided into classes to increase the

classification accuracy. For example, jumps with length 2 to 4 are in one class, those

with length 5 to 9 in another, and so on .

The set of features that we used for the reordering model include lexicalised words,

POS-tags, chunks and sentence type. Features for a jump from j to j0 in a sentence f J
1

are:

• f j, fj0 , f j + fj0

• all the words between j and j0

• part of speech tags of the above words: POS( f j), POS( f 0j ), . . .

• bigrams: f j�1 + fj and fj0 + f j0+1

• bigram part of speech tags of j, j0 and the words between them.

• a binary feature indicating that both j and j0 are in the same syntactic chunk or

not?

• binary feature indicating that f J
1 contains a question mark or not?
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• is there a question mark or full stop between j and j0?

• is there a punctuation mark between j and j0?

For Arabic-English and French-English tasks we used all the above features, but for

Turkish-English, since we used Morfessor to tokenise the Turkish side, the part of

speech and chunking features were excluded.

The classifier was optimised by the L-BFGS method [Nocedal, 1980], implemented

in MALLET [McCallum, 2002]. To prevent over-fitting, L1 regularisation was used

to reduce the complexity of the model, however, lower translation performance was

achieved by using the regularisation. The regularisation can be viewed as a method to

select important features and it improves the classification performance of the reorder-

ing model in our experiments, but it leads to the translation performance loss at the

end.

5.7.3 Experiments

To find the best setting to translate the final test files, we tune the system on different

data sets and tested it on the rest of the data sets and chose the data set for tuning

with more consistent improvements. Tables 5.8, 5.9 and 5.10 show results for baseline

alone, with the OOV replacements and with the dynamic distortion method. No post-

processing, as defined in Section 5.7.1, was applied for the results of the dev data,

hence, BLEU scores are calculated on the unprocessed output of the decoder.

To evaluate the contribution of each feature in the classification performance of the

discriminative reordering model, we started with the lexical features of f j and f 0j and

added all the features described in Section 5.3.2 one by one. The most substantial im-

provements achieved by adding the following features:

• all the words between j and j0, which is a binary feature indicating the presence

of a word between j and j0 or not.

• f j + fj0 , which indicates the occurrence of fj and f 0j together.
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• bigram part of speech tags of f j, f 0j and the words between them. For example,

POS( f j�1)+POS( f j)

As mentioned before, the part of speech and chunk features were only used in building

the models for Arabic-English and French-English language pairs. For Turkish-English,

we only used features that did not require part of speech and chunking information.

PRIMARY runs are the baseline with the dynamic distortion method, replacements of

the unknown words and post-processing.

SET RUN BLEU
BASELINE 0.5821

IWSLT08(dev) +OOV-REP 0.5751
+DYNAMIC-DL 0.5754
BASELINE 0.5993

IWSLT04(test) +OOV-REP 0.5982
+DYNAMIC-DL 0.6018
BASELINE 0.6133

IWSLT05(test) +OOV-REP 0.6157
+DYNAMIC-DL 0.6187
BASELINE 0.5383

IWSLT07(test) +OOV-REP 0.5357
+DYNAMIC-DL 0.5351

IWSLT09(test) PRIMARY 0.5276
IWSLT10(test) PRIMARY 0.4425

Table 5.8: BLEU scores on Arabic-English data sets. OOV-REP is the baseline
with some of the unknown words replaced by the matched known
word. DYNAMIC-DL is the baseline with the discriminative reorder-
ing model and the dynamic distortion method.

In some of the experiments, the BLEU score decreased after replacing the unknown

words with the stemmed matched known words. However, by manually checking the

matches, most of the them were good replacements and contributed to the meaning of

the sentence, therefore, we included this feature for the final tests.

5.7.4 Evaluation Campaign Results

In total, 20 research groups participated in the three BTEC translation tasks, submitting

12 runs for Arabic-English, 9 for French-English and 8 runs for Turkish-English [Paul
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SET RUN BLEU
BASELINE 0.6860

IWSLT03(dev) +OOV-REP 0.6834
+DYNAMIC-DL 0.6874
BASELINE 0.6605

IWSLT04(test) +OOV-REP 0.6630
+DYNAMIC-DL 0.6694
BASELINE 0.6650

IWSLT05(test) +OOV-REP 0.6600
+DYNAMIC-DL 0.6668

IWSLT09(test) PRIMARY 0.6180
IWSLT10(test) PRIMARY 0.5362

Table 5.9: BLEU scores on French-English data sets. OOV-REP is the baseline
with some of the unknown words replaced by the matched known
word. DYNAMIC-DL is the baseline with the discriminative reorder-
ing model and the dynamic distortion method.

et al., 2010]. Tables 5.11 , 5.12 and 5.13 show the rank of our submission for each lan-

guage and for the two data sets provided, namely IWSLT10(test) and IWSLT09(test)7.

For the full results and the ranks of other participants, see [Paul et al., 2010].

The results of this evaluation campaign, particularly French to English, were signifi-

cant for several reasons: Firstly, it was a substantially better performance for QMUL

team compared to previous evaluation campaigns. Secondly, it showed the viability

of the dynamic distortion method in competing with other well performing systems.

Thirdly, the results of our submission were achieved without using system combination

or language specific techniques for improving the results. In other words, the dynamic

distortion method was the only extra feature of over system compared to a common

system that can be built by available open source tools.

Summary

In this chapter, we developed a reordering model that takes into account several fea-

tures including bigrams, part-of-speech tags and sentence punctuations to predict the

reordering requirements of the next phrase expansion. In addition to the reordering
7testset_IWSLT10 and testset_IWSLT09(test) in the overview paper.
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SET RUN BLEU
BASELINE 0.4783

IWSLT03(dev) +OOV-REP 0.4797
+DYNAMIC-DL 0.4814
BASELINE 0.4507

IWSLT04(test) +OOV-REP 0.4505
+DYNAMIC-DL 0.4577

IWSLT09(test) PRIMARY 0.5354
IWSLT10(test) PRIMARY 0.5128

Table 5.10: BLEU scores on Turkish-English data sets. OOV-REP is the base-
line with some of the unknown words replaced by the matched
known word. DYNAMIC-DL is the baseline with the discrimina-
tive reordering model and the dynamic distortion method.

A BLEU METEOR TER NIST z-avg
IWSLT10(test) 5 5 5 5 5
IWSLT09(test) 4 5 5 3 4

Table 5.11: The rank of our submitted system for the Arabic-English language
pair. 12 systems submitted runs for this language pair.

F BLEU METEOR TER NIST z-avg
IWSLT10(test) 2 8 5 8 8
IWSLT09(test) 4 6 5 8 5

Table 5.12: The rank of our submitted system for the French-English language
pair. 9 systems submitted runs for this language pair.

T BLEU METEOR TER NIST z-avg
IWSLT10(test) 4 5 5 6 5
IWSLT09(test) 4 7 6 7 6

Table 5.13: The rank of our submitted system for the Turkish-English language
pair. 8 systems submitted runs for this language pair.

model, we extended the decoder to dynamically adjust the distortion parameter and

make long distance jumps possible by avoiding reordering in other parts of the sen-

tence. Experiments on different language pairs were carried out and results showed

that the even though reordering model is beneficial, while accompanied by the dy-
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namic distortion technique achieves the best results.
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CHAPTER 6

Evaluation of Named Entity

Recognition on Statistical Machine

Translation Output

In the two previous chapters, we proposed and discussed reordering approaches for

improving the translation quality with respect to automatic evaluation metrics. In this

chapter, on the other hand, we focus on evaluating statistical machine translation in

general and the effect of reordering in particular with respect to specific natural lan-

guage processing tasks. In other words, we aim to investigate the viability of SMT

in performing multi-lingual tasks of natural language processing. This chapter deals

with the evaluation of Named Entity Recognition on the MT output and the next chapter

focuses on text fragment alignment and cross-lingual similarity estimation.

The rest of this chapter is organised as follows: Section 6.1 discusses the rationale be-

hind using MT to solve multi-lingual NLP tasks and Section 6.2 overviews the litera-

ture for related work. Section 6.3 gives a brief introduction to named entity recognition

and the algorithms used in this work to perform NER. In Section 6.4, we describe the

method of evaluation of named entity recognition on machine translation output and

Section 6.5 reports the experiments.
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6.1 Using MT to Perform Multi-Lingual NLP

With the success of statistical machine translation, a promising way of solving multi-

lingual and cross-lingual natural language processing tasks is to translate the text into

a language with more sophisticated tools available (mostly English) and perform the

task on the translated text. Since the quality of even the best SMT systems differs for

different language pairs and heavily depends on the available language resources, it is

important to evaluate the performance of different NLP tasks on machine translation

output.

On the other hand, although automatic machine translation evaluation metrics are es-

sential in developing machine translation systems, they do not always reflect the qual-

ity of different systems against each other. There are several automatic evaluation met-

rics [Papineni et al., 2001; Lavie and Agarwal, 2007], however, the correlation of their

ranking against human judgement is not always good enough [Callison-Burch et al.,

2006]. In addition, the automatic metrics are measuring the overall quality of machine

translation output and are used to compare different systems. Surely for some tasks the

overall quality of the output is not as important as other aspects of the translation or

the translation is good enough even though there are fluency or grammatical problems.

For instance, machine translation systems are used to make it possible for the user to

understand the idea behind a text and not all the details. There are different levels of

understanding of the text and for various tasks the focus is on different aspects. The

author’s intention, the main entities of the text, the relationship between the entities or

time, date and order of events can be the main focus of the reader.

Named entities or noun phrases are content-wise among the most important structures

of a text. Correctly detecting and classifying them can be crucial in understanding the

text and is beneficial for other natural language processing tasks. In this work, we eval-

uate the named entity recognition and classification algorithms on machine translation

output to investigate the feasibility of using MT systems for named entity recognition

and also the effect of machine translation quality, particularly reordering, on the quality

of named entity recognition. It is important to improve NE recognition quality on the
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target language of machine translation, since there are already high quality NER mod-

els for languages such as English. Building language dependent NE recognisers for

new languages is a labour-intensive and language independent algorithms also need

to be adapted for each source language.

The translation process can affect the quality of extracting named entities by incorrectly

translating some words or distorting the context which the entity occurs in. Therefore,

an effective reordering model that captures the words movements well, has the poten-

tial to substantially improve the named entity extraction.

To evaluate NER on MT output, we have used the performance of NER classifiers

on the reference translations as an upper bound and gold standard. Test collections

with human annotation for a wide range of domains and languages were not avail-

able, therefore even though the automatic NE extraction on the reference translations

is not perfect, it is a viable choice to estimate the relative performance of NER on the

generated output.

6.2 Related Work

Although the main method of evaluating machine translation is human assessment,

automatic metrics are of great value in developing new methods and quickly compar-

ing a large number of systems. Due to complexity of MT evaluation, a wide range

of evaluation measures have been proposed, which neither of them can be applied in

all circumstances. The FEMTI framework has been proposed by [King et al., 2003] to

combine different aspects of MT evaluation and provide a way to adjust the evaluation

to user needs. On the other hand, there has been efforts to measure some aspects of

translation problem and use it to evaluate the effectiveness of a method in that respect.

[Birch et al., 2010] propose a method to measure the quality of translation with regard to

word order choices. A reordering performed for translating a sentence can be encoded

as a permutation and permutation distance metrics are used to quantify the reorder-

ing decisions made during the translation. In another work [Birch and Osborne, 2010],

they merge the reordering metric with a lexical metric such as BLEU [Papineni et al.,
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2001] to provide a combined metric to measure both reordering and word choices.

The effect of translation on ad-hoc retrieval is investigated in [Dolamic and Savoy,

2010]. Queries in different languages are translated to English via two commercial

machine translation systems and run against a collection of English documents. Four

parametric and non-parametric retrieval models are tested and results are compared

to a mono-lingual run. The experiments show that the quality of translation directly

affects the retrieval performance across different languages, for all the retrieval mod-

els and in general the translation process degrades the retrieval quality compared to

mono-lingual retrieval.

Named entity translation has been of interest for a long time [Al-Onaizan and Knight,

2002; Koehn, 2003; Huang, 2005] and translation techniques are developed to deal with

noun phrases and named entities. On the other hand, automatically acquired parallel

named entities are used to improve rule-based machine translation [Toral and Way,

2011]. A lexicon of named entities in several languages are built using data acquired

from Wikipedia. The entities are extracted and scored based on their number of oc-

currences in the corpus. The resulting lexicon is inserted into the rule-based machine

translation dictionary and it is shown to substantially improve the translation quality

for some language pairs.

A close research to this work is [Babych and Hartley, 2004], which evaluates the perfor-

mance of ANNIE named entity recognition module in GATE [Cunningham et al., 2002]

on several machine translation systems including rule-based and statistical. They con-

clude that automatic metrics and even human evaluations can not reliably predict the

performance of a named entity extraction system on translation output, however, in

general higher quality translation systems are more likely to have better quality named

entity extraction. In another work, [Babych and Hartley, 2008] investigate the sensitiv-

ity of BLEU versus the quality of named entity recognition as a task-based evaluation

metric, where the quality of translation is high. The results show that BLEU is not as

able as the task-based metric to distinguish between high quality MT systems. They

argue that BLEU measures the translation quality in the lexical level. Therefore in the

case of high quality MT systems with similar capability of resolving lexical problems, it
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becomes more difficult to discriminate between them, while a task-based metric evalu-

ates the differences in higher levels such as long-distance syntactic agreement.

In the next section, a brief overview of named entity recognition and common methods

of performing it are presented.

6.3 Named Entity Recognition

An essential task of any information extraction procedure is named entity recognition,

which is defined as finding spans of text that constitute proper names. Named entity

recognition and classification is concerned with finding entities such as people names,

organisations and also nonentities such as temporal and numerical expressions in the

text and classifying them under their correct categories. Several entity type hierarchies

have been proposed [Brunstein, 2002] and specialised domains define specific sets of

types for the entities. Meanwhile, many evaluation campaigns expect categorisation of

entities under four general categories of PERSON, ORGANISATION, LOCATION and

MISC. Therefore, in this work we evaluate all the runs on these general categories.

The problem of named entity recognition is twofold. First finding a span of the text

which is an entity and then classifying it under one of the categories. So, the first

step is to classify each word under two categories1 of inside the span or outside the

span and then classifying them under the categories. There are many examples that

a span of text can be classified under different types and there is an ambiguity, which

should be resolved based on the context. There are multiple sources of evidence, in-

cluding labels of the words before the current word, that must be taken into account

for making a decision about each token in the text. To incorporate multiple evidence

and the outcome of earlier classifications most of the times named entity recognition

is performed as a word sequence labelling task. In this approach, tokens are labelled

by classifiers trained on manually annotated data. An important part of building the

classifier is selecting a set of features to represent the text, which is suitable for named

entity recognition. Features commonly used in training NER systems include [Nadeau
1Each word is mostly classified under three categories: the first word inside the span, inside the span

and outside the span.
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and Sekine, 2007]: word-level features such as the token to be labelled, shape of the

token, suffixes, part-of-speech tag of the word and patterns of the word [Collins, 2002],

gazetteers and lists features that indicate the presence of the word in a named entity

list, and context features that consider words or n-grams surrounding the word. As

it is expected, many of these features depend on the surrounding of the word that is

being classified. An incorrect choice of word order in translation not only degrades the

quality of choosing the right translations, it affects the context and surrounding words

that is crucial for named entity recognition.

In Section 6.5.1, the two named entity recognition systems used in the experiments of

this work and their use of different features have been described in more detail.

6.4 Evaluation Method

To be able to thoroughly evaluate the performance of named entity recognition algo-

rithms on statistical machine translation output, we need multiple test sets and differ-

ent language pairs. Since large test sets of manually annotated cross-lingual data for

many languages are not available, we evaluate the quality of annotation against the

quality of the same NER algorithm on the translation reference data. In other words,

the judgement data are produced by performing named entity recognition on the ref-

erence translations. The evaluation method, estimates the quality of the named entity

recogniser compared to the output of the same algorithm on human translated sen-

tences.

Although the quality of named entity recognition in general, depends on the ability of

the NER algorithm in detecting spans of text and correctly classifying them, our evalu-

ation method does not depend on the quality of the NER algorithm, because the same

algorithm is run on the reference translations and the machine translated sentences.

However, the ability of a named-entity recogniser in working with imperfect sentences

can reduce the difference in quality between two runs with different translation quali-

ties.

Figure 6.1, sketches the algorithm used to evaluate the performance of a named entity
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recogniser on translation output of a test set with one reference translation.

Input: f and e // f is a foreign sentence and e is the reference translation in English
1: e0  translate( f ) // translates the foreign sentence and store it in e0
2: C  chunk(e) // extracting named-entities and storing the set of extracted

named-entities in C
3: C0  chunk(e0)
4: a word-align(e, e0) // aligning the words in the reference and the translation
5: for all c0i in C0 do
6: for all cj in C do
7: if is-aligned(a, c0i, cj) then // if the words in c0i and cj are aligned in a
8: tp tp + 1 // increment the number of true positives
9: end if

10: end for
11: end for
12: f p |C0|� tp // |X| is the size of set X
13: f n |C|� tp

Algorithm 6.1: Evaluation algorithm for runs with one reference translation.
tp (true-positives), f p (false-positives) and f n (false-negatives)
are used for calculating precision and recall.

After translating the foreign sentence f into e0, the named entity recogniser is run on

e0 and the reference translation e to produce C0 and C respectively, where C, is the

set of named entities extracted from e. To find the corresponding named entities, a

mono-lingual word aligner is run to link each word in e to at most one word in e0. The

word aligner is adopted from [Banerjee and Lavie, 2005], which uses multiple modules

to match the words. Exact module to match words that are exactly the same, stem

module that matches words which are the same after stemming and WordNet module

that matches words that are synonyms according to WordNet. The next step is to find

a match for each named entity in C0 with an entity in C. Two entities are matched if the

words inside them are not aligned to outside words and there is a link between at least

two words inside them. If a match is found for an entity in C0, then the number of true

positives are incremented by one. Since we want to evaluate the performance of named

entity recognisers in both aspects of detecting named entities and classifying them, two

sets of statistics are collected for each test set and two types of matching are defined.

Firstly, a typeless match which is a match between two entities that are aligned based

on the word alignment data regardless of their type. Secondly, a typed match which is
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similar to the typeless match with respect to the alignment data with additional type

equality constraint.

Having calculated the number of true positives, the number of false positives is cal-

culated as the number of extracted named entities from the translated sentence |C0|,

minus the number of true positives. The number of false negatives is equal to the num-

ber of extracted named entities from the reference sentence |C|, minus the number of

true positives. The number of true negatives is not relevant for this problem and is not

required for calculating precision and recall. In the case of test sets with multiple ref-

erence translations e⇤, the same algorithm is run for each (e0, e) pair, where e 2 e⇤. The

reference sentence that has the highest number of match with the translation is selected

and considered to calculate all the statistics.

After calculating tp (true-positives), f p (false-positives) and f n (false-negatives), pre-

cision, recall and F-measure are calculated for each sentence and for the entire test set.

For all three metrics macro and micro methods2 are computed:

precision =
tp

tp + f p
(6.4.1)

recall =
tp

tp + f n
(6.4.2)

fb=1 =
2⇥ precision⇥ recall

precision + recall
(6.4.3)

6.5 Experiments

Several language pairs are selected to evaluate the named entity recognition algorithms

on machine translation output. The target language of all of them is English, since the

best named entity recognisers are written for English. The language pairs and the data

collections used for the experiments are as follows:

2For description and details of computing macro and micro F-measure, precision and recall, please
refer to [Sebastiani, 2002]
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• Arabic-English: Arabic has a different word order than English, there are sen-

tences that start with verb (VSO) and noun modifiers follow the noun. Overall,

there are many medium range reorderings involved in translating Arabic. The

writing system differs from English, which makes replacing the OOV words with

the source word not useful at all.

• French-English: French is very similar to English in terms of word order and there

are mostly local reorderings of noun modifiers. The writing systems are almost

identical except for letters with diacritics, therefore replacing unknown words

with source words particularly for proper names can be beneficial.

• Turkish-English: Turkish translation requires short and long-distance reordering

and the writing system is different from English in a few letters of the alphabet.

• German-English: German has a very similar writing system to English, but long-

distance reordering is required in many of the sentences.

• Bulgarian-English: Bulgarian has an almost entirely different alphabet from En-

glish, but is very similar in word order to English.

• Greek-English: Although the main word order of Greek is SVO, other word or-

ders are very common, so the amount of reordering in translation from Greek

depends on the test set. The writing system is completely different from English

and replacing the unknown words with their source is unlikely to be helpful.

Since not all sentences contain named entities, for each language pair we have concate-

nated a few test sets to make the number of sentences with named entity large enough

for reliable evaluation. The Arabic, French and Turkish test sets are concatenation of

IWSLT 2010 [Paul et al., 2010] development data. The German test set consists of con-

catenation of Europarl and news commentary development data provided for WMT

2010 [Callison-Burch et al., 2010], and for Bulgarian and Greek, 8,000 sentences were

set aside from the Europarl corpus [Koehn, 2005], while the rest of the corpus is used

for training the translation, language and reordering models. Some statistics of the test

sets are provided in Table 6.1.
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For translation of all languages, the source sentences were tokenised and lower-cased

and because the named entity recognisers use their own tokenisation algorithms the

output of the translations were detokenised and true-cased. The true-casing models

were built based on the target side of the parallel corpus.

6.5.1 Translation Setup

The statistical machine translation decoder is the baseline decoder that its main com-

ponents were described in Chapter 2. The features used in the decoder for the experi-

ments are:

• phrase translation probabilities and lexical probabilities for both directions

• a 4-gram language model

• phrase and word penalties

• distance-based re-ordering penalty

The weights for the features are optimised by MERT [Och, 2003] to maximise the BLEU

[Papineni et al., 2001] score. Apart from the baseline runs, we ran the decoder with

additional reordering features to see the change in the quality of translation and the

extraction of named entities. The reordering model is the dynamic distortion model

that we proposed in the previous chapter and it includes a discriminative reordering

model based on several features, including part-of-speech, type of the sentence, num-

ber of crossed punctuations and others. This model is explained in detail in [Yahyaei

and Monz, 2010a].

6.5.2 Named Entity Recognition Setup

Two named entity recognisers are used to perform the evaluation. Firstly, LingPipe

4.0.1 [Alias-i, 2010], which is an HMM chunker with the ability to tag tokens as the

beginning, in the middle or the end of a chunk with a specific type. The chunker pro-

duces an n-best chunking candidates and a model based on character language models
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is used to rescore the n-bets list [Carpenter, 2006]. For the experiments in this work we

have used a model trained on the news data provided in MUC-6 which accompanies

the LingPipe distribution.

The second named entity recogniser is Stanford NER, which is one of the best per-

forming open source NERs available [Finkel et al., 2005]. Stanford NER is a sequence

labelling classifier based on conditional random fields. The model is trained with a lot

of features such as lexical features including the current word, previous word and next

word, orthographic features, prefixes and suffixes, label sequences and so on. In addi-

tion, based on a large unannotated data words are clustered and used as extra features.

The classifier is trained on a mixture of several named entity corpora, which makes it

robust across domains.

6.5.3 Results

To tune the distortion parameters of the decoder for each test set, we ran the decoder on

the tuning set for different distortion limits in the range of 0 to 20 and picked a distor-

tion parameter with the highest development BLEU. Tables 6.2 and 6.3 show the results

of named entity recognition on the baseline and discriminative reordering model trans-

lations. For each test set macro and micro, F-measure, precision and recall are shown

in the tables. The BLEU scores reported here are the result of evaluating the first test

set for each language pair against all the reference translations.

The Turkish, French and Arabic test sets consist of spoken short sentences which mostly

do not contain named entities. The improvements in extracting named entities for

these languages are not substantial, which in the case of French and Arabic can be

explained by the fact that the reordering model has not achieved a significant better

quality compared to the baseline. However, the best distortion parameters for all three

languages, which are 13, 6 and 12 for Turkish, French and Arabic respectively, indicate

the importance of reordering. Although the discriminative reordering model improves

the quality of translation for the Turkish test set, both named entity systems perform

better on the baseline translations. One reason for this can be the fact that Turkish

word order is different from English, but the reordering situations which have been
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Language Run BLEU MF1 µF1 MP µP MR µR

Turkish BASELINE 45.80 51.27 74.26 53.82 83.93 53.71 70.15
DISC-RE 46.46 48.61 71.97 49.03 81.90 49.52 64.18

French BASELINE 64.60 51.36 79.25 51.67 87.50 51.99 72.41
DISC-RE 64.92 51.99 80.00 52.53 88.73 52.45 72.83

Arabic BASELINE 60.76 51.43 70.17 52.04 83.92 52.09 60.29
DISC-RE 60.80 50.99 70.36 51.74 85.05 51.38 60.00

Bulgarian BASELINE 42.63 79.55 80.02 78.91 78.19 82.68 81.94
DISC-RE 42.34 79.87 80.20 79.25 78.32 83.01 82.18

Greek BASELINE 42.72 25.17 29.68 28.74 41.99 28.07 22.94
DISC-RE 43.08 25.19 29.67 28.70 41.99 28.09 22.94

German BASELINE 26.14 68.61 69.83 70.20 71.93 69.63 67.85
DISC-RE 27.34 69.50 70.65 71.00 72.52 70.46 68.88

Table 6.2: Results of the Stanford NER system regardless of entity type, where
M stands for macro and µ stands for micro. F1 is F-measure, P is
precision and R is recall.

Language Run BLEU MF1 µF1 MP µP MR µR

Turkish BASELINE 45.80 42.96 65.23 43.49 67.35 43.53 63.24
DISC-RE 46.46 42.48 65.58 43.26 68.06 42.84 63.28

French BASELINE 64.60 44.12 70.75 44.76 74.77 44.44 67.14
DISC-RE 64.92 43.67 70.37 44.46 75.20 43.77 66.13

Arabic BASELINE 60.76 43.33 57.60 43.71 58.67 44.26 56.57
DISC-RE 60.80 43.25 58.15 43.67 59.51 44.15 56.86

Bulgarian BASELINE 42.63 66.67 70.42 67.02 70.85 69.00 70.00
DISC-RE 42.34 66.66 70.35 67.06 70.81 68.97 69.88

Greek BASELINE 42.72 25.48 28.53 29.92 35.20 26.43 23.99
DISC-RE 43.08 25.29 28.40 29.82 34.97 26.22 23.90

German BASELINE 26.14 50.87 54.65 52.08 56.02 52.83 53.34
DISC-RE 27.34 52.04 55.82 53.36 57.30 53.78 54.41

Table 6.3: Results of the LingPipe NER system regardless of entity type, where
M stands for macro and µ stands for micro. F1 is F-measure, P is
precision and R is recall.

Run BLEU Typeless F1 LOCATION PERSON ORG MISC

BASELINE 26.14 µ 68.61 26.97 13.82 29.69 17.52
M 69.82 71.20 55.83 60.57 60.31

DISC-RE 27.34 µ 69.50 27.31 14.25 29.99 17.85
M 70.65 72.07 57.01 61.39 61.40

Table 6.4: Results of the Stanford NER system for each entity type on the Ger-
man to English test set, where M stands for macro and µ stands for
micro. F1 is F-measure.
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improved by the discriminative model are different from those involved around named

entities.

The difference between the baseline and the reordering model runs for Bulgarian and

Greek languages are insignificant. The main reason for this is due to lack of reordering

during the translation from both languages. The best distortion parameter for Greek

was 0 and for Bulgarian was 2, which explains the small difference between the two

systems in terms of BLEU and F-measures.

The most substantial difference in named entity extraction quality is achieved in the

case of translating from German to English. The main reason for this is due to the

better quality of the translation with the help of the reordering model. Translating

from German to English required the distortion limit of 9, and 19 with the reordering

model. Therefore, the reordering model enables the decoder to perform longer-distance

movements and resolve some of the problems of named entity extraction caused by

the wrong context. It is also important to notice that the German-English test set is the

only test set which is a mixture of sentences from two different domains namely, news

commentary and Europarl.

Table 6.4 shows the breakdown of results for each entity type for the German to English

test set. The improvement of NER occurs for all four types and neither of them benefit

significantly more than the others.

6.6 Discussion

We investigated the feasibility of extracting named entities from machine translation

output and the effect of reordering and improving it on the quality of named entity

recognition.

The results showed that improving reordering for German to English translation can

help both translation quality in terms of BLEU score and the quality of NER. On the

other hand, the improved translation of Turkish to English did not lead to better NER.

Therefore, not always better reordering and translation with respect to BLEU or similar

metrics results in higher quality for a task-based metric such as NER.
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Although Stanford’s NER system has a higher quality than LingPipe, the differences

between the results for different models of translation were consistent. This shows

even though they use different classification models to label the input and Stanford’s

NER classifier uses more features, there are certain aspects of the translation output

that affect named entity extraction, which are common for both systems.

We are aiming to extend this work to include the effect of other aspects of the transla-

tion process such as handling out-of-vocabulary words. In addition, we are going to

to investigate other NLP tasks such as extracting grammatical relations with the same

method.

Summary

We proposed a method to evaluate the effect of improving translation quality on a

natural language processing task such as named entity recognition. The fact is, it is not

easy to obtain parallel multi-lingual annotated data with named entities for evaluation.

Therefore, we used the output of an automatic NE recogniser as the gold standard.

In other words, our method evaluates the quality of a named entity extractor on a

translated English sentence compared to the quality of the same extractor on the human

generated English of the same sentence.

Two stat-of-the art tools on a variety of languages were tested and specifically exam-

ined to see the effect of reordering on the performance of NER. Even though higher

quality translations with respect to automatic metrics were available for most of the

languages, not in all cases better translation led to better named entity recognition. We

provided the analysis for the role of reordering to explain this phenomenon.
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CHAPTER 7

Cross-lingual Text Fragment

Alignment using Divergence from

Randomness

A notable portion of the information available on the Internet is given by documents

which are obtainable from more than one source. For example, the same web page

might be published on different mirror web sites, or the same piece of news could

be reported, in slightly different versions, possibly in different languages. This phe-

nomenon has several implications. In this chapter, we explore the use of statistical

machine translation techniques to tackle the problems that arise from the cross-lingual

nature of these documents. Similar to previous chapter that SMT methods were used to

perform named entity recognition on foreign languages with tools tailored for English,

in this chapter SMT methods are used along with similarity measures to perform text

fragment alignment.

The remainder of this chapter is organised as follows: Section 7.2 provides a review

of current research and methods in fields related to cross-lingual text alignment. Sec-

tion 7.3 describes the alignment of text fragments algorithm and similarity measures

to perform the sentence alignment. Construction of the test collection and experiments

are reported in Section 7.4.
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7.1 Why Text Alignment?

In the context of web search, data redundancy in the search results has already been

shown to be an issue [Bernstein and Zobel, 2005]. For example, even if a document

is considered to be relevant to an information need, when shown after a number of

redundant documents, it does not provide the user any additional information. In

other words, showing redundant documents does not benefit the user for the purpose

of satisfying an information need.

A different point of view regards the versioning and the authorship of redundant docu-

ments. Given the dynamic nature of the Web, it is common to find different versions of

the same document, e.g. pages which contain minor variations of another one. On the

other side, plagiarising other authors becomes a very simple task. The task of identify-

ing plagiarised documents, with a distinction between real plagiarism and mere topic

similarity, is not trivial. Both plagiarism and versioning might affect a document as a

whole, or just portions (e.g. sections, paragraphs, or more in general fragments) of it.

An intelligent tool which helps in recognising duplicate text fragments could benefit

editors and authors.

To tackle one aspect of these implications, this chapter investigates the possibility of

aligning text fragments between documents written in two different languages. The

main focus is identifying pairs of fragments with a strong content-based similarity.

Figure 7.1 shows an example of aligning fragments of texts, which do not necessar-

ily have the same length. Our approach, starts with measuring similarity at sentence

level between the documents and then extract aligned fragments of texts based on the

sentence similarities. The outcome will be a set of disjoint aligned fragments with the

highest score based on the previously estimated sentence similarities.

The main component of our method is measuring the similarity between two text frag-

ments. We have chosen models of information retrieval based on divergence from ran-

domness to estimate the similarities and examine the best performing model in the

context of cross-lingual text alignment. An advantage of models based on divergence

consists in having multiple choices of randomness models, and hence the opportunity
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Figure 7.1: An example of aligned text fragments.

to evaluate many IR models for this task. In addition, these models are non-parametric

and do not require parameter tuning and training data to perform well.

The information about the fragments of the documents produced by the alignment

algorithm, can be used later for specific applications. Such applications include the

possibility of automatically creating training data sets for machine translation or doc-

ument summarisation, as well as automatically synchronising complex multi-lingual

web sites (e.g. Wiki-based encyclopedias, or other user-driven sites). Previous work in

this area has explored both novelty detection for improving search effectiveness, and

the use of fingerprinting techniques for identifying redundant documents [Bernstein

and Zobel, 2005], but mainly in a monolingual environment.

7.2 Related Work

This work lays on the overlap between the two areas of document summarisation and

machine translation. Despite their differences in concepts and techniques, both sum-

marisation and translation systems are mostly built on top of statistical methods, which

require training data to acquire statistical patterns. [Daumé III and Marcu, 2004] pro-

pose an approach to automatically align documents to their respective summaries and

extract transformation rules to shorten phrases to produce shorter and more informa-

tive summaries. Their algorithm is an extension to the standard HMM model and
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learns word-to-word and phrase-to-phrase alignment in an unsupervised manner.

In case of machine translation, availability of training data set is more crucial. Statistical

machine translation, uses manually translated data in the forms of parallel sentences

to learn translation patterns by statistical means. There has been extensive work fo-

cusing in finding parallel documents [Uszkoreit et al., 2010] and aligning sentences

in fairly parallel corpora [Ma, 2006] and even non-parallel corpora [Munteanu and

Marcu, 2005]. [Munteanu and Marcu, 2006] presents an approach to find sub-sentential

segments from comparable corpora. Despite previous work, [Uszkoreit et al., 2010]

propose a method that solely relies on textual content of the documents instead of

metadata or document structure to find near-duplicate documents. All documents are

automatically translated and n-gram features are extracted to construct a small set of

candidate documents in a very large collection of documents. One-by-one compari-

son is performed using id f -weighted cosine similarity among the documents in the

candidate set. They report that incorporating term frequency or other retrieval rank-

ing functions degrade the performance compared to the mentioned similarity measure.

Our approach is also based on textual content only, but the alignment is performed on

fragments (see Section 7.3) rather than sentences or entire documents.

In cross-lingual plagiarism, the aim is finding fragments of text that have been pla-

giarised from the source document written in a different language. [Barrón-Cedeño

et al., 2008] describe an statistical approach based on IBM model 1 [Brown et al., 1993]

to retrieve the plagiarised fragment among a list of candidate fragments. The statisti-

cal approach is proposed to perform cross-lingual retrieval, bilingual classification and

cross-lingual plagiarism and it focuses on the retrieval aspect of plagiarism. [Pouliquen

et al., 2003] investigates the performance and effectiveness of different models of cross-

lingual retrieval for the purpose of plagiarism detection. They compare retrieval mod-

els based on parallel and comparable corpora to models based on dictionaries and syn-

tax of the languages involved. Similarly to [Barrón-Cedeño et al., 2008], IBM model 1

probabilities are used as translation probabilities in the statistical models and a length

component is introduced to take into account the ration of length differences between

the two languages.
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Plagiarism detection has also been extensively investigated in a mono-lingual envi-

ronment [Hoad and Zobel, 2003]. Similar work involves the identification of redun-

dant [Bernstein and Zobel, 2005] and co-derivative [Bernstein and Zobel, 2004] docu-

ments, using fingerprinting techniques. Fingerprints are compact representations of

text chunks. In these approaches, hash functions are used to calculate fingerprints of

documents. Different documents are then identified as redundant, or as co-derivative,

according to the fingerprint similarities. In our approach, the similarity is calculated

on a fragment level, based on the content of the fragments.

7.3 Text Fragment Alignment

We define a text fragment as a list of continuous sentences in a document. Ideally,

the content of a fragment is semantically coherent (i.e. it can be considered to be

about a single topic). The aim of the proposed fragment alignment is to find frag-

ment pairs in two documents, which are written in two different languages. Assume

~de =< se1 , se2 , . . . , sen > and ~d f =< s f1 , s f2 , . . . , s fm > are two documents in languages e

and f , which contain n and m number of sentences respectively. We want to find a set

of paired fragments that contains aligned text fragments that are related:

{(~ei0
i , ~fj0

j )|1  i  i0  n ^ 1  j  j0  m} (7.3.1)

where, ~ei0
i represents a fragment that contains sentences i to i0 from ~de and ~

f
j0
j is a frag-

ment that contains sentences j to j0 from ~d f . Based on these definitions, fragments of

a document can consist of different number of sentences and even relatively different

number of sentences for each fragment in an aligned one. Since considering all the

possible fragments in a document and aligning them with all the possible fragments in

the other document is computationally very expensive, we restrict extracting the frag-

ments by initial information about the alignment of sentences. The initial information

is acquired by aligning sentences in the two documents and finding a few strong links

between some of the sentences. A paired fragment can not contain a link to sentences

outside the pair. This restriction significantly reduces the number of fragments that can
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be extracted.

Figure 7.1 sketches the text fragment alignment algorithm. The first step is to score all

the sentence pairs and find a few links between the sentences. Next, all the fragments

which are compatible with the links are extracted and sorted according to their scores.

Finally, a set of non-overlap fragment pairs are selected as the output.

Input: ~de and ~d f {~de is English document, ~d f is foreign document}
Input: similarity threshold min_score

1: for all sei in ~de do
2: for all s fj in ~d f do
3: score[i][j] estimate similarity between sei and s fj

4: link[i][j] (score[i][j] > min_score)
5: end for
6: end for
7: aligned extract fragment pairs compatible with link
8: chosen {}
9: for all f ragment in (sort aligned) do

10: if f ragment overlaps with no member of chosen then
11: chosen chosen [ f ragment
12: end if
13: end for

Algorithm 7.1: Text fragment alignment algorithm. aligned is the set of all
aligned fragments and chosen is the final set of selected frag-
ments.

7.3.1 Similarity Measures and Divergence from Randomness

A major step in finding aligned fragments of two documents is estimating similarity

between sentences. As pointed out in the introduction, we have chosen a set of proba-

bilistic models of information retrieval based on divergence from randomness [Amati

and Van Rijsbergen, 2002]. A basic assumption of DFR1 models is that non-informative

words are randomly distributed in the collection. In DFR, a randomness model M

is chosen to compute the probabilities and there are many ways to choose M, such as

Bose-Einstein distribution or Inverse Document Frequency model. Prob1(t f ) is defined

as the probability of observing t f occurrences of a term in a randomly selected docu-

1Divergence from Randomness
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ment according to M. Thus, if Prob1 is relatively small for a term, then the term is an

informative one. Another probability, Prob2, is defined as the probability of occurrence

of a term within a document with regard to a set of documents that contain the term.

The term weight, under the above definitions is the product of two factors: Firstly, in-

formation content of the term with respect to the whole collection, which is formulated

as In f1 = � log2 Prob1. Secondly, In f2 = 1� Prob2, information gain of the term with

respect to its elite set, which is the set of documents that contain the term.

w = In f1 ⇥ In f2 = (� log2 Prob1)⇥ (1� Prob2) (7.3.2)

Here, we are computing the similarity between two sentences in two different lan-

guages, se and s f . Terms in s f are translated based on a lexical translation model and

converted to a bag-of-word with, s0f , translation probabilities for each term. The lexical

translation model is based on the IBM model 1 described in [Brown et al., 1993]. The

similarity between two sentences se and s f is calculated as follows:

sim(se, s f ) = sim(se, s0f ) = Â
t2{se\s0f }^t2s f

wM(t, se)⇥ p(t|t) (7.3.3)

where, w(t, se) is the weight if term t in sentence se according to similarity model M

and p(t|t) is the translation probability of translating t to t. The collection for Equation

7.3.3 is ~de, which is the document that contains se and all the collection statistics in the

similarity measures are computed based on ~de. Table 7.1 shows a list of all the models

used in this work to estimate the sentence similarity between two documents.

7.3.2 Extraction of Fragments

After scoring all the sentence pairs, only those with similarity score higher than a cer-

tain threshold are aligned. Aligned fragments are extracted by an algorithm adopted

from phrase-based statistical machine translation [Och et al., 1999]. Fragments in an

extracted fragment pair are only aligned to each other and not to any fragment outside

the fragment pair.
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Name Description
1 TF-IDF The t f .id f weighting function, where t f is the total

term frequency and id f is Spärck-Jones’ formulation
2 TFk-IDF Same as above but with the BM25 t f quantification

t f
t f+k

3 I(n)L2 Model with Inverse document frequency, with
Laplace after-effect and 2nd normalisation

4 I(F)B2 Model with Inverse of the term frequency, with
Bernoulli after-effect and 2nd normalisation

5 I(ne)B2 Model with Inverse of the expected document fre-
quency, with Bernoulli after-effect and 2nd normal-
isation in base 2

6 I(ne)C2 Model with Inverse of the expected document fre-
quency, with Bernoulli after-effect and 2nd normal-
isation in base e

7 BB2 Limiting form of Bose-Einstein, with Bernoulli after-
effect and 2nd normalisation

8 PL2 Poisson approximation of the binomial model, with
Laplace after-effect and 2nd normalisation

9 BM25b BM25 probabilistic model
10 OkapiBM25 Okapi formulation of BM25

Table 7.1: Similarity measures used to estimate the similarity between sen-
tences. For detailed information on each model, please refer to [Am-
ati and Van Rijsbergen, 2002].
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Many of the extracted aligned fragments overlap and there are sentences which belong

to more than one fragment. Therefore, we sort all the aligned fragments according to

their similarity score and drop those with lower scores and overlap. The score of an

aligned fragment is estimated by averaging the similarity scores of its sentence pairs

computed before. The remaining aligned fragments are the result of the algorithm.

7.4 Experimental Study

7.4.1 Experimental Set-up

Since we did not have a manually annotated documents with aligned fragments, a

pseudo-collection is constructed to perform the experiments. A collection of docu-

ments and their summaries in English and Italian is built by crawling the web-site of

the Press releases of the European Union2 and pseudo-documents are created by ran-

domly concatenating documents and summaries to each other. For the English side, x

documents are randomly chosen and concatenated to create a document with multiple

topics. On the Italian side, y documents are randomly chosen, added to the set of x

aligned summaries of the chosen documents and randomly concatenated. As a result,

we have an English document consisting of x documents and an Italian document con-

sisting of x + y summaries, including the summaries of the English documents. The

task is now defined to be aligning all the sentences of the summaries to their correct

English document or to not-align those with no corresponding document. Table 7.2

shows statistics of the corpus. All the documents and summaries in the collection are

processed by tokenisation, lower-casing and sentence splitting.

7.4.2 Document-Summary Association

As a basic task compared to finding aligned fragments of text, we examine the problem

of associating documents to their summaries. Association is the process of finding

two related structures in a collection of structures. In a collection of documents and
2Available at http://europa.eu/rapid
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English Italian Average
Mean Document Length (sentences) 34.66 35.29 34.96
Mean Summary Length (sentences) 5.09 4.87 4.98
Mean Compression Ratio (sentences) 14.68% 13.81% 14.26%
Mean Document Length (words) 794.85 874.73 834.79
Mean Summary Length (words) 106.08 118.74 112.43
Mean Compression Ratio (words) 13.35% 13.58% 13.47%
Number of document/summary pairs 192

Table 7.2: English-Italian corpus statistics

Figure 7.2: Cross-lingual Summarisation Pipelines: Two-Stage vs. One-Stage

summaries, the aim is to find the most related summary to each document. We assume

that there is a one-to-one association between the summaries and the documents.

The association process can be performed in two ways. Firstly, a two-stage method

which translates and summarises the document and computes the similarity between

the summaries. Secondly, a one-stage cross-lingual association approach that directly

calculates the similarity between the document and the summary in different lan-

guages. An illustration of English-to-Italian association is drawn in Figure 7.2, which

shows the two ways that the association can be performed in. The one-stage approach

estimates the similarity between the document and the summary according to equation

7.3.3, but instead of similarity between sentences, its the similarity between documents

and summaries.

In the two-stage approach, the summarisation component relies on MEAD [Radev

et al., 2004], which is an extractive summariser. The machine translation system used

for translation form Italian to English is a phrase-based statistical MT system with
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translation model and language model as its main components. The full detail of the

system is described in [Yahyaei and Monz, 2010b]. The training data for the SMT sys-

tem is taken from the Europarl corpus [Koehn, 2005]. 1.6 million parallel sentences

were used for building the translation model and 50 million sentences to train the En-

glish language model. For both approaches, lexical probabilities are estimated based

on IBM model 1 and the parallel training data mentioned before.

The scores for the one-stage system, which associates English documents to Italian

summaries, are shown in Table 7.3, where one can observe that the OkapiBM25 func-

tion is performing the best. The best scores for the two-stage method are P@1= 78.1%

and MRR= 82.0 and the results of the two-stage approach are in all the cases substan-

tially lower than the one-stage one.

Table 7.3: Results of document-to-summary association of the one-stage ap-
proach with different similarity measures.

Similarity P@1 MRR
TF-IDF 88.6 92.1
TFk-IDF 89.1 92.4
IDF 86.0 89.8
BM25b 89.6 93.0
OkapiBM25 91.7 94.3
I(n)L2 90.1 93.1
I(F)B2 81.8 86.9
I(ne)B2 86.5 90.6
I(ne)C2 86.0 89.9
PL2 90.1 93.2

In the two-stage approach approach, the summarisation and translation tasks lead to a

loss of information which cannot be adequately captured by the association functions

we have examined. After performing the association of English summaries and MEAD

generated summaries from the documents, a basic similarity measure such as TF-IDF

achieved a P@1 score of 98.0 and MRR of 99.2. This means that the translation com-

ponent is the major source of precision loss in the two-stage method. The translation

component translates each Italian sentence to exactly one English sentence. For trans-

lating each sentence, it selects the translation with highest score according to its model
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to produce a fluent English. The produced sentence only contains one possible trans-

lation for each word or phrase. On the other hand, the one-stage approach considers

all the possible translations in the lexical model for each word, hence having a higher

chance of finding a match between document words and summary words. The 91%

success rate of the one-stage approach, shows it is possible to associate the majority of

the summaries to their documents in this collection. The results of the text fragment

alignment show the difficulty of finding the same summaries, while they are mixed

with other summaries.

7.4.3 Text Fragment Alignment Evaluation

To find out the cross-lingual effect of the task, we performed the text fragment align-

ment algorithm on mono-lingual data as well as the cross-lingual data. For each word

only the top 5 translations based on the their translation weights are picked. The thresh-

old is set to the average score of the alignment links, therefore alignment links with

score less than the average are discarded. For each similarity measure, the alignment

algorithm is run 2, 000 times to select different variations of the documents and sum-

maries.

The goal of text fragment alignment is to find the longest relevant fragments of text

on each side, without including irrelevant sentences. Therefore, both recall and preci-

sion are important in evaluating the algorithm. F-measure combines the two, to give

one single score to demonstrate the performance of the algorithm. To calculate the F-

measure, each sentence on the e side is labelled true positive if it belongs to a fragment,

which is fully or partially correctly aligned. The sentence is labelled false positive if it

belongs to a fragment which is incorrectly aligned. It is a false positive instance, if it is

not aligned and it should not have been. A false negative instance is an unaligned sen-

tence, which should have been aligned. F-measure is calculated based on these labels

for both sides, English to foreign and foreign to English.

Table 7.4 shows the results of both mono-lingual and cross-lingual text fragment align-

ment experiments. As expected, the results of the mono-lingual text fragment align-

ment are higher than the cross-lingual runs. In all settings and in both directions
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(source to target and target to source), models based on DFR substantially outperform

TF-IDF weighting methods. In both mono-lingual and cross-lingual runs OkapiBM25

performs consistently very well compared to others. It has been pointed out by [Amati

and Van Rijsbergen, 2002] that BM25 formula can be derived from the model I(n)L2,

which has the highest score in the target to source cross-lingual runs and it is very close

to other BM25 scores. Substantial drop of F-measure score of the target to source direc-

tion of the cross-lingual runs compared to mono-lingual ones, shows that the summary

to document alignment is more prone to translation than the other direction.

Two important components of all similarity methods used in these experiments, are

document length (sentence length in this work) and average document length in the

collection. These factors are considered to reduce the effect of variance in document

length in text collections, however, in our experiments, documents are sentences and

they tend to be very similar in terms of number of words. We investigated two other

ways to estimate sentence length and used them instead of the default number of to-

kens. One is sum of the term frequency in the collection for each term in the sentence3

and the other one, sum of their selectivity (one over IDF)4. Both methods produced dif-

ferent results for all the runs, however, they were most of the times slightly worse than

the number of tokens, and in general the differences were negligible. Sum of the selec-

tivity of the terms perform slightly better for TF-IDF similarity, but in all other cases

was behind the number of tokens. We concluded that the DFR models perform well in

the context of sentence similarity even though, there is a difference between sentence

length variation and document length variation in large collections.

7.5 Discussion

We developed an algorithm to perform cross-lingual text fragment alignment and ran a

series of experiments with different similarity measures based on models of divergence

from randomness. The results show that term statistics based on divergence models are

3len(s) = Ât2s t f (t, ~d), where s is a sentence in ~d.
4len(s) = Ât2s s f (t, ~d)�1, where s is a sentence in ~d and s f (t, ~d) is the number of sentences in ~d that

contain t.
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consistently superior to TF-IDF schemes. Despite the fact that sentences tend to similar

in terms of length, we discovered that other ways of estimating sentence length does

not improve the quality of the alignment compared to the basic method of counting the

number of the tokens. In addition, for the source to target alignment the cross-lingual

scores were not substantially lower than the mono-lingual ones, which shows that the

translation component performs well enough not to degrade the overall performance

considerably.

Preliminary investigation of cross-lingual association of documents and their sum-

maries showed that a one-stage direct computation of similarity using a probabilistic

dictionary (lexical probabilities) significantly outperforms a method that translates and

summaries the documents and estimates a mono-lingual similarity between the docu-

ments. Experiments on mono-lingual associating of generated summaries and manual

summaries showed that the low performance of the two-stage method is mainly due

to the selective nature of the translation component. One translation is chosen among

a list of possible translations based on the context of the sentence and the rest of the

candidates are discarded, therefore, the chance of a match between the words of the

two documents are heavily degraded.

Although the scores of the basic similarity measures were lower than most of the mod-

els of DFR in the association task, the difference was not substantial. In other words,

even the basic models of similarity performed well in finding the corresponding sum-

mary for a document in our experiments.

Summary

This chapter described an approach to automatically align fragments of texts of two

documents in different languages. A text fragment is a list of continuous sentences

and an aligned pair of fragments consists of two fragments in two documents, which

are content-wise related. Cross-lingual similarity between fragments of texts is esti-

mated based on models of divergence from randomness and a set of aligned fragments

based on the similarity scores are selected to provide an alignment between sections
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of the two documents. Similarity measures based on divergence have shown strong

performance in the context of cross-lingual fragment alignment in the performed ex-

periments.
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Conclusions

8.1 Summary

This thesis has explored the reordering phenomenon in machine translation and specif-

ically examined the reordering problem in the phrase-based statistical machine trans-

lation systems.

The thesis is structured in three sections. The first section overviews statistical machine

translation and the main concepts of SMT training, decoding and evaluation. Then

defines the reordering problem and its different types. In Chapter 2 a brief introduction

to SMT is given and in Chapter 3, most of the current approaches to deal with the

reordering directly or indirectly have been discussed.

In the second section, we proposed models to improve the SMT decoder capabilities in

dealing with the reordering requirements of different languages. Chapter 4 proposes a

technique to extend the decoder to perform chunking and translating in tandem. This

extension gives the decoder the ability to move segments of words and make long

distance jumps to capture structural reorderings such those required for SOV to SVO

translation. In Chapter 5, a discriminative reordering model was built that benefits

from several features such as words, bigrams, POS, chunking information, sentence

punctuation and etc, to make reordering decisions. In addition, the model is used to

enable the decoder to adjust the distortion limit and the reordering window according

to the context of the phrase about to be translated. Experiments on Arabic-English,
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French-English and Turkish-English were carried out to prove the effectiveness of the

approach.

The third section of the thesis deals with the evaluation of the SMT for specific ap-

plications. Particularly, this section investigates the effect of improving reordering on

the performance of NLP tasks on the MT output. Chapter 6 proposes an approach to

use the output of automatic tools on the reference translations as the gold standard and

evaluate the output of the same tool on the translation. This method gives us an insight

to the possibility of using the combination of translation and English-tailored tools to

solve multi-lingual problems. Finally, in Chapter 7, a method is presented to align frag-

ments of text of two documents that are in different languages and are not necessarily

parallel. This chapter also investigates the effectiveness of divergence from random-

ness models in estimating the similarity between fragments of text in a cross-lingual

setting.

8.2 Conclusions

We outline the conclusions of this work as answers to the research questions asked in

the introduction chapter at the beginning of the thesis (see Section 1.1). Some of the

questions are addressed together.

1. How can one take advantage of the fact that words tend to move together when they are

translated across languages?

2. Is chunking and grouping words together a helpful solution for long-distance reordering?

Dynamically chunking and at the same time translating segments of the sen-

tence produces very different translations from the baseline and is an effective

approach to deal with the problem of long-distance reordering, which is due to

structural differences between the two languages, in German to English transla-

tion.

3. How important and effective is language modelling in dealing with the reordering prob-

lem?
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Language models are not sufficient enough to deal with the reordering problem

and the short context considered by n-gram language models are not able to cap-

ture the long distance dependencies of words. Despite the fact that language

models are not enough in current state of the art SMT systems, they are one of

the most important features of all the SMT decoders. The high weight given to

the language model feature by the MERT optimisation algorithm indicates the

importance of the language model. The n-gram language model, not only makes

decision about the order of words, in a short distance based on the order of the

model, it plays a crucial role in determining the word choices and morphologies.

4. How can an important parameter be tuned to avoid using the same parameter for sen-

tences with different structure?

The way defining the distortion window, which is called reordering constraint,

is as important as the value of the distortion parameter. Experiments on various

language pairs show the importance of the distortion parameter in the quality

of translation and the need for properly adjusting it. The dynamic distortion

method enables the decoder to make long distance jumps by compensating for

them by avoiding unnecessary skips in other parts of the sentence. In addition, it

eliminates the need for finding the optimal distortion parameter and reordering

constraint by deciding about them before each phrase expansion.

5. What kind of features in a reordering model help to relax the reordering constraints in

phrase-based SMT without degrading the performance of the algorithm in terms of speed

and quality?

Results of the experiments of discriminative reordering models with several fea-

tures revealed a few points in these reordering models: Firstly, source side fea-

tures are by far more effective and the target side features. One reason for this can

be the fact that the target language model is already contributing evidence from

the target side. Also, it is the target language is built partially and with uncertain

and probably not perfect building blocks, so the features from the target side are

not as reliable as the features from the source side. Secondly, surface form fea-

tures, particularly bigram words are more important and useful than POS, chunk
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information and punctuation features. Part of speech and chunk information are

entirely dependent on external tools that are not hundred percent precise, partic-

ularly for non-English languages. In addition, words as features are more specific

than for example POS categories. Thus, even though more general categories are

useful for generalisation, their precision declines compared to word features for

reordering decisions.

6. Does adjusting the distortion limit improve quality of the translation compared to manual

tuning?

In our experiments there was no difference between the features of DISCRIM-REO

and DYNAMIC-DL for determining the scores of different permutations, however

the DYNAMIC-DL method performed better than the DISCRIM-REO model alone.

Therefore, the improvements achieved is due to the change of the search space

explored by the decoder because of the adjustments of the distortion limit. The

results show that guiding the decoder during the search can also be effective in

improving the quality of translation in addition to removing the need for tuning

the distortion parameter.

7. What is the effect of being cross-lingual on text fragment alignment and is the difference

between the performance of the mono-lingual algorithm and cross-lingual algorithm

substantial enough to rule out the full translation as a viable approach in performing

fragment alignment?

Experiments on cross-lingual association of documents and their summaries

showed that a one-stage direct computation of similarity using a probabilistic

dictionary (lexical probabilities) significantly outperforms a method that trans-

lates and summaries the documents and estimates a mono-lingual similarity

between the documents. Experiments on mono-lingual associating of generated

summaries and manual summaries showed that the low performance of the

two-stage method is mainly due to the selective nature of the translation compo-

nent. One translation is chosen among a list of possible translations based on the

context of the sentence and the rest of the candidates are discarded, therefore,

the chance of a match between the words of the two documents are heavily
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degraded.

Similarity measures based on the divergence from randomness models outper-

form the similarity measures based on TF-IDF for fragment alignment in the

cross-lingual and mono-lingual contexts.

8. What is the effect of improving reordering on different NLP tasks for different language

pairs? and is improving the reordering going to improve the quality of these tasks for all

language pairs?

Improving the reordering and translation quality in terms of automatic evalua-

tion metrics such as BLEU can lead to better named entity recognition in some

languages, but not in all cases. For the German-English pair, the improved re-

ordering resulted in better NER, however even though there were substantial

BLEU improvements on Turkish to English translation, the NER performance

was degraded. This showed the difference in the nature of reordering for the two

language pairs. For some other language pairs with very limited reordering re-

quirements such as Greek-English and Bulgarian-English, the NER performance

did not change significantly mainly because of similar outputs by the baseline

and the reordering models.

Although Stanford’s NER system has a higher quality than LingPipe, the dif-

ferences between the results for different models of translation were consistent.

This shows even though they use different classification models to label the in-

put and Stanford’s NER classifier uses more features, there are certain aspects of

the translation output that affect named entity extraction, which are common for

both systems.

8.3 Limitations and Future Work

The following list outlines some of the limitations of this research and a few directions

for addressing them in future investigations and also a few suggestions for future work.

• Although one of the advantages of the dynamic chunking approach (see Chapter

4 ) is its language independence and no need for syntax-based tools, one may ar-
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gue that for languages with available tools it can be beneficial to take syntax into

account. The method described in this work defines and performs the chunking

solely on the word alignment information, however, the classifier can be modified

to take syntactic features that are produced by a syntactic chunker into account.

In addition, it was mentioned that the chunking method suffers from speed prob-

lems compared to the baseline. One way of dealing with this issue is to reorder

the source sentence based on the most probable chunk boundaries and produce

an n�bast list of reordered sentences as the input of the decoder. This method

is close to other non-determinant source reordering approaches described in Sec-

tion 3.2.2.

• In performing the evaluation of named entity recognition on machine translation

output, we used a set of imperfect tools to estimate the evaluation metric. Firstly,

an automatic named entity recogniser was used to extract reference named en-

tities from the reference translations. Secondly, a word aligner that uses exact,

stem and WordNet matches was employed to link the entities between the trans-

lation output and the reference translations. These two steps are imperfect and

can generate harmful noises in the evaluation process. On one hand, using these

automatic methods enables us to evaluate named entity recognition on several

language pairs and also avoids huge efforts of manual annotation, on the other

hand, the noises produced by these tools can be misleading in some of the sen-

tences.

• In the text fragment alignment method, we used divergence from randomness

models with some other retrieval models to find the fragments of text in the two

documents that are related. Although the approach is effective in detecting frag-

ments of text, it does not provide a solution to find the two documents to be

processed. There are several applications that the documents are already known

or can be known easily by simple methods. However, there are scenarios that we

are looking for fragments of text in large collections. The document association

method provided in Chapter 7 requires the similarity of all pairs of documents

to be estimated, which makes the process infeasible for large collections. There-
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fore, another method must be employed to find the two candidate documents in

a tractable manner and then use the fragment alignment method to extract the re-

lated fragments. Having said that the method is still applicable for a wide range

of applications and small collections.

• In the experiments of this research, several language pairs were used. Most of the

experiments were carried out on European languages, plus Arabic and Turkish.

English was the target language in all the experiments. For empirical investi-

gations that deal with reordering, a language pair that requires both short and

long distance reordering is invaluable. On the other hand, if both languages are

morphologically simple, reordering will account for most of the translation diffi-

culties and complex morphology does not degrade translation performance. We

argue that Persian, English language pair is a very good candidate for empirical

investigation of reordering in machine translation. Persian has a relatively simple

grammar and has Subject-Object-Verb word order. Normal sentences have Sub-

ject, Preposition, Object and Verb word order, however it can have a relatively

free word order due to the fact that the parts of speech are generally unambigu-

ous. In addition, prepositions and the accusative marker help disambiguate the

case of a given noun phrase. Different word orders between Persian and En-

glish makes the effect of the reordering aspect of the translation very significant.

Unfortunately, there is no Persian, English parallel corpus available. Therefore,

we have to prepare the collection by using limited web resources. Apart from

the limited resources, different encodings and different styles of writing make it

more difficult to clean and tokenise the corpus. Persian morphology is mainly

dominated by suffixes. Verbs contain tense, aspect and agree with subject in per-

son and number. For example, different documents use space, zero-width space

or no space to separate the suffixes from the verbs. This increases the vocabulary

size and makes the sparsity problem more severe.
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