
The University of Amsterdam at WePS2

Krisztian Balog Jiyin He Katja Hofmann Valentin Jijkoun
Christof Monz Manos Tsagkias Wouter Weerkamp Maarten de Rijke

ISLA, University of Amsterdam
Science Park 107, 1098 XG Amsterdam

{k.balog,j.he,k.hofmann,v.jijkoun,c.monz,e.tsagkias,w.weerkamp,m.derijke}@uva.nl

ABSTRACT
In this paper we describe our participation in the Second
Web People Search workshop (WePS2) and detail our ap-
proaches. For the clustering task, our focus was on repli-
cating the lessons learned at WEPS1 on the data set made
available as part of WEPS2 and on experimenting with a
voting-based combination of clustering methods. We found
that clustering methods display the same overall behavior
on the WEPS1 and WESP2 data sets and that a hierarchi-
cal clustering approach delivers the best performance, even
outperforming voting-based combinations.

For attribute extraction, we explore approaches using pat-
tern matching with manually and automatically constructed
patterns. Manual patterns were constructed using expert
knowledge and following analysis of sample data. Auto-
matic pattern construction extracts textual and syntactic
context around training samples and selects patterns which
are expected to perform well based on leave-one-out evalua-
tion. Experimental results show that manually constructed
patterns are very effective for obtaining high recall. For
automatically extracted patterns performance varied widely
depending on the attribute type. Larger amounts of training
data may help improve these approaches in the future.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: H.3.1 Con-
tent Analysis and Indexing; H.3.3 Information Search and
Retrieval; H.3.4 Systems and Software; H.4 [Information
Systems Applications]: H.4.2 Types of Systems; H.4.m
Miscellaneous

General Terms
Algorithms, Measurement, Performance, Experimentation

Keywords
Information extraction, Attribute extraction, Clustering, Per-
son name disambiguation

1. INTRODUCTION
The second edition of the Web People Search (WePS2)

workshop featured two tasks: clustering [2] and attribute
extraction [10].

Copyright is held by the author/owner(s).
WWW2009, April 20-24, 2009, Madrid, Spain.
.

The goal of the clustering task was to group web pages,
returned by a web search engine using a person’s name as
a query, so that pages referring to the same individual are
assigned to the same cluster. Previous work conducted us-
ing the WePS1 data set [1] showed that this task can ef-
fectively be treated as a document clustering problem, and
standard document clustering methods deliver excellent per-
formance [3, 4]. The introduction of the WePS1 data set was
a very significant step, as it provided the first common plat-
form for evaluating techniques for person name disambigua-
tion in a web setting. Yet, issues were raised concerning the
reliability of the results obtained using this resource, due to
the large difference between the average ambiguity in the
training and test subsets, and because of the standard clus-
tering evaluation measures that may not be appropriate for
this specific scenario [1]. One of our major aims for this year,
therefore, was to validate whether our findings generalize to
the WePS2 collection, and whether looking at other evalu-
ation metrics leads to the same conclusions drawn before.
A secondary aim was to experiment with a voting method
in order to combine the advantages of multiple individual
clustering methods. We found that clustering methods dis-
play the same behavior across collections and metrics. As
to our second goal, our combination technique was able to
improve over all individual methods in terms of F-scores,
but not for the single precision—recall and purity—inverse
purity measures. Overall best performance was delivered by
the hierarchical clustering approach.

For the attribute extraction task we experimented with
two fundamentally different families of methods, manual
and automatic, for constructing patterns. We found that
our manual approach is very effective in terms of recall, as
it achieved the highest overall recall among all participat-
ing systems [10]. As to the automatic methods, we found
that performance strongly depends on the attribute classes;
for some attribute types no generalizable patterns were ex-
tracted, while, for others, the automatically extracted pat-
terns outperform the manually designed ones.

The paper is organized as follows. First, we describe our
document preprocessing in Section 2. Next, we discuss our
work on the clustering task (Section 3) and on the attribute
extraction task (Section 4) in two largely independent sec-
tions. We conclude our findings and put forward suggestions
for future work in Section 5.

2. PREPROCESSING
Preprocessing included the removal of HTML tags, sen-

tence splitting, and named-entity tagging.

For HTML tag removal, we used a perl program based
on the module HTML::TreeBuilder. This program detected
the encoding of pages, converted text to ASCII format, and
returned all text that would be rendered by a web browser
while preserving paragraph boundaries for paragraph and
block level elements.

The cleaned web pages were then processed by a sentence
splitter using the module Lingua::EN::Sentence. The out-
put is one text file per webpage, with one sentence per line.1

For the clustering task a separate index was created for
each person name, using the Lemur toolkit.2 We removed
a standard list of stopwords, but did not apply stemming.
Note that the clustering run UvA 1 employed a different kind
of pre-processing. Details are discussed in Section 3.1.1.

For attribute extraction we used a named entity tagged
version of the documents. Named entity detection was per-
formed using the Stanford NER software [5].

3. CLUSTERING

3.1 Approach
We experimented with five different clustering methods

that correspond to our submitted runs UvA 1–UvA 5, that
we detail in Sections 3.1.1–3.1.4 below.

3.1.1 Hierarchical Agglomerative Clustering
We experimented with two hierarchical agglomerative clus-

tering implementations. The first implementation was en-
tirely implemented by us to give us more control about the
internal aspects, while the second implementation used the
Lemur toolkit. First we describe our own implementation
(run UvA 1) followed by the system using Lemur (run UvA 2).

Our clustering approach follows a general hierarchical clus-
tering approach [8] with a few specific additions for this task.
In general, hierarchical clustering uses a greedy clustering
procedure where clusters with the highest similarity score
are merged into the same cluster. The procedure continues
iteratively until no further clusters can be merged. There
are two stopping criteria: (a) fixed number of iterations or
(b) minimum similarity threshold. In our experiments we
only used stopping criterion (b). Following Balog et al. [4]
the threshold was set to 0.1.

At the heart of hierarchical clustering lies the definition
of similarity between clusters, which can be individual doc-
uments (singleton clusters) or sets of documents. Here, the
general similarity between two clusters c1 and c2 is defined
as the cosine similarity:

sim(ci, c2) =
X

t∈c1∩c2

w(t, c1) · w(t, c2)P
t′∈c1

p
w(t, c1)2 ·

P
t′∈c2

p
w(t, c2)2

where the weight of a term t in cluster c is defined as

w(t, c) = tf (t, c) · log

„
N

nt

«
and tf (t, i) is the frequency of term t in cluster c, N is the
number of documents in the collection and nt is the number
of documents in which t occurs. This is the standard TF.IDF
definition used in information retrieval.

1Sentence information is used by some of the attribute ex-
traction runs.
2http://www.lemurproject.org

In order to improve on the standard cosine similarity we
experimented with a number of variations, in particular, in-
stead of using the actual term frequency, we normalized it
with respect to the average frequency of a term in this doc-
ument:

w(t, c) =
1 + log(freqt,c)

1 + log(avgt′∈cfreqt′,c)
· log

„
N

nt

«
What constitutes the collection in clustering is somewhat
unclear. Is it the number of documents that were retrieved
for a particular name or is it the number of all documents in
the test? Here we experimented with both options, but the
latter led to slightly better performance. This is probably
due to the fact that a somewhat larger collection gives more
reliable counts.

We were also interested to find out to what extent pre-
processing the input has an impact on clustering quality.
For converting the input HTML files into text files we opted
for a simple but yet effective approach by using w3m, a UNIX
command line web browser and piped the output into a text
file. The text files were then tokenized by a simple tokenizer
just separating punctuation symbols.

Instead of indexing the actual words, they were stemmed
using Porter’s stemmer [9]. We found that stemming im-
proved our results considerably.

When clustering two smaller clusters together, there are
a number of strategies:

minimum: This strategy defines the similarity between two
clusters as the similarity between the two closest doc-
uments from each cluster.

maximum: This strategy defines the similarity between
two clusters as the similarity between the two farthest
documents from each cluster.

centroid: This strategy defines the similarity between two
clusters as the similarity between the two centroids
each cluster.

average: This strategy defines the similarity between two
clusters as the similarity between all documents in
both clusters.

We experimented with all strategies, and selected those for
submission that performed best with the given implementa-
tion.

The final run submitted for this clustering approach (UvA 1)
used stemming, simple w3m HTML clean-up, normalized doc-
ument frequency and the minimum strategy. Further than
that no task-specific preprocessing or feature extraction was
applied. While the approach is rather simple, it shows that
even simple and robust strategies can lead to very competi-
tive performance in this task.

The second system (run UvA 2) which uses Lemur, em-
ploys the centroid strategy, and there are a number of dif-
ferences with respect to preprocessing and morphological
normalization. Firstly, preprocessing is done as described in
Section 2. Secondly, no stemming is applied and the actual
surface forms of the words are used for indexing. Finally,
TF.IDF scores are computed in the standard way and are
based only on documents of the specific person.

Throughout the remainder of the section, we use the stan-
dard preprocessing as described in Section 2. The following
subsections correspond to runs UvA 3 to UvA 5.

3.1.2 Single Pass Clustering
Single Pass Clustering [6] assigns pages to clusters using

the following algorithm: The first document is taken and as-
signed to the first cluster. Then each subsequent document
is compared against each cluster with a similarity measure.
A document is assigned to the most likely cluster, as long as
the similarity score is higher than a threshold γ (set to 0.1
following [4]); otherwise, the document is assigned to a new
cluster.

For estimating the similarity between a document and a
cluster (sim(D,C)) we employ the Naive Bayes similarity
measure. It uses the log odds ratio to decide whether the
document is more likely to be generated from that cluster
or not. Assuming that terms in a document are sampled
independently and identically, the odds ratio is calculated
as follows:

O(D,C) =
p(D|θC)

p(D|θC̄)
=

Q
t∈D p(t|θC)n(t,D)Q
t∈D p(t|θC̄)n(t,D)

,

where n(t,D) is the number of times term t appears in doc-
ument D, θC is the cluster language model, and θC is the
language model that represents “not being in the cluster.”
The cluster language model is estimated by performing a
linear interpolation between the empirical probability of a
term occurring in the cluster p(t|C) and the background
model p(t). The “not in the cluster” language model is ap-
proximated by using the background model p(t). For a more
elaborate discussion of the method, the reader is referred to
Balog et al. [4].

3.1.3 Probabilistic Latent Semantic Analysis
Probabilistic latent semantic analysis (PLSA) [7] can be

used to cluster documents based on the semantic decompo-
sition of the term document matrix into a lower dimensional
latent space. Formally, PLSA can be defined as:

p(t, d) = p(d)
X

z

p(t|z)p(z|d), (1)

where p(t, d) is the probability of term t and document d co-
occurring, p(t|z) is the probability of a term given a latent
topic z and p(z|d) is the probability of a latent topic in a
document. The prior probability of the document, p(d), is
assumed to be uniform. This decomposition can be obtained
automatically using the EM algorithm [7]. Once estimated,
we make the simplifying assumption that each latent topic
represents one of the different senses of the person name.
The document d is assigned to one of the person-topics z if
(i) p(z|d) is the maximum argument, and (ii) the odds of the
document given z, i.e., O(z, d), is greater than a threshold
γ (set to 1.0 based on [4]), where

O(z, d) =
p(z|d)

p(z̄|d)
=

p(z|d)P
z′,z′ 6=z p(z

′|d)
.

Note that the decomposition takes the number of latent top-
ics, z, as a parameter. This value, however, corresponds to
the number of person senses, which is unknown. We use an
EM algorithm to select z that maximizes the log-likelihood
of the decomposition; see [4] for details.

3.1.4 Combination of Methods
Based on the observation that different clustering methods

result in different clustering structures, we decide to submit

a combined run (UvA 5), which takes the initial results gen-
erated by different clustering methods as input and using
a voting scheme to generate the final results. The voting
procedure is defined as follows.

For a given pair of documents (di, dj) and M clustering
algorithms, we count the number of clustering algorithm
that assign the same cluster for the two documents, i.e., the
two document belong to a same cluster. If the votes reaches
or exceeds a given a given threshold θ, the two documents
are assigned to a same cluster. Formally, it is defined as
follows:(
c(di) = c(dj), if #n (cm(di) = cm(dj)) ≤ θ,m = 1, ...,M

c(di) 6= c(dj), otherwise.

where #n (cm(di) = cm(dj)) is the number of clustering al-
gorithms agree that di and dj belong to the same cluster.

When applying the combination method, we follow the
procedure:

• collect the instances on which all m algorithms agree
that they should belong to a same cluster to form a
set of seed clusters; if none of the instances pairs has
an agreement from all algorithms, m = m− 1

• start from the seeds, get the instances on which m− 1
algorithms agree that they should belong one of the
seed clusters, add them in; if they do not have any
relation with the existing seed clusters, form a new
cluster; repeat until m ≤ θ.

• the rest instances form clusters with singularities.

In order to facilitate the voting decision, we take the ini-
tial results from 3 runs as input for combination and set
the threshold θ to 2 based on the results obtained from the
training set.

3.2 Results
Table 1 shows the results achieved by our different cluster-

ing methods. We find that runs UvA 2 to UvA 4 display the
same behavior as on the WePS1 collection [4]. Our overall
best performance was delivered by the hierarchical cluster-
ing approach. Most of the difference between UvA 1 and
UvA 2 can be attributed to the differences in pre-processing,
and the usage of a stemmer.

As to the combination of methods, run UvA 5, we see im-
provements over the individual methods in terms of F-scores
(both for F-0.2 and F-0.5), but not for the single precision-
recall and purity-inverse purity measures.

F-0.2 F-0.5
Run BP BR BP-BR P-IP BP-BR P-IP IP P
UvA 1 0.85 0.80 0.80 0.87 0.81 0.87 0.87 0.89
UvA 2 0.92 0.51 0.54 0.66 0.61 0.73 0.63 0.93
UvA 3 0.92 0.40 0.43 0.51 0.49 0.58 0.48 0.94
UvA 4 0.52 0.75 0.57 0.70 0.50 0.63 0.81 0.62
UvA 5 0.86 0.60 0.63 0.74 0.67 0.78 0.71 0.92

Table 1: Results for the clustering task. Best scores
for each measure are in boldface. The metrics are:
BCubed precision (BP) and recall (BR), purity (P),
and inverse purity (IP).

4. ATTRIBUTE EXTRACTION

4.1 Approach
Our aim for the attribute extraction task was to experi-

ment with two fundamentally different families of methods:
manual and automatic pattern construction. Both are ap-
plied on top of a named entity tagged version of the docu-
ments.

4.1.1 Manual pattern construction
Under the first group of approaches, a separate extraction

strategy was developed for each attribute type. We sub-
mitted two runs, using a baseline (UvA 1) and an advanced
(UvA 2) version of these patterns, as follows:

• Affiliation. As affiliations of a person, we simply ex-
tracted all organizations (as identified by a named en-
tity tagger) from the sentences containing the person’s
name.

• Award. The baseline for awards is a regular expres-
sion in the form of: “the . . . AWARDTYPE for|the
. . . ”, where . . . denotes alphanumeric sequences with
their first letter capitalised. AWARDTYPE is a closed
set consisting of award, prize, competition, and medal.
Specifically for medals, we tried to capture the medal’s
rank by adding the subpattern: “with . . . star(s)”.
The advanced system extended the baseline twofold.
Firstly, new members were added to the AWARD-
TYPE: fellowship, hall of fame, honour, distinction,
grant, and scholarship. Secondly, we introduced the
pattern “. . . -of-the- PERIOD”, for capturing time-
dependent awards (i.e., “The Author of the Year”),
where PERIOD is a closed set of month, day, year,
week.

• Birth place. Both runs use the output of the named
entity tagger as basis: For run UvA 1 we return all men-
tions of LOCATION in the pages. For run UvA 2 we
follow up on the advanced identification of date of birth
and return only those locations that are preceded by
a possible date of birth: “DATE OF BIRTH{1..150}
LOCATION”.

• Date of birth. For both our runs we use the same
regular expressions to select dates from pages. E.g.,
expressions can look like “02/03/1945”, “3 Feb 1948”,
and “February 3, 1948”. In run UvA 1 we return all
dates identified on the pages. Run UvA 2 filters dates:
Only dates that are contained in either “PERSON
{1..50} (DATE)” or “PERSON {1..50} born {1..20}
DATE” are returned.

• Degree. We construct a list of degrees from Wikipedia
and filtered out the degrees that also refer to a common
word (e.g., AS). The filtered list contains 89 degrees
and 110 abbreviated versions. In run UvA 1 we mark all
entries in the list as degree, while in run UvA 2 we take
the same approach but remove orphan degrees (i.e., if
no major or school is present, the degree is removed as
well).

• Email address. Both runs UvA 1 and UvA 2 use the
same regular expression to select email addresses. The
selected addresses are filtered on the criterion whether
or not they contain the first or last name of the person.

• Major. Run UvA 1 uses the pattern “degree in..” to
detect majors: When this pattern is followed by ei-
ther capitalized words (e.g., “degree in Applied Math-
ematics”) or a sequence of words that could indicate
a school (e.g., “degree in mathematics from yyy”) we
mark the word(s) as major. In the UvA 2 run we use
the degrees extracted in the advanced degree setting
in addition to the “degree in”-pattern (so also “DE-
GREE in . . . ”), and follow the same patterns as in
the previous run to identify majors.

• Mentor. Mentor is considered any pattern starting
with the words influence, with, by, or for followed by
at least two capitalised words. The advanced system
is the same as the baseline.

• Nationality. We construct a list of 201 nationali-
ties from Wikipedia. In run UvA 1 we mark each of
the entries in this list as nationality of that person.
Run UvA 2 follows the same path, but requires the first
or last name of the person to be mentioned at most
30 characters before the nationality (i.e. “PERSON
{1..30} NATIONALITY”)

• Occupation. We compiled two gazetteers of words
and phrases describing occupations: one using Word-
net and another using English Wikipedia. From Word-
net, we extracted all (recursive) hyponyms of synsets
professional, entertainer, author, leader, worker, cre-
ator, engineer, preserver and expert. This resulted in a
list of 3,295 terms (2,271 words and 1,024 multi-word
expressions). From Wikipedia, we started with two
categories Occupations and Sports positions and re-
cursively extracted all sub-categories whose titles end
with occupations, ranks, positions or professions. Fur-
thermore, for these categories, we extracted (non-recur-
sively) all sub-categories with titles containing plural
nouns or a string Lists of Finally, we extracted
all pages that are annotated with one of the extracted
categories. This resulted in a list of 11,375 page and
category titles (7,261 words and 4,114 multiword ex-
pressions).

To extract possible occupations of a person in the
test collection, we simply identified all occurrences of
terms from our gazetteer in the documents for this
person. The run UVA 1 used the gazetteer created us-
ing Wordnet. The run UVA 2 used both Wordnet- and
Wikipedia-based gazetteers.

• Other name. We use regular expressions to select
capitalized words immediately before or after the first
and last name of the person, or in between the first
and last name (e.g. “OTHERNAME PERSON” or
“PERSON OTHERNAME”). In run UvA 1 we return
all the identified occurrences. In run UvA 2 we use a list
of 2,626 common (first) names, constructed from the
web and select only the occurrences that also appear
in this list.

• Phone and Fax. For both runs UvA 1 and UvA 2 we re-
turn the same set of candidates: we use regular expres-
sions to match phone and fax numbers (e.g., “111 111-
111” or “+11 (111) 111-11”) and all numbers matching
the patterns are used both as telephone and fax num-
ber.

• Relatives. A dictionary of terms describing family
relations (father, mother, grandson, etc.) was con-
structed manually. Run UvA 1 returns the first person
name occurrence after a relation term. Run UvA 2 uses
a refined dictionary of relations and returns all names
within a fixed window size around relation terms (specif-
ically, this window was defined as 5 terms before and
20 terms after the relation term, based on the training
data).

• School. Run UvA 1 extracts possible schools that fol-
low simple patterns like “University of . . . ”, “. . . Col-
lege”, and “School of . . . ”. In run UvA 2 we look for
occurrences of degrees or majors and we follow more
sophisticated patterns to recognize schools. Exam-
ples of patterns used here are “DEGREE from the
SCHOOL”, “MAJOR at SCHOOL”, and “degree from
SCHOOL”.

• Web site We use the same results for runs UvA 1 and
UvA 2: Regular expressions are used to select possible
web sites, after which only the web sites containing the
last name of the person are returned.

4.1.2 Automatic pattern construction
In runs UvA 3 to UvA 5 we apply an automatic approach for

“learning” patterns from training examples. We experiment
with two different ways to construct patterns and with using
named entity tags as an additional source of information.
We use a two-step approach: (1) pattern extraction and
(2) pattern selection. Example patterns that were obtained
following this approach are shown in Table 2.

In the first step, we extract candidate patterns using the
supplied sample data. For each name in the test set, and for
each attribute, we extract from the text of the supplied web
pages each sentence that contains the person’s last name
and an attribute value. We then construct patterns for 1
up to 5 tokens that precede and follow the attribute value
in that sentence. Next, we generalize patterns by replacing
elements of person names by placeholders, and, when using
NE-tags, by additionally replacing named entities by their
tag.

In the second step, we select patterns following a leave-
one-out approach. The patterns extracted from all but one
person name are applied to extract attributes from the web
pages belonging to the held-out person name. Thus, we eval-
uate the extracted attribute values and keep the patterns
where F-score exceeds a threshold value. This is repeated
until each person name has been held-out once. The result-
ing set of patterns is applied to extract attributes for unseen
names.

4.2 Results
Table 3 gives an overview of the results of our 5 submit-

ted attribute extraction runs. Best performance is achieved
by UvA 2, which uses the improved version of manually con-
structed patterns. Both runs using manual patterns (UvA 1,
UvA 2) achieve similarly high recall, while UvA 2 makes sub-
stantial gains in precision.

The runs using automatically generated patterns (UvA 3,
UvA 4, UvA 5) perform substantially lower than the runs us-
ing manually constructed patterns. However, UvA 5 achieves
relatively high precision.

Attribute name Example patterns
Affiliation Member of :ORG:\s*(\w+)\s*

Award \s*(\w+)\s*for his services to

Birthplace born in :LOC:\s*(\w+)\s*

Date of birth born in :LOC:[\w\.\-]+? in\s*(\d+)\s*

Degree graduated from the :ORG:[\w\.\-]+?

with a\s*(\w+)\s*

Major a bachelor ’s degree in\s*(\w+)\s*

Nationality one of :LOC:\s*(\w+)\s*’s most

Occupation , as a\s*(\w+ \w+)\s*

Other name \s*(\w+)\s*\(

Relatives and his wife , :PER:\s*(\w+)\s*,

School graduated from :ORG:\s*(\w+)\s*

Table 2: Example patterns acquired by the auto-
matic pattern extraction approach.

In comparison with other WePS2 participants, our runs
using manually constructed patterns achieve the highest re-
call scores [10].

Run Prec. Recall F-measure
UvA 1 2.717 27.317 4.942
UvA 2 4.417 27.415 7.608
UvA 3 0.667 0.151 0.246
UvA 4 0.181 0.027 0.046
UvA 5 3.349 2.844 3.076

Table 3: Results for the attribute extraction task.
Best scores for each measure are in boldface.

4.3 Analysis
Experimental results showed that our manual patterns

are very effective, in terms of recall. Further, the refined
versions considerably improve precision, without losing any
of the recall. For 7 out of the 16 attributes (occupation,
award, major, mentor, relatives, phone, and fax) our UvA 2

run achieved the highest recall among all participating sys-
tems [10].

As to the automatic methods, we found that performance
strongly depends on the attribute type. For some attribute
types, for example phone and website, no generalizable pat-
terns were extracted. For other attributes, for example
award and degree, patterns were extracted, but did not gen-
eralize to the test set. Finally, run UvA 5 extracted patterns
that performed better than manually designed patterns for
the attributes birthplace and other name, and high precision
was achieved for nationality.

Analysis of automatically extracted patterns for attributes
where high performance was achieved could help improve
manually created patterns. For the attribute birthplace, we
find that 14 patterns were extracted, all of which make use
of the named-entity type “location.” Most of these are com-
bined with the clue word “born”, and many contain dates as
well. For nationality, one of the clues used is again named
entities of type “location.” Additional clues are references to
occupations, such as “Goethe is one of Germany’s most fa-
mous writers.” For other name the extracted patterns make
use of syntactic clues such as commas (indicating apposi-
tions), and opening or closing parentheses. From these ex-
amples we can conclude that named entities, co-occurring
attribute types, and punctuation can form important cues

UvA 1 UvA 2 UvA 3 UvA 4 UvA 5

Attribute #no P R F P R F P R F P R F P R F
Affiliation 3,105 10.5 20.3 13.9 10.7 20.2 14.0 — — — — — — 2.9 0.5 0.9
Award 264 2.6 21.2 4.7 2.6 16.7 4.5 — — — — — — — — —
Birth place 301 0.2 32.1 0.5 15.8 1.0 1.9 0.1 0.3 0.2 — — — 18.6 8.0 11.2
Date of birth 370 1.3 39.6 2.5 33.5 15.4 21.2 5.3 1.4 2.2 — — — 9.7 11.7 10.6
Degree 335 9.6 23.3 13.6 14.2 10.4 12.0 — — — — — — — — —
Email 209 24.3 54.5 33.6 24.3 54.5 33.6 — — — — — — — — —
Fax 65 3.9 70.8 7.4 3.9 70.8 7.4 — — — — — — — — —
Major 173 18.0 10.4 13.2 13.6 16.8 15.0 — — — — — — — — —
Mentor 343 0.3 16.9 0.5 0.3 16.9 0.5 — — — — — — — — —
Nationality 250 3.7 66.8 6.9 27.2 27.2 27.2 — — — — — — 39.5 6.8 11.6
Occupation 3,292 6.6 34.8 11.1 5.1 38.3 9.0 2.7 0.3 0.5 0.6 0.0 0.1 4.5 5.2 4.8
Other name 797 15.0 0.8 1.4 62.5 0.6 1.3 0.2 0.3 0.2 0.2 0.3 0.2 1.1 6.1 1.8
Phone 219 13.8 74.4 23.3 13.8 74.4 23.3 — — — — — — — — —
Relatives 914 7.0 30.3 11.4 4.1 55.0 7.7 — — — — — — — — —
School 494 2.6 8.3 4.0 45.6 8.3 14.1 — — — — — — — — —
Web site 154 25.4 22.7 24.0 25.4 22.7 24.0 — — — — — — — — —
Overall – 2.717 27.317 4.942 4.417 27.415 7.608 0.667 0.151 0.246 0.181 0.027 0.046 3.349 2.844 3.076

Table 4: Breakdown of results per attribute type. #no denotes the total number of times that attribute
occurs in the test set. For each run precision (P), recall (R), and F-measure (F) are reported. Best scores
for each attribute and measure are in boldface. Scores of zero are denoted by ‘—’ to improve readability.

for the attribute extraction task.
In cases where no suitable patterns were found, the rea-

sons could be (1) the limited amount of sample data avail-
able for the particular attribute, (2) tokenization and the
specific way in which patterns are extracted and matched,
and (3) errors of the NE-tagger for runs where named enti-
ties were used. Further research is required to quantify the
influence of each of these on extraction performance.

We conclude that it is possible to automatically learn pat-
terns for attribute extraction. However, performance of the
approach used strongly varies with the attribute type. Inter-
esting directions for future work are the use of more training
data (possibly using bootstrapping approaches), improved
matching of training samples and patterns, and improved
pattern selection. Also, extracted patterns could be in-
spected manually to further improve performance of manual
extraction.

5. CONCLUSIONS
We described our participation in the Second Web People

Search workshop (WePS2) and detail our approaches. For
the clustering task, our focus was on replicating the lessons
learned at WEPS1 on the data set made available as part
of WEPS2 and on experimenting with a voting-based com-
bination of clustering methods. We found that clustering
methods display the same overall behavior on the WEPS1
and WESP2 data sets and that the hierarchical clustering
approach delivers the best performance, even outperform-
ing voting-based combinations. For attribute extraction,
we explored approaches using pattern matching with man-
ually and automatically constructed patterns. Manual pat-
terns were constructed using expert knowledge and follow-
ing analysis of sample data. Automatic pattern construc-
tion extracted textual and syntactic context around training
samples and selects patterns which are expected to perform
well based on leave-one-out evaluation. Experimental re-
sults showed that manually constructed patterns are very
effective for obtaining high recall. For automatically ex-

tracted patterns performance varied widely depending on
the attribute type.

As to future work, we are keen to set up a detailed anal-
ysis of the differences between the clustering methods used
and to consider alternative combination methods. For the
attribute extraction task we are particularly interested in
finding out wether larger amounts of training data help im-
prove our approaches.

Acknowledgments
This research was supported by the the DuOMAn project
carried out within the STEVIN programme which is funded
by the Dutch and Flemish Governments (http://www.stevin-
tst.org) under project number STE-09-12, and by the Nether-
lands Organisation for Scientific Research (NWO) under
project numbers 017.001.190, 640.001.501, 640.002.501, 612.-
066.512, 612.061.814, 612.061.815, and 640.004.802.

References
[1] J. Artiles, J. Gonzalo, and S. Sekine. The SemEval-

2007 WePS evaluation: Establishing a benchmark for
the web people search task. In SemEval, ACL, 2007.

[2] J. Artiles, J. Gonzalo, and S. Sekine. WePS 2 evaluation
campaign: overview of the web people search clustering
task. In 2nd Web People Search Evaluation Workshop
(WePS 2009), 18th WWW Conference, April 2009.

[3] K. Balog, L. Azzopardi, and M. de Rijke. Personal
name resolution of web people search. In WWW2008
Workshop: NLP Challenges in the Information Explo-
sion Era (NLPIX 2008), April 2008.

[4] K. Balog, L. A. Azzopardi, and M. de Rijke. Resolving
person names in web people search. In R. Baeza-Yates
and I. King, editors, Weaving Services, Location, and
People on the WWW. Springer, 2009.

[5] J. R. Finkel, T. Grenager, and C. Manning. Incorporat-
ing non-local information into information extraction
systems by gibbs sampling. In Proceedings of the 43nd
Annual Meeting of the Association for Computational
Linguistics (ACL 2005), pages 363–370, 2005.

[6] D. R. Hill. A vector clustering technique. In Samuelson,
editor, Mechanised Information Storage, Retrieval and
Dissemination, North-Holland, Amsterdam, 1968.

[7] T. Hofmann. Probabilistic latent semantic analysis.
In Proceedings of Uncertainty in Artificial Intelligence,
UAI’99, Stockholm, 1999. URL citeseer.ist.psu.

edu/hofmann99probabilistic.html.

[8] N. Jardine and C. J. van Rijsbergen. The use of hier-
archic clustering in information retrieval. Information
Storage and Retrieval, 7:217–240, 1971.

[9] M. Porter. An algorithm for suffix stripping. Program,
14(3):130–137, 1980.

[10] S. Sekine and J. Artiles. WePS 2 evaluation campaign:
overview of the web people search attribute extraction
task. In 2nd Web People Search Evaluation Workshop
(WePS 2009), 18th WWW Conference, April 2009.

