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Chapter 1

Introduction

Current natural language processing (NLP) systems based on neural networks
often rely on an enormous amount of data, if available, to learn the underly-
ing patterns that are useful to solve the tasks of interest. Despite the recent
success of neural network approaches in NLP, it has been shown that mod-
ern NLP systems are quite brittle in the presence of infrequent but probable
linguistic phenomena. Belinkov and Bisk (2018) provide an example where
Facebook’s character-based neural machine translation (NMT) system mistook
the Arabic word
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ABSTRACT

Character-based neural machine translation (NMT) models alleviate out-of-
vocabulary issues, learn morphology, and move us closer to completely end-to-
end translation systems. Unfortunately, they are also very brittle and easily falter
when presented with noisy data. In this paper, we confront NMT models with
synthetic and natural sources of noise. We find that state-of-the-art models fail to
translate even moderately noisy texts that humans have no trouble comprehend-
ing. We explore two approaches to increase model robustness: structure-invariant
word representations and robust training on noisy texts. We find that a model
based on a character convolutional neural network is able to simultaneously learn
representations robust to multiple kinds of noise.

1 INTRODUCTION

Humans have surprisingly robust language processing systems which can easily overcome typos,
misspellings, and the complete omission of letters when reading (Rawlinson, 1976). A particularly
extreme and comical exploitation of our robustness came years ago in the form of a popular meme:

“Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn’t mttaer in waht oredr the ltteers
in a wrod are, the olny iprmoetnt tihng is taht the frist and lsat ltteer be at the rghit pclae.”

A person’s ability to read this text comes as no surprise to the Psychology literature. Saberi & Perrott
(1999) found that this robustness extends to audio as well. They experimented with playing parts
of audio transcripts backwards and found that it did not effect comprehension. Rayner et al. (2006)
found that in noisier settings reading comprehension only slowed by 11%. McCusker et al. (1981)
found that the common case of swapping letters could often go unnoticed by the reader. The exact
mechanisms and limitations of our understanding system are unknown. There is some evidence that
we rely on word shape (Mayall et al., 1997), that we can switch between whole word recognition
and piecing together words from letters (Reicher, 1969; Pelli et al., 2003), and there appears to be
no evidence that the first and last letter positions are required to stay constant for comprehension.1

In stark contrast, neural machine translation (NMT) systems, despite their pervasive use, are im-
mensely brittle. This took an unfortunate turn recently when a mistranslation led to someone’s
wrongful arrest. The Arabic word ⌦���¶≥ (ySbHhm), roughly translating to a blessing for Good
Morning, was confused for ⌦Ü⇢�¶≥ (y*bHhm), meaning to hurt or slaughter someone, and interpreted
as a call to terrorism.2 Facebook’s MT system mistakenly confused two words that only differ by
one character, a situation that is challenging for a character-based NMT system. While typos and
noise are not new to NLP, our systems are rarely trained to explicitly address them, as we instead
hope that the relevant noise will occur in the training data.

Despite these weaknesses the move to character-based NMT is important. It helps us tackle the long
tailed distribution of out-of-vocabulary words in natural language, as well as reduce computation

⇤Equal contribution. Author ordering determined by bartender’s coin flip: https://www.youtube.
com/watch?v=BFSc2HnpYtA

1One caveat we feel is important to note is that most of the literature in Psychology has focused on English.
2
https://www.theguardian.com/technology/2017/oct/24/
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In the first Workshop on Building Linguistically Generalizable Natural Lan-
guage Processing Systems, findings of the Build It Break It, The Language Edi-



2 Introduction

tion1 shared task (Ettinger et al., 2017) corroborate the need for having linguistic
knowledge in NLP systems. The results of the sentiment classification shared
task show that all the deep neural network models break when they are con-
fronted with linguistically motivated attacks. For instance, with a minimal sub-
stitution of the comparative phrase “little too willing” by “just willing enough”, all
the participated systems misclassify the sentence “A bizarre (and sometimes repul-
sive) exercise that’s just willing enough to swoon in its own weird embrace.” as nega-
tive. This shows the limitations of all the participated systems when handling
the sentiment conveyed by the phrase “just willing enough” in context.

Taking a step further without manually crafting adversarial examples, Jia and
Liang (2017) evaluate reading comprehension systems using a simple method
to automatically generate adversarial sentences and insert them into reading
passages without changing the correct answers. Their method utilizes linguis-
tic tools such as WordNet (Miller, 1995), Glove word vectors (Pennington et al.,
2014), and Stanford CoreNLP (Manning et al., 2014) in addition to crowdsourc-
ing to generate sentences that are similar to the question. They show that the
accuracy of sixteen published (neural network) models for the Stanford Ques-
tion Answering Dataset dramatically drops from 76% F1 score to 36% on aver-
age. This finding shows the need for developing new models that understand
language more precisely.

We believe that linguistic knowledge is crucial for advancing natural language
processing. Apart from leveraging known linguistic structure to develop ac-
curate NLP systems, linguistic knowledge can be used to diagnose and probe
the robustness of NLP systems as well as to understand their limitations and
to shed light on possible research directions in the quest of building intelligent
machines (Lake et al., 2017).

1.1 Research Questions

This thesis focuses on modeling hierarchical linguistic structure in NLP systems
using recent advances in neural network models (known as Deep Learning).
Although linguistic structure prediction has been studied exhaustively in the
NLP literature (Smith, 2011), what we hope to contribute to in this thesis are the
possibilities that neural network approaches can provide and their current ca-
pacity of understanding human languages. We explore the expressive represen-
tational powers of neural networks for predicting as well as discovering linguistic
structure in both supervised and unsupervised NLP tasks. Furthermore, while
achieving state-of-the-art results for many NLP tasks, neural network models
have many intriguing properties that we have not yet fully understood. From a
computational linguistics perspective, we examine to which extent neural net-
works are capable of capturing linguistic phenomena implicitly and whether
patterns captured by neural networks are identifiable within linguistics.

1https://bibinlp.umiacs.umd.edu/

https://bibinlp.umiacs.umd.edu/
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Concretely, we set out to answer the five following research questions in this
thesis:

Research question 1: Do neural networks offer modeling advantages for linguistic
structure prediction in comparison to non-neural methods?

In this research question, we choose machine translation (MT) as the task of
interest. Machine translation is a task of building statistical models to translate
a source sentence in one language to a target sentence in another language. MT
is not only a successful example of commercial NLP products on a global scale,
it also poses many interesting challenges for research. To produce meaningful
translations, an MT system must capture semantics and syntax to a reasonable
degree. Particularly, we tackle the problem of translating from English into mor-
phologically rich languages (MRLs) using additional features produced by neu-
ral networks. We divide this research question into two sub-questions:

RQ1.1 Can neural networks effectively exploit the source-side context to make accurate
predictions of target language morphology?

Morphologically rich languages such as Czech and Russian present a dif-
ficult challenge for machine translation due to lexical sparsity and com-
plex morphological agreements. A common strategy to deal with sparsity
is to break words into smaller units called morphemes. In Chapter 2, we
propose a neural network model that learn to predict these morphemes
conditioned on a large window of source words.

RQ1.2 Can neural network models leverage morphological labels to make context-sensitive
predictions about morphology?

Many low-resource languages do not have any morphological analyzer.
Could we still build a better translation system that translate into those
languages? Here, we make a reasonable assumption that there exists a
dictionary that tells us about out of context morphological analyses. We
propose a method that exploits this information to predict context sensi-
tive morphology in Chapter 3.

Having shown that neural networks are a powerful tool for NLP tasks, we in-
vestigate their learned representations from a linguistic perspective with the
next research question.

Research question 2: From a linguistic perspective, what makes recurrent neural
networks work so well for language modeling?

Recurrent neural networks (RNNs), in particular Long Short-Term Memory
(LSTM) networks, are often a favored choice for language modeling due to
their excellent performance on a wide range of NLP tasks. Recently, Melis et al.
(2018) showed that under a controlled setup that eliminates the source of hyper-
parameter variation, properly regularized LSTMs outperform many recent ar-
chitectures. We investigate what linguistic phenomena LSTMs capture in their
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hidden states enabling them to make accurate predictions. We divide our re-
search question into two sub-questions:

RQ2.1 Can recurrent neural networks (RNNs) be made more interpretable?

In order to perform a precise linguistic analysis, we need to create an in-
terpretable interface with LSTMs’ internal representations. This interface
should give us a meaningful insight beyond the activation values of their
hidden units. To achieve this goal, we propose Recurrent Memory Net-
works (RMNs), a set of models that allow us to inspect neural network
computations as well as probing their capacity to learn structure as a by-
product of the language modeling objective.

RQ2.2 What linguistic phenomena captured by RNNs make them so successful in
modeling language?

To answer this question, we perform in-depth analyses of our models with
respect to known linguistic phenomena. We find that the networks learn
semantic collocations and weakly capture some syntactic dependencies.

RQ2.3 Do RMNs offer any extra modeling power in addition to their interpretability?

We show that RMNs do not sacrifice any predictive performance for their
interpretability. In contrast, with a simple modification of RMNs, we
obtain state-of-the-art performance on Sentence Completion Challenge
(Zweig and Burges, 2012).

Recently, a new class of non-recurrent neural networks (Vaswani et al., 2017;
Gehring et al., 2017) has demonstrated competitive performances on language
understanding. One advantage of non-recurrent architectures is that their com-
putations are highly parallelizable, thus they are faster to train in comparison
to recurrent based architectures. However their ability to capture hierarchical
structure, which is crucial in language, has not yet been assessed. We address
this with the following research question.

Research question 3: Do non-recurrent neural networks have the same ability to ex-
ploit hierarchical structures implicitly in comparison to their recurrent counterpart?

We are interested in a particular non-recurrent architecture, namely the Trans-
former (Vaswani et al., 2017). Similar to RMNs, it offers the benefit of inter-
pretability thanks to a self-attention mechanism. Because the main building
block of Transformer is the attention mechanism, we refer to Transformer as
Fully Attention Network (FANs) to emphasize this characteristic. To address
research question 3, we ask two sub-questions:

RQ3.1 Do FANs have the same ability as LSTMs to exploit hierarchical structure in
natural language data?

We assess whether FANs capture non-trivial syntactic dependencies and
implement syntactic structure faithfully using a subject-verb agreement
task proposed by Linzen et al. (2016). The task was originally proposed
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to probe the recurrent neural networks’ ability to learn hierarchical struc-
ture in natural language. In order to solve this task, FANs must infer the
dependency between subject and verb without being provided with syn-
tactic annotations.

RQ3.2 Do FANs have the same ability as LSTMs to encode artificial tree-structured
data?

We assess whether FANs can exploit the given tree structure in logical
statements to reason about the relationship between two statements. The
task was originally proposed by Bowman et al. (2015b) to evaluate the
ability to learn tree-structured composition of recurrent neural networks.

In the previous research questions, we have studied neural networks in super-
vised settings. With supervised objectives, neural networks can extract useful
features and discover shallow linguistic structure to solve the task of interest.
However, supervision requires high-quality labeled data which is often hard
to obtain. Therefore we also examine the potential of neural networks in an
unsupervised setting. Therefore, we ask:

Research question 4: Can neural networks be used to induce linguistic structure in
a completely unsupervised manner?

While the success of neural networks in supervised learning linguistic struc-
ture is undeniable, it is well worth to ask whether neural networks offer the
same expressive power in a fully unsupervised learning setting. Unsupervised
linguistic structure prediction has played an important role in many NLP ap-
plications. For instance, in phrase-based statistical machine translation (PSMT),
word alignment is purely unsupervised and it is the key component in building
translation models, which often are regarded as the heart of PSMT. Another ex-
ample of a successful application of unsupervised learning is topic modeling
(Blei et al., 2003), which has been widely used for instance in information re-
trieval systems.

We investigate this question by studying a simple directed graphical model,
namely the Hidden Markov Model.

RQ4.1 Can an unsupervised Hidden Markov Model be fully expressed as a neural
network model?

We present an unsupervised Neural Hidden Markov Models (NHMMs)
that are fully parametrized by neural networks. Our NHMMs can be
trained end-to-end using stochastic gradient descent.

RQ4.2 What are the advantages of the neural methods in comparison to traditional
Bayesian methods?

We demonstrate how easy it is to integrate additional features such as
character-level information into our NHMMs for the purpose of inducing
syntactic categories. Using character-level representations, our models
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exploit useful syntactic clues and obtain state-of-the-art results in part-of-
speech induction within a generative framework.

RQ4.3 Are neural models sensitive to parameter initialization in the same way as non-
neural models are?

We provide an ablation study of unsupervised HMMs with respect to
weight initializations and neural network architectures.

Having demonstrated the advantage of neural network parametrization for an
unsupervised latent variable in recovering the underlying linguistic structure,
we come to the final research question in this thesis. Namely, we investigate
what structure a neural network model would discover to maximize the perfor-
mance of an NLP task. Here, we ask:

Research question 5: What type of model can learn to induce linguistic structure
and utilize those learnt structures to improve task-specific performance?

The field of NLP has longed prioritized structured model representations un-
der the assumption that hierarchical structure is a fundamental property of lan-
guage and therefore often a prerequisite for NLP tasks. While recent research
(Shi et al., 2016; Linzen et al., 2016; Belinkov et al., 2017) has shown that some
aspects of language are captured implicitly by recurrent neural networks, our
goal here is to build a model that operates explicitly over a latent tree struc-
ture of the input. Specifically, we investigate whether the success and apparent
necessity of attention mechanisms are related to their ability to capture these
structural/hierarchical properties of language. We study this question in the
context of neural machine translation. We present a structured attention NMT
model (SA-NMT) in Chapter 7 with two aims: First we hope that our model
will discover useful latent structure that improves machine translation. Sec-
ond, through careful design, our model simultaneously allows us to investigate
its representations and learned structure from a linguistic perspective using
widely accepted linguistic theories. With SA-NMT we answer three important
questions:

RQ5.1 Can we design a translation model that learns to induce a dependency tree-like
representation of the source sentence?

We present a structured attention augmented encoder for NMT. To bias
our model towards using dependency syntax of the source side, we de-
sign a gating control mechanism together with a shared attention mecha-
nism in the decoder. Our model learns to translate while simultaneously
inducing the source side dependency trees.

RQ5.2 Are the dependency trees learnt with the translation objective recognizable from
a linguistic perspective?

We show that our model does not only improve the translation quality
but also learns a sensible dependency grammar compared to simple left-
branching baselines. We evaluate grammar induction on Universal De-
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pendency datasets and show an intriguing effect of the choice of target
languages on grammar induction.

RQ5.3 Is there any correlation between the interpretability of the learned structure and
the translation quality?

We show that there is no correlation between the quality of translation
and the quality of the learned dependency structure when using our SA-
NMT.

The findings of this thesis contribute to our understanding of the expressive
power of neural networks in NLP. Neural network approaches remove the need
for feature engineering in the challenging task of translating into morpholog-
ically rich languages. Recurrent neural networks implicitly capture linguis-
tic structure that is beneficial for language modeling. In comparison to non-
recurrent counterpart, recurrent neural networks are more effective at exploit-
ing hierarchical structures implicitly. The neural network parametrization en-
ables the integration of linguistic feature seamlessly in part-of-speech induc-
tion. Finally, neural networks can be used to induce linguistic structure that
improves machine translation and provide a more interpretable interface for
testing the usefulness of linguistically motivated features.

1.2 Main Contributions

Here we summarize the main contributions of this thesis to the field of natural
language processing.

1.2.1 Algorithmic Contributions

We develop novel neural network models and learning algorithms for predict-
ing and discovering linguistic structure.

1. We propose neural network models for predicting word translation in con-
text. Our approach does not assume the availability of supervised mor-
phological segmentation tools (Chapter 2).

2. We introduce a soft-tag representation and a neural network architecture
for predicting target language morphology in machine translation (Chap-
ter 3). Our approach successfully circumvents the problem of ambiguous
word analyses and makes it possible to improve translation into MRLs
where morphological lexicons but no manually disambiguated corpora
exist.

3. We propose Recurrent Memory Networks, a class of memory augmented
recurrent neural networks, that provide a more interpretable interface for
linguistic analysis of the model’s predictions (Chapter 4).
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4. We introduce a general framework for unsupervised linguistic prediction
using neural network parametrization (Chapter 6). We demonstrate our
framework by developing an unsupervised neural HMM. Our framework
allows seamless integration of linguistic features into the model.

5. We present a structured attention augmented NMT model that simul-
taneously translates while inducing dependency trees (Chapter 7). Our
model leverages the benefit of structural information while providing an
interface to investigate the kind of structures that are needed to maximize
translation performance.

1.2.2 Empirical Contributions

We evaluate our proposed models on large scale datasets as well as carring out
control experiments to validate our hypotheses. We provide empirical results
for each research question asked in this thesis. More specifically:

1. We evaluate our bilingual neural network models on word translation pre-
diction task from English into three morphologically rich languages: Bul-
garian, Russian, and Czech. We integrate our models into a phrase-based
MT system and evaluate translation performance on a large scale dataset
from English to Russian (Chapter 2).

2. We evaluate our proposed models based on soft-tag representations for
a morphological re-inflection task and machine translation for two lan-
guage pairs: English!Italian and English!Russian (Chapter 3).

3. We evaluate the language model performance of recurrent memory net-
works on three large scale datasets: English, Italian, and German. We
perform an analysis along various linguistic dimensions captured by our
models. Finally, we evaluate our models on the sentence completion chal-
lenge dataset (Chapter 4).

4. We carry out subject-verb agreement and logical inference experiments to
compare the ability to exploit hierarchical structures implicitly between
recurrent and non-recurrent neural networks (Chapter 5).

5. We conduct an empirical evaluation of our unsupervised neural Hidden
Markov Model in the context of part-of-speech induction. We study the ef-
fect of hyper-parameters and weight initialization in unsupervised learn-
ing (Chapter 6).

6. We evaluate translation quality of our structured attention augmented
NMT on three language pairs with different degrees of morphological
complexity. We measure the quality of the latent trees induced by our
models on Universal Dependency datasets (Chapter 7).
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1.3 Thesis Overview

After this chapter, the main content of this thesis is divided into six research
chapters. Bellow, we provide the high-level abstract of each chapter.

• Chapter 2 - Word Translation Prediction for Morphologically Rich Lan-
guages with Bilingual Neural Networks. In this chapter, we present an
approach for predicting target word morphology without relying on any
addtional linguistic tools. We integrate our models into a phrase-based
MT system and evaluate translation performance. Our results provide an
answer to research question 1.1.

• Chapter 3 - Neural Inflection Model. In this chapter, we propose a soft-
tag representation and a neural network architecture for leveraging the
existing morphological analyzers. Our empirical results offer an answer
to research question 1.2.

• Chapter 4 - Recurrent Memory Networks for Language Modeling. In this
chapter, we present a novel class of recurrent neural networks with in-
creased interpretability. We perform a linguistic analysis of our models
to answer research question 2.

• Chapter 5 - The Importance of Being Recurrent for Modeling Hierarchical
Structure. In this chapter, we present subject-verb agreement and logical
inference tasks that probe the ability to capture hierarchical structures
of non-recurrent neural networks. We provide an empirical answer to
research question 3.

• Chapter 6 - Unsupervised Neural Hidden Markov Model. In this chapter,
we propose a neural network parametrization of an unsupervised HMM.
We provide expectation-maximization training algorithm of our models.
We evaluate our models in the context of part-of-speech induction and
provide an answer to research question 4.

• Chapter 7 - Inducing Grammars with and for Neural Machine Transla-
tion. In this chapter, we introduce a structured attention augmented NMT
model that learns source side dependency trees and utilizes this struc-
tural information to improve the translation. The proposed models allow
us to extract the dependency tree of the source sentence in a principle
manner. Our translation results and grammar induction evaluations pro-
vide an answer to research question 5.

Finally, Chapter 8 - Conclusions summarizes the main findings in this thesis
and suggests possible research directions for future work.
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1.4 Origins

The research presented in Chapters 2-4 and Chapter 6 is based on four peer-
reviewed publications, while Chapter 5 and Chapter 7 are currently under sub-
mission. In the following, we mention the role of each co-author in each publi-
cation.

• Chapter 2 is based on Tran, Bisazza, and Monz (2014), Word Translation
Prediction for Morphologically Rich Languages with Bilingual Neural Networks,
published in EMNLP 2014. Bisazza suggested the topic of modeling tar-
get morphology in machine translation. Tran developed bilingual neural
network models and carried out the experiments. Bisazza and Monz con-
tributed to the text and discussion.

• Chapter 3 is based on Tran, Bisazza, and Monz (2015), A Distributed Inflec-
tion Model for Translating into Morphologically Rich Languages, published in
MT-Summit 2015. Tran proposed the neural network model based on soft-
tag representation and carried out the experiments. Bisazza and Monz
contributed to the text and discussion.

• Chapter 4 is based on Tran, Bisazza, and Monz (2016a), Recurrent Mem-
ory Networks for Language Modeling, published in NAACL 2016. Tran pro-
posed RMN, carried out the experiments and wrote most of the paper.
Bisazza proposed evaluating on the sentence completion task and per-
formed the analysis. Bisazza and Monz contributed to the discussion and
editing.

• Chapter 5 is based on Tran, Bisazza, and Monz (2018), The Importance of Be-
ing Recurrent for Modeling Hierarchical Structure, published in EMNLP 2018.
Tran carried out all the experiments for the tasks suggested by Bisazza
and wrote most of the paper. Bisazza and Monz contributed to the text.

• Chapter 6 is based on Tran, Bisk, Vaswani, Marcu, and Knight (2016b), Un-
supervised Neural Hidden Markov Model, published in Workshop on Struc-
tured Prediction for NLP, EMNLP 2016. Tran proposed the unsupervised
framework and carried out the experiments. Bisk and Vaswani contributed
to the discussion. Tran, Bisk, and Vaswani contributed equally to the text.
Marcu and Knight proposed unsupervised structure prediction as a sum-
mer internship project and contributed to subsequent discussion.

• Chapter 7 is based on Tran and Bisk (2018), Inducing Grammars with and
for Neural Machine Translation, published in Workshop on Neural Machine
Translation and Generation 2018. Tran proposed the models and per-
formed grammar induction and machine translation experiments. Bisk
performed analysis of the induced trees. Both authors contributed equally
to the text.

This thesis also indirectly benefits from Toutanova, Brockett, Tran, and Amershi
(2016), A Dataset and Evaluation Metrics for Abstractive Compression of Sentences
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and Short Paragraphs, published at EMNLP 2016.
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Chapter 2

Morphology-aware Bilingual
Neural Networks

2.1 Introduction and Research Questions

The ability to make context-sensitive translation decisions is one of the ma-
jor strengths of phrase-based SMT (PSMT). However, the way PSMT exploits
source-language context has several limitations as pointed out, for instance, by
Quirk and Menezes (2006) and Durrani et al. (2013). First, the amount of con-
text used to translate a given input word depends on the phrase segmentation,
with hypotheses resulting from different segmentations competing with one an-
other. Another issue is that, given a phrase segmentation, each source phrase is
translated independently from the others, which can be problematic especially
for short phrases. As a result, the predictive translation of a source phrase does
not access useful linguistic clues in the source sentence that are outside of the
scope of the phrase.

Lexical weighting (Koehn et al., 2003) tackles the problem of unreliable phrase
probabilities, typically associated with long phrases, but does not alleviate the
problem of context segmentation. An important share of the translation selec-
tion task is then left to the language model (LM), which is certainly very ef-
fective but can only leverage target language context. Moreover, decisions that
are taken at early decoding stages—such as the common practice of retaining
only the top n translation options for each source span—depend only on the
translation models and on the target context available in the phrase.

Source context based translation models (Gimpel and Smith, 2008; Mauser et al.,
2009; Jeong et al., 2010; Haque et al., 2011) naturally address these limitations.
These models can exploit a boundless context of the input text, but they as-
sume that target words can be predicted independently from each other, which
makes them easy to integrate into state-of-the-art PSMT systems. Even though
the independence assumption is made on the target side, these models have
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shown the benefits of utilizing source context, especially in translating into
morphologically rich languages. One drawback of previous research on this
topic, though, is that it relied on rich sets of manually designed features, which
in turn required the availability of linguistic annotation tools like POS taggers
and syntactic parsers.

In this chapter, we specifically focus on improving the prediction accuracy for
word translations. Achieving high levels of word translation accuracy is partic-
ularly challenging for language pairs where the source language is morpholog-
ically poor, such as English, and the target language is morphologically rich,
such as Russian, i.e., language pairs with a high degree of surface realization
ambiguity (Minkov et al., 2007).

Unlike previous approaches that require linguistic annotations (Minkov et al.,
2007; Kholy and Habash, 2012; Chahuneau et al., 2013) or feature engineering
(Gimpel and Smith, 2008), we tackle the challenge using neural networks that
learn to extract useful features directly from raw text.

Neural networks will be the main workhorse of this thesis and it is important
to justify the choice of modeling frameworks. In this chapter and Chapter 3, we
provide empirical answers to the research question 1: Do neural networks offer
modeling advantages for linguistic structure prediction in comparison to non-neural
methods? Concretely, in this chapter we ask:

Research question 1.1: Can neural networks effectively exploit the source-side con-
text to make accurate predictions of target language morphology?

In the quest to answer this research question, we break it down into a couple of
sub-questions:

RQ1.1.a Can translation be improved by a more accurate selection of the translation
options already existing in the SMT models, as opposed to generating new op-
tions?

There are two possible approaches to handle sparsity in the target lan-
guage: (1) to build a model that can provide accurate prediction for all
observed word forms, and (2) to build a model that can generate poten-
tially unseen word forms. In Section §2.2, we show that the first approach
should be treated as priority.

RQ1.1.b How to model target morphology using neural networks?

Our end goal is to improve PSMT, therefore it is important to design a
model that can be integrated seamlessly into PSMT systems. We pro-
vide a probabilistic view of our model (§2.3) and the neural network im-
plementations (§2.4). Besides directly predicting fully inflected forms as
Jeong et al. (2010), our model can also predict stems and suffixes explic-
itly. Prediction accuracy is evaluated with respect to three morphologi-
cally rich target languages (Bulgarian, Czech, and Russian) showing that
our approach consistently yields substantial improvements over a com-



2.2. Lexical Coverage of SMT Models 15

petitive baseline. We also show that these improvements in prediction
accuracy can be beneficial in an end-to-end MT scenario by integrating it
into a large-scale English-Russian PSMT system. Finally, a detailed anal-
ysis shows that our approach induces a positive bias on phrase transla-
tion probabilities leading to a better ranking of the translation options
employed by the decoder.

The rest of this chapter is organized as follow: We perform an analysis of lexical
coverage to answer RQ1.1.a in Section §2.2. We then present a general frame-
work of predicting word translation in Section §2.3. Next, we answer RQ1.1.b
by introducing bilingual neural network (BNN) models (§2.4) and evaluating
their performance on word translation prediction (§2.5) as well as machine
translation (§2.6). We summarize related word in Section §2.7. In Section §2.8
we note the limitations of our approach. Finally, we conclude this chapter in
Section §2.9.

2.2 Lexical Coverage of SMT Models

The first question we ask is whether translation can be improved by a more ac-
curate selection of the translation options already existing in the SMT models,
as opposed to generating new options. To answer this question we measure
the lexical coverage of a baseline PSMT system trained on English-Russian.1
We choose this language pair because of the morphological richness on the tar-
get side: Russian is characterized by highly inflectional morphology with par-
ticularly complex nominal declensions (six core cases, three genders and two
number categories).

As suggested by Green and DeNero (2012), we compute the recall of reference
tokens in the set of target tokens that the decoder could produce in a translation
of the source sentence, that is the target tokens of all phrase pairs that matched
the input sentence and that were actually used for decoding. This corresponds
to the top 30 phrases sorted by weighted phrase, lexical and LM probabilities,
for each source span. Koehn (2004a) and our own experience suggest that using
more phrases has little or no impact on MT quality. We call this the decoder’s
lexical search space.

Next, we compare the reference/space recall against the reference/MT-output
recall: that is, the percentage of reference tokens that also appeared in the 1-best
translation output by the SMT system.

Results for the WMT12 benchmark are presented in Table 2.1. From the first
two rows, we see that only a rather small part of the correct target tokens avail-
able to the decoder are actually produced in the 1-best MT output (50% against
86%).

1Training data and SMT setup are described in Section 2.6.
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Token recall
reference / MT-search-space 86.0%
reference / MT-output 50.0%
stem-only reference / MT-output 12.3%
of which reachable 11.2%

Table 2.1: Lexical coverage analysis of the baseline SMT system English-Russian WMT12.

Although our word-level analysis does not directly estimate phrase-level cover-
age, these numbers suggest that a large potential for translation improvement
lies in better lexical selection during decoding.

To quantify the importance of morphology, we count how many reference to-
kens matched the MT output only at the stem level2 and for how many of those
the correct surface form existed in the search space (reachable matches). These
two numbers represent the upper bound of the improvement achievable by a
model only predicting suffixes given the target stems.

As shown in Table 2.1, such a model could potentially increase the recall ratio
reference/MT-output by 12.3% with generation of new inflected forms, and by
11.2% without. Thus, also when it comes to morphology, generation seems to
be of secondary importance compared to better selection in our experimental
setup.

2.3 Predicting Word Translations in Context

It is standard practice in PSMT to use word-to-word translation probabilities
as an additional phrase score (Koehn et al., 2003). More specifically, state-of-
the-art PSMT systems employ maximum likelihood estimates of the context-
independent probability of a target word given its aligned source wordP.tj j si /
for each word alignment link aij .

The main goal of our work is to improve the estimation of such probabilities by
exploiting the context of si , which in turn we expect will result in better phrase
translation selection. Figure 1 illustrates this idea: the translation of law in this
example has the wrong case—nominative instead of genitive. Due to the rare
word Indiana, the target LM must backoff to the bigram history and does not
penalize this choice sufficiently. However, a model that has access to the word
of in the near source context could bias the translation of law towards the correct
case.

We then model p.tj j ci / with source context ci defined as a fixed-length word
sequence centered around si : ci D Œsi!k ; ! ! ! ; siCk !. Our definition of context is

2Word segmentation for this analysis is performed by the Russian Snowball stemmer, see also
Section §2.5.3.



2.3. Predicting Word Translations in Context 17

[ конституционность ] [ индиана закон ]

[ the constitutionality of the ] [ indiana law ]
Figure 2.1: Fragment of English sentence and its incorrect Russian translation produced by the
baseline SMT system. Square brackets indicate phrase boundaries. word translations are marked
by the same color, word alignment links are provided. Best viewed in color.

similar to the n"1word history used in n-gram LMs. Similarly to previous work
in source context-sensitive translation modeling (Jeong et al., 2010; Chahuneau
et al., 2013), target words are predicted independently from each other, which
allows for an efficient decoding integration. We are particularly interested in
translating into morphologically rich languages where source context can pro-
vide useful information for the prediction of target translation. For example,
the gender of the subject in a source sentence constrains the morphology of the
translation of the source verb. Therefore, we integrate the notions of stem and
suffix directly into the model. We assume the availability of a word segmen-
tation function g that takes a target word t as input and returns its stem and
suffix: g.t/ D .";#/. Then, the conditional probability p.tj j ci / can be decom-
posed into the stem probability and the suffix probability:

p.tj j ci / D p."j j ci / p.#j j ci ; "j / (2.1)

These two probabilities can be estimated separately, which yields the two sub-
tasks:

1. predict target stem " given source context c;

2. predict target suffix # given source context c and target stem " .

Based on the results of our analysis, we focus on the selection of existing trans-
lation candidates. We then restrict our prediction on a set of possible target
candidates depending on the task instead of considering all target words in the
vocabulary. More specifically, for each source word si , our candidate generation
function returns the set of target words Ts D ft1; : : : ; tmg that were aligned to
si in the parallel training corpus, which in turn corresponds to the set of target
words that the SMT system can produce for a given source word. In practice,
we use a pruned version of Ts to speed up training and reduce noise (see details
in Section 2.5).

As for the morphological models, givenTs andg, we can obtainLs D f"1; : : : ; "kg,
the set of possible target stem translations of s, and M! D f#1; : : : ;#lg, the set
of possible suffixes for a target stem " . The use of Ls , and M! is similar to
stemming and inflection operations in (Toutanova et al., 2008) while the set Ts

is similar to the GEN function in (Jeong et al., 2010). Note that our suffix gener-
ation functionM! is restricted to the forms observed in the target monolingual
data, but not to those aligned to a source word s, which opens the possibility
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of generating inflected forms that are missing from the translation models. We
leave this possibility to the future.

Our approach differs from previous work (Chahuneau et al., 2013; Minkov et al.,
2007) in that it does not require linguistic features such as part-of-speech tags
and syntactic trees on the source side. The proposed models automatically
learn features that are relevant for each of the modeled tasks directly from
word-aligned data. To make the approach completely language independent,
the word segmentation function g can be trained with an unsupervised seg-
mentation tool. The effects of using different word segmentation techniques
are discussed in Section 2.5.

2.4 Bilingual Neural Networks for Translation Prediction

Probabilistic neural networks (NNs), or continuous space language models have
received increasing attention over the last few years and have been applied to
several natural language processing tasks (Bengio et al., 2003; Collobert and
Weston, 2008; Socher et al., 2011, 2012). Within statistical machine translation,
they have been used for monolingual target language modeling (Schwenk et al.,
2006; Le et al., 2011; Duh et al., 2013; Vaswani et al., 2013), n-gram translation
modeling (Le et al., 2012), phrase translation modeling (Schwenk, 2012; Zou
et al., 2013; Gao et al., 2014) and minimal translation modeling (Hu et al., 2014).
The recurrent neural network LMs of Auli et al. (2013) are primarily trained to
predict target word sequences. However, they also experiment with an addi-
tional input layer representing source side context.

Our models differ from most previous work in neural language modeling in
that we predict a target translation given a source context while previous mod-
els predict the next word given a target word history. Unlike previous work
in phrase translation modeling with NNs, our models have the advantage of
accessing source context that can fall outside the phrase boundaries.

We now describe our models in a general setting, predicting target translations
given a source context, where target translations can be either words, stems or
suffixes. The source code of our models is available at https://bitbucket.org/
ketran/morphbinn.

2.4.1 Neural Network Architecture

Following a common approach in deep learning for NLP (Bengio et al., 2003;
Collobert and Weston, 2008), we represent each source word si by a column vec-
tor rsi

2 Rd where d is the dimensionality of word embedding vectors. Given
a source context ci D si!k ; ! ! ! ; siCk of k words on the left and k words on the
right of si , the context representation rci

2 R.2kC1/"d is obtained by concatenat-

https://bitbucket.org/ketran/morphbinn
https://bitbucket.org/ketran/morphbinn
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(b) BNN for suffix prediction.

Figure 2.2: Feed-forward BNN architectures for predicting target translations: (a) word model
(similar to stem model), and (b) suffix model with an additional set of vector representations r!

for target stems ! .

ing the vector representations of all words in ci :

rci
D Œrsi!k

I ! ! ! I rsiCk
! (2.2)

Our main BNN architecture for word or stem prediction (Figure 2.2a) is a feed-
forward neural network (FFNN) with one hidden layer, a weight matrix W1 2
Rn".2kC1/d connecting the input layer to the hidden layer, a matrix W2 2 RjVt j"n

connecting the hidden layer to the output layer, a bias vector b1 2 Rn, and a bias
vector b2 2 RjVt j where jVt j is the size of target translations vocabulary and n is
the number of hidden units. The target translation distribution pBNN.t j ci I!/
for a given source context ci is computed by a forward pass:

softmax
!
W2 $.W1rci

C b1/C b2

"
(2.3)

where $ is a nonlinearity (tanh, sigmoid or rectified linear units). The parame-
ters of the neural network are ! D

˚
rsi
;W1;b1;W2;b2

#
.

The suffix prediction BNN is obtained by adding the target stem representation
r! to the input layer (see Figure 2.2b).

We encounter two major issues with FFNNs:

1. They do not provide a natural mechanism to compute word surface con-
ditional probability p.t j c/ given individual stem probability p." j c/ and
suffix probability p.# j c; "/;

2. FFNNs do not provide the flexibility to capture long dependencies among
words if they lie outside the source context window.

Hence, we consider two BNN variants: a log-bilinear model (LBL) and a convo-
lutional neural network model (ConvNet). LBL could potentially address the
first issue by factorizing target representations into target stem and suffix rep-
resentations whereas ConvNets offer the advantage of modeling variable input
lengths (Kalchbrenner et al., 2014), addressing the second issue.
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2.4.2 Variants

Log-bilinear model. The FFNN models stem and suffix probabilities separately.
A log-bilinear model instead could directly model word prediction through a
factored representation of target words, similarly to Botha and Blunsom (2014).
Thus, no probability mass would be wasted over stem-suffix combinations that
are not in the candidate generation function. The LBL model specifies the con-
ditional distribution for the word translation tj 2 Tsi

given a source context
ci :

p!.tj j ci / D
exp.s!.tj ; ci //P

t2Tsi

exp.s!.t; ci //
(2.4)

We use an additional set of word representations qt 2 Rn for target translations
t . The LBL model computes a predictive representation h of a source context ci

by taking a linear combination of the source word representations rsiCm
with

the position-dependent weight matrices Wm 2 Rn"d :

h D
kX

mD!k

WmrsiCm
(2.5)

The score function s!.tj ; ci /measures the similarity between the predictive rep-
resentation h and the target representation qtj :

s!.tj ; ci / D h>qtj C btj (2.6)

Here btj is the bias term associated with target word tj . s!.tj ; ci / can be seen
as the negative energy function of the target translation tj and its context ci .
The parameters of the model thus are ! D frs;Wm; qt ; btg. Our log-bilinear
model is a modification of the log-bilinear model proposed forn-gram language
modeling in (Mnih and Hinton, 2007).
Convolutional neural network model. This model (Figure 2.3) computes the
predictive representation h by applying a sequence of 2k convolutional layers
fL1; : : : ;L2kg. The source context ci is represented as a matrix mci

2 Rd".2kC1/:

mci
D

$
rsi!k

I : : : I rsiCk

%
(2.7)

Each convolutional layer Li consists of a one-dimensional filter mi 2 Rd"2.
Each row of mi is convolved with the corresponding row in the previous layer
resulting in a weight matrix whose number of columns decreases by one. Thus
after 2k convolutional layers, the network transforms the source context ma-
trix mci

to a feature vector h 2 Rd . A fully connected layer with weight ma-
trix W followed by a softmax layer are placed after the last convolutional layer
L2k to perform classification. The parameters of the convolutional neural net-
work model are ! D frs;mj ;W g. Here, we focus on a fixed length input, how-
ever convolutional neural networks may be used to model variable length input
(Kalchbrenner et al., 2014; Kalchbrenner and Blunsom, 2013).
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Figure 2.3: Convolutional neural network model. Edges with the same color indicate the same
kernel weight matrix.

2.4.3 Training

In training, for each example .t; c/, we maximize the conditional probability
P!.t j c/ of a correct target label t . The contribution of the training example
.t; c/ to the gradient of the log conditional probability is given by:

@

@!
logp!.t j c/ D

@

@!
s!.t j c/ "

X
t 02Ts

p!.t
0 j c/ @

@!
s!.t

0; c/ (2.8)

Note that in the gradient, we do not sum over all target translations T but a
set of possible candidates Ts of a source word s. In practice jTsj # 200with our
pruning settings (see Section 2.5.1), thus training time for one example does not
depend on the vocabulary size.
Our training criterion can be seen as a form of contrastive estimation (Smith and
Eisner, 2005), however we explicitly move the probability mass from competing
candidates to the correct translation candidate, thus obtaining more reliable
estimates of the conditional probabilities.
The BNN parameters are initialized randomly according to a zero-mean Gaus-
sian. We regularize the models with L2 norm. As an alternative to the L2 reg-
ularizer, we also experiment with dropout (Srivastava et al., 2014), where the
neurons are randomly zeroed out with dropout ratep. This technique is known
to be useful in computer vision tasks but has been rarely used in NLP tasks. In
FFNN, we use dropout after the hidden layer, while in ConvNet, dropout is ap-
plied after the last convolutional layer. The dropout rate p is set to 0.3 in our
experiments. We use rectified nonlinearities in FFNN and after each convolu-
tional layer in ConvNet as in our preliminary experiments we find that using
rectified linear units gives better results than sigmoid or tanh. We train our
BNN models with the standard stochastic gradient descent.

2.5 Evaluating Word Translation Prediction

In this section, we assess the ability of our BNN models to predict the correct
translation of a word in context. In addition to English-Russian, we also con-
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sider translation prediction for Czech and Bulgarian. As members of the Slavic
language family, Czech and Bulgarian are also characterized by highly inflec-
tional morphology. Czech, like Russian, displays a very rich nominal inflection
with as many as 14 declension paradigms. Bulgarian, unlike Russian, is not
affected by case distinctions but is characterized by a definiteness suffix.

2.5.1 Experimental Setup

The following parallel corpora are used to train the BNN models:

• English-Russian: WMT13 data (News Commentary and Yandex corpora);

• English-Czech: CzEng 1.0 corpus (Bojar et al., 2012) (Web Pages and News
sections);

• English-Bulgarian: a mix of crawled news data, TED talks and Europarl
proceedings.

Detailed corpus statistics are given in Table 2.2. For each language pair, accura-
cies are measured on a held-out set of 10K parallel sentences.

En-Ru En-Cs En-Bg
Sentences 1M 1M 0.8M
Src. tokens 26.5M 19.2M 19.3M
Trg. tokens 24.7M 16.7M 18.9M
Src. T/T .0109 .0105 .0051
Trg. T/T .0247 .0163 .0104

Table 2.2: BNN training corpora statistics: number of sentences, tokens, and type/token ratio
(T/T). The T/T ratio indicates a degree of lexical variation. A high T/T ratio reflects morphological
richness of a language.

To prepare the candidate generation function, each dataset is first word-aligned
with GIZA++, then a bilingual lexicon with maximum-likelihood probabilities
(Pmle) is built from the symmetrized alignment. Alignments are symmetrized
using the grow-diag-final-and technique (Koehn, 2010). After some frequency
and significance pruning, the top 200 translations sorted byPmle.t j s/!Pmle.s j t/
are kept as candidate word translations for each source word in the vocabu-
lary. Here each lexicon is pruned with minimum word frequency 5, minimum
source-target word pair frequency 2, minimum log odds ratio 10. Word align-
ments are also used to train the BNN models: each alignment link constitutes a
training sample, with no special treatment of unaligned words and 1-to-many
alignments.

The context window size k is set to 3 (corresponding to 7-gram) and the dimen-
sionality of source word representations to 100 in all experiments. The number
of hidden units in our feed-forward neural networks and the target translation
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embedding size in LBL models are set to 200. All models are trained for 10
iterations with learning rate set to 0.001.

2.5.2 Word, Stem and Suffix Prediction Accuracy

We measure accuracy at top-n, i.e., the number of times the correct translation
was in the top n candidates sorted by a model. For each subtask—word, stem
and suffix prediction—the BNN model is compared to the context-independent
maximum-likelihood baseline Pmle.t j s/ on which the PSMT lexical weighting
score is based. Note that this is a more realistic baseline than the uniform mod-
els sometimes reported in the literature. The oracle corresponds to the per-
centage of aligned source-target word pairs in the held-out set that are covered
by the candidate generation function. Out of the missing links, about 4% is
due to lexicon pruning. Results for all three language pairs are presented in
Table 2.3. In this series of experiments, the morphological BNNs utilize unsu-
pervised segmentation models trained on each target language following (Lee
et al., 2011).3

Model En-Ru En-Cs En-Bg
Word prediction (%)

Baseline 33.0 / 50.1 42.0 / 59.9 47.9 / 66.0

Word BNN 39.4 / 56.6 66.6 / 81.4 56.9 / 74.0
+6.4 / +6.5 +24.6/+21.5 +9.0 / +8.0

Oracle 79.5 90.2 86.9
Stem prediction (%)

Baseline 40.7 / 58.2 46.1 / 64.3 51.9 / 70.1

Stem BNN 45.1 / 62.5 66.1 / 81.6 56.7 / 74.4
+4.4 / +4.3 +20.0/+17.3 +4.8 / +4.3

Suffix prediction (%)
Baseline 71.2 / 85.6 78.8 / 93.2 81.5 / 92.4

Suffix BNN 77.0 / 89.7 91.9 / 97.4 87.7 / 94.9
+5.8 / +4.1 +13.1 /+4.2 +6.2 / +2.5

Table 2.3: BNN prediction accuracy (top-1/top-3) compared to a context-independent maximum-
likelihood baseline. The morphological models in this table make use of unsupervised segmenta-
tion.

As shown in Table 2.3, the BNN models outperform the baseline by a large
margin for all tasks and languages. In particular, word prediction accuracy
at top-1 increases by +6.4%, +24.6% and +9.0% absolute for English-Russian,

3We use the implementation at http://groups.csail.mit.edu/rbg/code/morphsyn

http://groups.csail.mit.edu/rbg/code/morphsyn
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Figure 2.4: Effect of different word segmentation techniques (U: unsupervised, S: supervised, R:
rule-based stemmer) on stem and suffix prediction accuracy. The dark part of each bar stands for
top-1, the light one for top-3 accuracy.

English-Czech and English-Bulgarian respectively, without the use of any fea-
tures based on linguistic annotation. While the baseline and oracle differences
among languages can be explained by different levels of overlap between train-
ing and held-out set, we cannot easily explain why the Czech BNN performance
is so much higher. When comparing the three prediction subtasks, we find that
word prediction is the hardest task as expected. Stem prediction accuracies are
considerably higher than word prediction accuracies for Russian, but almost
equal for the other two languages. Finally, baseline accuracies for suffix predic-
tion are by far the highest, ranging between 71.2% and 81.5%, which is primar-
ily explained by a smaller number of candidates to choose from. Also on this
task, the BNN model achieves considerable gains of +5.8%, +13.1% and +6.2%
at top-1, without the need of manual feature engineering.

From these figures, it is hard to predict whether word BNNs or morphological
BNNs will have a better effect on SMT performance. On one hand, the word-
level BNN achieves the highest gain over the MLE baseline. On the other hand,
the stem- and suffix-level BNNs provide two separate scoring functions, whose
weights can be directly tuned for translation quality. A preliminary answer to
this question is given by the SMT experiments presented in Section 2.6.

2.5.3 Effect of Word Segmentation

This section analyzes the effect of using different segmentation techniques. We
consider two supervised tagging methods that produce the lemma and inflec-
tion tag for each token in a context-sensitive manner: TreeTagger (Sharoff et al.,
2008) for Russian and the Morce tagger (Spoustová et al., 2007) for Czech.4 Fi-
nally, we employ the Russian Snowball rule-based stemmer as a light-weight
context-insensitive segmentation technique.5

4Annotation included in the CzEng 1.0 corpus release.
5http://snowball.tartarus.org/algorithms/russian/stemmer.html

http://snowball.tartarus.org/algorithms/russian/stemmer.html
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As shown in Figure 2.4, accuracies for both stem and suffix prediction vary no-
ticeably with the segmentation used. However, higher stem accuracies corre-
spond to lower suffix accuracies and vice versa, which can be mainly due to a
general preference of a tool to segment more or less than another. In summary,
the unsupervised segmentation methods and the light-weight stemmer appear
to perform comparably to the supervised methods.

2.5.4 Effect of Training Data Size

We examine the predictive power of our models with respect to the size of train-
ing data. Table 2.4 shows the accuracies of stem and suffix models trained on
200K and 1M English-Russian sentence pairs with unsupervised word segmen-
tation. Surprisingly, we observe only a minor loss when we decrease the train-
ing data size, which suggests that our models are robust even on a small data
set.

# Train sent. Stem Acc. Suffix Acc.
1M 45.1 62.5 77.0 89.7

200K 44.6 61.8 75.7 88.6

Table 2.4: Accuracy at top-1/top-3 (%) of stem and suffix BNNs with different training data sizes.

2.5.5 Fine-grained Evaluation

We evaluate the suffix BNN model at the part-of-speech (POS) level. Table 2.5
provides suffix prediction accuracy per POS for En-Ru. For this analysis, Rus-
sian data is segmented by TreeTagger. Additionally, we report the average num-
ber of suffixes per stem given the part-of-speech.
Our results are consistent with the findings of (Chahuneau et al., 2013):6 the
prediction of adjectives is more difficult than that of other POS while Russian
verb prediction is relatively easier in spite of the higher number of suffixes per
stem. These differences reflect the importance of source versus target context
features in the prediction of the target inflection: For instance, adjectives agree
in gender with the nouns they modify, but this may be only inferred from the
target context.

2.5.6 Neural Network Variants

Table 2.6 shows the stem and suffix accuracies of BNN variants on English-
Czech.

6Chahuneau et al. (2013) report an average accuracy of 63.1% for the prediction of A, V, N, M
suffixes. When we train our model on the same dataset (news-commentary) we obtain a comparable
result (64.7% vs 63.1%).
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POS A V N M P
Acc. (%) 49.6 61.9 62.8 84.5 64.4
jM! j 18.2 18.4 9.2 7.1 13.3

Table 2.5: Suffix prediction accuracy at top-1 (%), breakdown by category (A: adjectives, V: verbs,
N: nouns, M: numerals and P: pronouns). jM! j denotes the average number of suffixes per stem.

Although none of the variants outperform our main FFNN architecture, we ob-
serve similar performances by the LBL on stem prediction, and by the ConvNet
on suffix prediction. This suggests that future work could exploit their addi-
tional flexibilities (see Section 2.4.2) to improve the BNN predictive power.
As for the low suffix accuracy by the LBL, it can be explained by the absence
of nonlinear transformations. Nonlinearity is important for the suffix model
where the prediction of target suffix #j often does not depend linearly on si
and "j . The predictive representation of target stem in the LBL stem model,
however, mainly depends on the source representation rsi

through a position
dependent weight matrix W0. Thus, we observe a smaller drop in accuracy for
the stem model than for the suffix model. Conversely, the ConvNet performs
poorly on stem prediction because it captures the meaning of the whole source
context instead of emphasizing the importance of the source word si as the
main predictor of the target translation tj .
Surprisingly, no improvements are obtained by the use of dropout regulariza-
tion.

Model Stem Acc Suffix Acc
FFNN 66.1 / 81.6 91.9 / 97.4

FFNN + dropout 64.6 / 81.1 91.5 / 97.5
LBL 63.6 / 79.6 86.4 / 96.4

ConvNet + dropout 58.6 / 75.6 90.3 / 96.9

Table 2.6: Accuracies at top-1/top-3 (%) of stem and suffix models. +dropout indicates dropout
instead of L2 regularizer. FFNN is our main architecture.

2.6 SMT Experiments

While the main objective of this paper is to improve prediction accuracy of word
translations, see Section 2.5, we are also interested in knowing to which extent
these improvements carry over within an end-to-end machine translation task.
To this end, we integrate our translation prediction models described in Sec-
tion 2.4 into our existing English-Russian SMT system.
For each phrase pair matching the input, the phrase BNN score Pbnn-p is com-
puted as follows:
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pbnn-p.Ns; Nt ; a/ D
jNsjY

iD1

(
1
jfai gj

P
j2fai g pbnn.tj j ci / if jfaigj > 0

pmle.NULL j si / otherwise
(2.9)

where a is the word-level alignment of the phrase pair .Ns; Nt/ and faig is the set of
target positions aligned to si . Note that the equation above is similar to lexical
weighting equation in standard PSMT system. The advantage here is that the
probabilities used in our equation come from neural networks, which is known
for producing better estimation.
If a source-target link cannot be scored by the BNN model, we give it a pbnn
probability of 1 and increment a separate count feature ". Note that the same
phrase pair can get different BNN scores if used in different source side con-
texts.
Our baseline is an in-house phrase-based (Koehn et al., 2003) statistical machine
translation system very similar to Moses (Koehn et al., 2007). All system runs
use hierarchical lexicalized reordering (Galley and Manning, 2008; Cherry et al.,
2012), distinguishing between monotone, swap, and discontinuous reordering,
all with respect to left-to-right and right-to-left decoding. Other features in-
clude linear distortion, bidirectional lexical weighting (Koehn et al., 2003), word
and phrase penalties, and finally a word-level 5-gram target LM trained on all
available monolingual data with modified Kneser-Ney smoothing (Chen and
Goodman, 1999). The distortion limit is set to 6 and for each source phrase
the top-30 translation candidates are considered. When translating into a mor-
phologically rich language, data sparsity issues in the target language become
particularly apparent. To compensate for this we also experiment with a 5-
gram suffix-based LM in addition to the surface-based LM (Müller et al., 2012;
Bisazza and Monz, 2014).
Recall that PSMT is a log-linear model and integrating our BNN models is
straightforward as we treat the predictions of BNN models as additional log-
probability (logpbnn-p) feature functions: one feature for the word prediction
model or two features for the stem and suffix models respectively, plus the
penalty feature ". The integration is clean and efficient for training and decod-
ing on CPUs. We precompute (Devlin et al., 2014) the hidden units of BNN for the
model that does not require target stem and up to the nonlinear transformation
for models that require target stem. For each phrase-pair translation candidate,
we can trace back to the index of each aligned source word and retrieve the pre-
computed hidden units. This precomputation trick and the normalization over
translation candidates trick allow us to train our PSMT as fast as the baseline
PSMT.
Table 2.7 provides some statistics for the data used to train our English-Russian
SMT system. The feature weights for all approaches were tuned by using pair-
wise ranking optimization (PRO) (Hopkins and May, 2011) on the WMT12 bench-
mark (Callison-Burch et al., 2012). During tuning, 14 PRO parameter estima-
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Corpus Language #Sentences #Tokens

paral.train EN 1.9M 48.9M
RU 45.9M

Wiki dict. EN/RU 508K –
mono.train RU 21.0M 390M
WMT2012 EN 3K 64K
WMT2013 3K 56K

Table 2.7: SMT training and test data statistics. All numbers refer to tokenized, lowercased data.

SMT system dev test
Baseline 24.7 18.9
+ stem/suff. BNN 25.1 19.3N

Base+suffLM 24.5 19.2
+ word BNN 24.5 19.3
+ stem/suff. BNN 24.7 19.6N

Table 2.8: Effect of our BNN models on English-Russian translation quality (BLEU[%]).

tion runs are performed in parallel on different samples of the n-best list after
each decoder iteration. The weights of the individual PRO runs are then aver-
aged and passed on to the next decoding iteration. Performing weight estima-
tion independently for a number of samples corrects for some of the instability
that can be caused by individual samples. The WMT13 set (Bojar et al., 2013)
was used for testing. We use approximate randomization (Noreen, 1989) to
test for statistically significant differences between runs (Riezler and Maxwell,
2005).

Translation quality is measured with case-insensitive BLEU[%] using one refer-
ence translation. As shown in Table 2.8, statistically significant improvements
over the respective baseline (Baseline and Base+suffLM) are marked N at the
p < :01 level.

Integrating our bilingual neural network approach into our SMT system yields
small but statistically significant improvements of 0.4 BLEU over a competitive
baseline. We can also see that it is beneficial to add a suffix-based language
model to the baseline system. The biggest improvements were obtained by
combining the suffix-based language model and our BNN approach, yielding
0.7 BLEU over a competitive, state-of-the-art baseline, of which 0.4 BLEU is due
to our BNNs. Finally, one can see that the BNNs modeling stems and suffixes
separately perform better than a BNN directly predicting fully inflected forms.
This is not surprising because the factorization of a word into stem and suffix
enable us to deal with lexical sparsity effectively.

To better understand the BNN effect on the SMT system, we analyze the set
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of phrase pairs that are employed by the decoder to translate each sentence.
This set is ranked by the weighted combination of phrase translation and lexi-
cal weighting scores, target language model score and, if available, phrase BNN
scores. As shown in Table 2.9, the morphological BNN models have a positive
effect on the decoder’s lexical search space, increasing the recall of reference
tokens among the top 1 and 3 phrase translation candidates. The mean recip-
rocal rank (MRR) also improves from 0.655 to 0.662. Looking at the 1-best SMT
output, we observe a slight increase of reference/output recall (50.0% to 50.7%),
which is less than the increase we observe for the top 1 translation candidates
(57.6% to 59.0%). One possible explanation is that the new, more accurate trans-
lation distributions are overruled by other SMT model scores, like the target LM,
that are based on traditional maximum-likelihood estimates. While the suffix-
based LMs proved beneficial in our experiments, we speculate that higher gains
could be obtained by coupling our approach with a morphology-aware neural
LM like the one recently presented by Botha and Blunsom (2014).

2.7 Related Work

While the most relevant literature has been discussed in earlier sections, the fol-
lowing approaches are particularly related to ours: Minkov et al. (2007) and
Toutanova et al. (2008) address target inflection prediction with a log-linear
model based on rich morphological and syntactic features. Their model ex-
ploits target context and is applied to inflect the output of a stem-based SMT
system, whereas our models predict target words (or pairs of stem-suffix) inde-
pendently and are integrated into decoding. Chahuneau et al. (2013) address
the same problem with another feature-rich discriminative model that can be in-
tegrated in decoding, like ours, but they also use it to inflect on-the-fly stemmed
phrases. It is not clear what part of their SMT improvements is due to the gen-
eration of new phrases or to better scoring. Jeong et al. (2010) predict surface
word forms in context, similarly to our word BNN, and integrate the scores into
the SMT system. Unlike us, they rely on linguistic feature-rich log-linear mod-
els to do that. Gimpel and Smith (2008) propose a similar approach to directly

Token recall (WMT12): Baseline +BNN
reference/MT-search-space [top-1] 57.6% 59.0%
reference/MT-search-space [top-3] 70.7% 70.9%
reference/MT-search-space [top-30] 86.0% 85.0%
reference/MT-search-space [MRR] 0.655 0.662
reference/MT-output 50.0% 50.7%
stem-only reference/MT-output 12.3% 11.5%
of which reachable 11.2% 10.3%

Table 2.9: Target word coverage analysis of the English-Russian SMT system before and after
adding the morphological BNN models.
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predict phrases in context, instead of words.
All those approaches employed features that capture the global structure of
source sentences, like dependency relations. By contrast, our models access
only local context in the source sentence but they achieve accuracy gains com-
parably to models that also use global sentence structure.

2.8 Limitations

While the methods presented in this chapter have clear advantages over previ-
ous work, there are some limitations in this work.
First, the accuracy of the target inflection depends on the amount of target con-
text the models can access. Our models make a simplifying assumption that
we can predict target inflection solely based on the source context (and a target
stem). This assumption does not account for many complicated morphological
agreements on the target side. While in principle we can model partially gen-
erated target context words, integrating those models into PSMT is non-trivial
due to the nature of hypothesis recombination assumption in PSTM.
Second, our methods are designed to work for fusional languages as demon-
strated in this chapter. However, there are many morphologically rich lan-
guages that are not fusional. Turkish, for instance, is agglutinative. Translat-
ing into agglutinative languages may require a different treatment, which is
beyond the scope of this chapter.

2.9 Conclusions

In this chapter, we have provided the answer to Research Question 1.1. Specifi-
cally we have addressed the following question in the context of machine trans-
lation:
RQ1.1 Can neural networks effectively exploit the source-side context to make accurate
predictions of target language morphology?

In order to answer this research question, we divide it into two sub-questions.
In the following, we revisit the two sub-questions posed at the beginning of the
chapter and highlight the main contributions and findings in addressing each
individual sub-questions.
RQ1.1a Can translation be improved by a more accurate selection of the translation op-
tions already existing in the SMT models, as opposed to generating new options?

We have analyzed the lexical coverage in machine translation’s search space
and shown that there is a large potential for improving translation quality by
having a better selection of the available translation options.
RQ1.1b How to model target morphology using neural networks?
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We have proposed a general approach to predict word translations in context
using bilingual neural network architectures. Unlike previous NN approaches,
we model word, stem, and suffix distributions in the target language given the
context in the source language. Instead of relying on manually engineered fea-
tures, our models automatically learn abstract word representations and fea-
tures that are relevant for the word prediction task. Our preliminary results
with LBL and ConvNet architectures suggest that potential improvements may
be achieved by factorizing target representations or by dynamically modeling
source context size. Evaluated on three morphologically rich languages, our
approach achieves considerable gains in word, stem and suffix accuracy over a
context-independent maximum-likelihood baseline.
Finally, we have shown that the proposed BNN models can be tightly integrated
into a phrase-based SMT system. Our analysis shows that the number of correct
target words occurring in highly scored phrase translation candidates increases
after integrating the morphological BNNs. However, only few of these end up
in the 1-best translation output. Nevertheless, we report a small but statistically
significant BLEU improvement over a competitive, large-scale English-Russian
baseline
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Chapter 3

Neural Inflection Model

3.1 Introduction and Research Questions

In morphologically rich languages (MRLs), words can have many different sur-
face forms depending on the grammatical context. When translating into MRLs,
standard statistical machine translation (SMT) models such as phrase transla-
tion models and n-gram language models (LMs) often fail to select the right
surface form due to the sparsity of observed word sequences (Minkov et al.,
2007; Green and DeNero, 2012).
While neural language models (Bengio et al., 2003) address lexical sparsity to
a certain degree by projecting word sequences to distributed vector represen-
tations, they still suffer from the problem of rare words which is particularly
exacerbated in MRLs (Botha and Blunsom, 2014; Jean et al., 2015; Luong et al.,
2015b).
A potential solution to overcome data sparsity in MRLs, is to use word repre-
sentations that separate the grammatical aspects of a word, i.e., inflection, from
the lexical ones. Such word representations already exist for many languages
in the form of morphological analyzers or lexicons. However, using these re-
sources for statistical language modeling is far from trivial due to the issue of
ambiguous word analyses.
Table 3.1 illustrates this problem in Italian, for which a fine-grained morpho-
logical lexicon but no sizable disambiguated corpus exists. These morphologi-
cal analyses1 clearly contain information that is useful to encourage grammat-
ical agreement and, in this case, detect the highlighted error. Unfortunately,
though, the needed information is difficult to access because each word can
have multiple analyses. Performing contextual disambiguation during transla-
tion is an ill-posed problem because the SMT decoder produces large numbers
of ungrammatical word sequences but gold tagged training data is naturally

1In this chapter we use the terms analysis and tag interchangeably to denote fine-grained word
annotations provided by a morphological analyzer or lexicon.
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SMT idee ribelli che circola
Gloss ideas rebellious that circulate

Analyses

noun-f:p noun-f:p con ver:impr+pres+2+s
noun-m:p pro-wh ver:ind+pres+3+s
adj:pos+f+p det-wh:f+p
adj:pos+m+p det-wh:f+s
. . . . . .

Table 3.1: Example of morphological error in Italian SMT output: the verb form should be plural
(circolano) and not singular (circola) to agree in number with the subject. Most of the words have
multiple analyses according to our morphological lexicon of reference (Zanchetta and Baroni, 2005).
The correct one in context is highlighted.

composed of grammatical sentences. This issue has also been shown to affect
syntactic parsing of SMT output in (Post and Gildea, 2008). Moreover, search-
ing for the optimal tag sequence introduces spurious ambiguity into the SMT
decoder. Finally, training a disambiguator requires manually disambiguated
data, which is not available in many languages and costly to produce.

In chapter 2, we have shown the potential of improving translation quality by
predicting accurately the target inflection. In this chapter, we addresss a similar
problem but with a different approach. We will provide the last piece of the
answer to our first research question, namely “Do neural networks offer modeling
advantages for linguistic structure prediction in comparison to non-neural methods? ”.
Concretely, from above motivation, we ask:

Research question 1.2 Can neural network models leverage morphological labels to
make context-sensitive predictions about morphology?

To answer this question, we need to answer two sub-questions:

RQ1.2.a Do we need to resolve morphological ambiguity if we are interested in making
prediction of the surface forms of words?

We argue that morphological ambiguity does not need to be resolved for
SMT. Instead, we map words to a space where all possible morphological
attributes of a word are retained (§3.3.1). Rather than enforcing hard tag-
ging decisions, we let the model operate on soft morphological representa-
tions (or soft tags). The resulting tag set is larger than the original one, but
still effective at reducing the lexical sparsity of purely word-based LM.

RQ1.2.b How can we model target inflection effectively using these soft morphological
representations?

Here we argue that using distributed representations for soft morpholog-
ical tags can help share statistical strength among overlapping tags, i.e.,
tags that have some attributes in common. To this end, we propose a neu-
ral network model that predicts sequences of soft tags conditioned on rich
contextual features (§3.3.2).
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To answer RQ1.2.a, we emprically show that our soft representation model
achieves higher accuracies in re-inflecting translations than a model perform-
ing contextual disambiguation. To answer RQ1.2.b, we show that our model
significantly improves translation quality on two different target MRLs.

The chapter is organized as follows: after reviewing the previous work (Sec-
tion §3.2), we present our distributed inflection model based on soft morpho-
logical representations (Section §3.3). In Section §3.4 we introduce the general
experimental setup, followed by a detailed description of the re-inflection exper-
iments (Section §3.5) and the end-to-end SMT experiments (Section §3.6). We
conclude with a discussion of SMT output examples and an outlook of future
work.

3.2 Previous Work

Previous work on inflection modeling for translation into MRLs has mostly re-
lied on the availability of morphologically disambiguated data to choose the
most probable analysis of each word in either a context-independent (Minkov
et al., 2007) or context-dependent (Green and DeNero, 2012; Koehn and Hoang,
2007; Subotin, 2011) way. While the former irrevocably discards potentially use-
ful attributes of the words, the latter tasks the inflection model with disam-
biguating the word sequence under construction, which is difficult given the
ill-formedness of SMT output and a cause of spurious ambiguity.

Considerably less work has focused on MRLs where disambiguated data does
not exist, with few exceptions where ambiguity is solved by randomly selecting
one analysis per word type (Minkov et al., 2007; Toutanova et al., 2008; Jeong
et al., 2010).

As for how inflection models are integrated into the SMT system, different
strategies have been proposed. Minkov et al. (2007); Toutanova et al. (2008);
Fraser et al. (2012) treat inflection as a post-processing task: the SMT model is
trained to produce lemmatized target sentences (possibly enhanced with some
form of morphological annotation) and afterwards the best surface form for
each lemma is chosen by separate inflection models. Some work has focused on
the generation of new inflected phrases given the input sentence (Chahuneau
et al., 2013) or given the bilingual context during decoding (Koehn and Hoang,
2007; Subotin, 2011). Other inflection models have been integrated to SMT
as additional feature functions: e.g. as an additional lexical translation score
(Jeong et al., 2010; Tran et al., 2014) or as an additional target language model
score (Green and DeNero, 2012). We follow this last strategy, rather than gener-
ating new inflections, motivated by previous observations that, when translat-
ing into MRLs, a large number of reference inflections are already available in
the SMT models but are not selected for Viterbi translation (Green and DeNero,
2012; Tran et al., 2014).
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More in general, our work is related to class-based language modeling (Brown
et al., 1992) with the major difference that we also condition on source-side
context and that we use explicit morphological representations instead of data-
driven word clusters (Uszkoreit and Brants, 2008), word suffixes (Müller et al.,
2012; Bisazza and Monz, 2014) or coarse-grained part-of-speech tags (Koehn
et al., 2008).
Modeling morphology using neural networks has recently shown promising
results: in the context of monolingual neural language modeling, Luong et al.
(2013); Botha and Blunsom (2014) obtain the vectorial representation of a word
by composing the representations of its morphemes. Tran et al. (2014) model
translation stem and suffix selection in SMT with a bilingual neural network.
Soricut and Och (2015) discover morphological transformation rules from word
embeddings learned by a shallow network. As the time this chapter is written,
we were not aware of work that leveraged fine-grained morphological tags for
neural language or translation modeling.

3.3 A Distributed Inflection Model

In MRLs, the surface form of a word is heavily determined by its grammatical
features, such as number, case, tense etc. Choosing the right target word form
during translation is a complex problem since some of these features depend
on the source context while others depend on the target context (agreement
phenomena). These, in turn, can either belong to the word (e.g. the gender of a
noun in Italian) or depend on the context in which the word appears (e.g., the
gender of an adjective).
We model target language inflection by a Markov process generating a sequence
of abstract word representations based on source and target context. This com-
plements previous work focusing on either the former (Avramidis and Koehn,
2008; Chahuneau et al., 2013; Tran et al., 2014) or the latter (Green and DeNero,
2012; Fraser et al., 2012; Botha and Blunsom, 2014; Bisazza and Monz, 2014).

3.3.1 Soft Morphological Representations

As previously stated, it is common for words in MRLs to admit multiple mor-
phological analyses out of context. Rather than trying to disambiguate the anal-
yses in context using for instance conditional random fields (Green and DeN-
ero, 2012; Fraser et al., 2012), we modify the tagging scheme so that each word
corresponds to only one tag. To also avoid the loss of useful information in-
curred when arbitrarily selecting one analysis per word type (Minkov et al.,
2007; Jeong et al., 2010), we introduce soft morphological representations, or
simply soft tags.
Assume that a morphological analysis # is a set of morphological attributes
a.#/ such as masculine or plural.
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Given a word w, a morphological analyzer or lexicon LEX returns a list of pos-
sible analyses of that word Aw D f# W .w;#/ 2 LEXg. Then, we can map word
w to a unique soft tag rw by simply taking the union of all its possible morpho-
logical attributes, that is:

rw ,
[

"k2Aw

a.#k/ (3.1)

Table 3.2 illustrates soft tag of the Italian word “ribelle”.

Word ribelle
Analyses adj:pos+f+s, adj:pos+m+s, noun-f:s, noun-m:s

Soft tag adj:pos|adj:f|adj:s|adj:m|noun-f:s|noun-m:s

Table 3.2: Example of soft tag obtained from four analyses of the Italian word “ribelle”.

Hence, soft tags maintain all morphological attributes of a word to denote its
grammatical dimension while ignoring the lexical content. This new represen-
tation scheme compromises between sparsity and ambiguity, and allows for an
efficient integration of our model directly into the decoder as no additional cost
is incurred for the local tagging search.
Soft tags can also be seen as the marginalization of #when predicting a surface
word wi given a lemma `i and its context ci (i.e., variables that influence wi ,
such as wi!1):

p.wi j `i ; ci / D
X

"k2Awi

p.wi j#k ; `i ; ci /p.#k j `i ; ci /

$
X

"k2Awi

p.#k j `i ; ci / (3.2)

assuming that any lemma-analysis pair .`;#/ corresponds to at most one in-
flected formw. Using soft tags, Equation 3.2 can be approximated byp.rw j `i ; ci /.

3.3.2 Inflection Neural Network

Our inflection model, Inf-NN, is trained on word-aligned bilingual data to pre-
dict sequences of target soft tags given a fixed-size target history and the input
source sentence (see Figure 3.1). We adopt a neural language model approach
as learning distributed representations for the soft tags can help to share sta-
tistical information among overlapping tags (i.e., tags that share some morpho-
logical attributes). Moreover, compared to Maximum Entropy models that use
lexical features, neural networks can better exploit sparse input features such
as lexicalized source context and target lemma features, as well as their interac-
tions, in high dimensional spaces.
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We learn distributed representations for both source words and target soft tags.
The source word representations are initialized from pre-trained embeddings,
which has been shown to encode certain morphological regularities (Soricut
and Och, 2015), whereas target tag representations are initialized randomly.
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Figure 3.1: Graphical representation of the Inf-NN model: the current target word’s soft tag, ri , is
predicted based on a fixed-size target tag history and a source side context centered around sj , the
translation of wi . Each target word wi can be deterministically mapped to a soft tag ri .

Inf-NN is a feed-forward neural network whose output is a conditional prob-
ability distribution over a set of morphological tags given target history and
source context. Formally, let hi D .ri!1; : : : ; ri!nC1/ be the n"1 tag history of
the target wordwi , and cj D .sj!k ; : : : ; sjCk/ the source context centering at the
word sj aligned towi by an automatic aligner. We use a simple heuristic similar
to the approach by Devlin et al. (2014) to handle null and multiple alignments
so that each target word wi can be mapped to exactly one source word sj . The
heuristic is given as follow:

1. Ifwi aligns to multiple source words sj , then we pick the sj in the middle.

2. If wi is unaligned, then we assign the alignment from the closet aligned
word to wi with preference to the right.

Let sj 2 Rd and ri 2 Rd denote the distributed representations of source sj and
target tag ri respectively. Then, the conditional probability pInf-NN.ri j hi ; cj / is
computed at the output layer y of the network as follows:

zi D $.Ucj C Vhi C bz/

y D softmax.Wzi C by/

cj D Œsj!k I : : : I sjCk !

hi D Œri!1I : : : I ri!nC1! (3.3)

where U , V , and W are weight matrices, ŒvI v0! denotes vector concatenation,
and $ is a non-linear transfer prelu.

As $, we use in all experiments the channel-shared parametric rectified linear
unit (PReLU) introduced by (He et al., 2015). PReLU $.x/ is defined as:
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$.x/ D
(
x if x > 0
ax otherwise

x

$.x/

where a is a parameter learned during training.

Note that the neural network model presented here is just an additional com-
ponent that will be integreated into a standard PSMT system. Because PSMT
systems works on CPUs, the computation in neural network becomes a ma-
jor bottleneck during decoding. To speed up decoding, we train the Inf-NN
model with a self-normalized objective (Devlin et al., 2014; Andreas and Klein,
2015). The self-normalized objective encorages the partition function Z.x/ of
the output layer of the neural network is close to 1. Thus during decoding, we
can avoid computing the partition function. The self-normalized objective pro-
posed by Devlin et al. (2014) is given as

L.!/ D
X

i

h
logp

!
ri j hi ; cj

"
" ˛

!
logZ.hi ; cj / " 0

"2
i

(3.4)

D
X

i

logp
!
ri j hi ; cj

"
" ˛ log2Z.hi ; cj / (3.5)

To train a self-normalized model, Andreas and Klein (2015) propose a modifi-
cation of self-normalized objective proposed by (Devlin et al., 2014):

L.!/ D
X

i

W >
Œri #z "

˛

%

X
.hi ;cj /2H

log2Z.hi ; cj / (3.6)

where H is a set of random samples on which self-normalization is performed,
! D

˚˚
sj

#
; frig ;W c ;W h;W m;bz ; a

#
are the parameters of the networks, and

Z.hi ; cj / is the partition function of the input .hi ; cj /. In practice, we obtain H
by sampling from a Bernoulli distribution Bern.%/. This is equivalent to apply-
ing dropout (Srivastava et al., 2014) on the loss gradient of self-normalization
term, where m is the size of a mini-batch. We regularize the networks with L2

norm.

In our initial experiment, we find that self-normalized objective in equation 3.6
works slighly better, therefore we use this in all subsequent experiments.

3.4 Experimental Setup

We evaluate our approach on two related tasks: re-inflecting reference transla-
tions and end-to-end translation from English into MRLs. With the first task,
we test the effectiveness of soft morphological representations against
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(a) a model that randomly assigns one tag per word type (among its possible
tags);

(b) a model that admits multiple tags per word and requires a pre-disambiguated
corpus to be trained.

With the second task, we measure translation quality when our inflection model
is integrated into a state-of-the-art phrase-based SMT decoder, showing its ap-
plicability to languages where no disambiguated data exists.

3.4.1 Data

As target languages, we choose two MRLs belonging to different language fam-
ilies and displaying different inflectional patterns: Russian has very rich nom-
inal, adjectival and verbal inflection, while Italian has moderate nominal and
adjectival inflection, but extremely rich verbal inflection. Experiments are per-
formed on the following tasks:

• English-Russian WMT (Bojar et al., 2013): translation of news commen-
taries with large-scale training data;

• English-Italian IWSLT (Cettolo et al., 2014): translation of speeches with
either small-scale training data (TED talks only) or large-scale training
data (TED talks and European proceedings).

SMT training data statistics are reported in Table 3.3. The Russian Inf-NN
model is trained on a 1M-sentence subset of the bilingual data, while the Ital-
ian one is trained on all the data available in each setting. For each data set, we
create automatic word alignments using GIZA++ (Och and Ney, 2003).

En-Ru En-It
large small large

Bilingual #sentences 2.4M 180K 2.0M
src/trg #tokens 49.2M/47.2M 3.6M/3.4M 57.4M/57.0M
src/trg dict.size 774K/1100K 55K/80K 139K/195K

Monoling. #sentences 21.0M 2.1M
trg #tokens 390M 58.4M
src/trg dict.size 2.7M 199K

Table 3.3: Training corpora statistics.

The ambiguous morphological analyses are obtained from the Russian Open-
Corpora lexicon2 (Bocharov et al., 2013) and from the Italian Morph-it!3 lexicon
(Zanchetta and Baroni, 2005). Table 3.4 shows the number of tags and soft tags

2opencorpora.org
3sslmitdev-online.sslmit.unibo.it/linguistics/morph-it.php

opencorpora.org
sslmitdev-online.sslmit.unibo.it/linguistics/morph-it.php
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occurring in our training data, as well as the expected counts of analyses per
word Ew Œt !, words per lemma El Œw! and analyses per lemma El Œt !.

Language #tags #soft-tags Ew Œt ! El Œw! El Œt !

Russian 892 4431 3.8 7.2 27.4
Italian 450 901 1.9 12.7 24.3

Table 3.4: Morphological characteristics of the Inf-NN training data: number of tags and soft tags,
expected counts of analyses per word EwŒt#, words per lemma El Œw# and analyses per lemma
El Œt#.

We find that the Russian tag set and, consequently, the soft tag set are consid-
erably larger than the Italian ones. The average morphological ambiguity is
also larger in Russian (3.8 versus 1.9 tags per word). However, somewhat sur-
prisingly, morphological richness is higher in Italian (12.7 versus 7.2 words per
lemma). At a closer inspection, we find that most of this richness is due to ver-
bal inflection which goes up to 50 forms for frequently observed verbs.

3.4.2 Neural network Training

The Inf-NN models are trained on a history of 4 target tags and source context of
7 words with the following configuration: Embedding size is set to 200 and the
number of hidden units to 768. Target word and soft-tag embeddings are ini-
tialized randomly from a Gaussian distribution with mean zero and standard
deviation 0.01. Source word embeddings are initialized from pre-trained Glove
vectors (Pennington et al., 2014) and rescaled by a factor of 0.1. Weight matri-
ces of linear layers are initialized from a zero-mean Gaussian distribution with
standard deviation

p
2=ni where ni is the number of input units (He et al., 2015).

We set self-normalization strength % D 0:02, Bernoulli parameter % D 0:1, and
regularization parameter & D 10!4. All models are trained with a mini-batch
size of 128 for 30 epochs. Our stochastic objective functions are optimized using
the first-order gradient-based optimizer Adam (Kingma and Ba, 2015). We use
the default settings suggested by the authors: ˛ D 0:001, ˇ1 D 0:9, ˇ2 D 0:999,
' D 10!8 and ( D 1 " 10!8.

3.5 Re-inflection Experiments

The purpose of this experiment is to simulate the behavior of the inflection
model during SMT decoding: Given a reference translation and its correspond-
ing source sentence, we re-inflect the former using a simple beam search and
count how many times the model recovers the correct surface word form on a
10K-sentence held-out data set. We guide the readers to understand the experi-
mental setup by providing examples of the inputs and gold outputs in Table 3.5.
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Table 3.5: Examples of re-inflection task. The model is provided with a source sentence (src) and
a target sequence of lemmas (lem), it has to predict the correct surface forms of the target lemmas
(tgt).

src simplicity is the ultimate sophistication
lem il semplicità essere il ultimo sofisticazione
tgt la semplicità è l’ ultima sofisticazione
src a meal without wine is a day without sunshine
lem un cena senza vino essere come un giorno senza sole
tgt una cena senza vino è come un giorno senza sole
src we are born to be real, not to be perfect
lem essere al mondo per essere vero , non perfetto
tgt siamo al mondo per essere veri , non perfetti

Since we do not assume the availability of a disambiguator, we also have to
deal with lemma ambiguity. While this issue does not affect the definition and
training of our Inf-NN, we do need lemmas to determine the set of candidate
surface forms Cw for each word w that is being re-inflected. As a solution, we
define Cw as the union of the surface forms of each possible lemma of w or,
more formally, as:

Cw D fwi j lem.wi / \ lem.w/ ¤ ¿g (3.7)

where lem.w/ denotes the set of lemmas returned by the lexicon for word w.
For example, the Italian form baci has two possible lemmas: bacio (noun: kiss)
and baciare (verb: to kiss). Its candidate set Cw will then include all the forms of
the noun bacio and all the forms of the verb baciare: that is, bacio, baci, baciamo,
baciate, baciano, etc.

We compare the proposed soft-tag Inf-NN against an Inf-NN trained on ran-
domly assigned tag per type and to another one trained on tag sequences dis-
ambiguated by TreeTagger (Schmid, 1994; Sharoff et al., 2008). The latter model
must search through a much larger space of morphological tag sequences. There-
fore, for a fair comparison, we set a higher beam size when re-inflecting with
this model. As another difference from the other models, the TreeTagger-based
inflection model relies on the lemmatization performed by TreeTagger to define
the candidate set Cw .

To validate the effectiveness of the neural network approach, we also compare
Inf-NN to a simpler MaxEnt model trained on a similar configuration. Finally,
we evaluate the importance of source-side context features by experimenting
with a series of Inf-NN models that are only conditioned on the target tag his-
tory.

Since no Italian morphological disambiguator is available to us, we perform
this experiment only for Russian.
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MaxEnt Inf-NN
w/ src w/o src w/ src beam

Tree-Tagger: all analyses 56.33 61.19 69.68 200
Random: 1 analysis per word 66.08 72.32 79.92 5
Soft-Reps: 1 soft tag per word 66.95 75.43 81.93 5

Table 3.6: Token-level re-inflection accuracy (%) on a 10K-sentence English-Russian held-out set.
The last column indicates the beam size used when searching for the optimal re-inflected sequence.

As shown in Table 3.6, soft tags perform best in all settings and become even
more effective when moving from MaxEnt to neural network, demonstrating
the importance of learning distributed representations for the soft tags. This
result can be explained by the fact that, when fixing one tag per word type ei-
ther by random assignment or with soft tags, the number of tags per lemma
becomes substantially smaller (cf. Table 3.4) and classification easier. On the
other hand, the Tree-Tagger based model operating on all word analyses has
to deal with spurious ambiguity: that is, a correct sequence of inflected words
can correspond to multiple tag sequences that are competing with one another.
Solving this problem by marginalizing over the ambiguous analyses (cf. Equa-
tion 3.2) can lead to intractable decoding.

The model using soft-tags, which capture all possible morphological attributes
of words, performs the best. Even without using source context features, our
Inf-NN outperforms the MaxEnt model by 8.5% absolute because of the high
dimensional space used to capture complex morphological regularities. By
adding source context, we further increase accuracy by 6.5%, leading to an over-
all gain of 15% over the MaxEnt baseline.

In the next section, we investigate the impact of our most accurate re-inflection
model (Soft-Reps Inf-NN) in an end-to-end SMT setting without relying on any
disambiguated data.

3.6 End-to-end SMT Experiments

We integrate our Inf-NN model into a phrase-based SMT decoder similar to
Moses (Koehn et al., 2007) as an additional log-probability feature function in
the log-linear model. Specifically we use logpInf-NN as a new feature.

When a new target phrase Qw is produced by the decoder, the Inf-NN model
returns a probability for each word wi that composes it, given the previously
translated words’ soft tags and the source context centered around the source
word sj aligned to wi . To detect sj we store phrase-internal word alignments
in the phrase table and use simple heuristics to map each target index i to ex-
actly one source index j , as done for the Inf-NN training (Section 3.5). Since
every target word corresponds to one soft tag, obtaining the representation of



44 Neural Inflection Model

wi is trivial (by lookup in a word-tag map) and so is maintaining the target
tag history. This crucially differs from previous approaches that distinguish be-
tween hypotheses with equal surface forms but different morphological anal-
yses (Koehn et al., 2007), thereby introducing spurious ambiguity into what is
already a huge search space.4 As a result, the integration of our Inf-NN does
not affect decoding speed.

3.6.1 Baseline

Our SMT baseline is a competitive phrase-based SMT system including hierar-
chical lexicalized reordering models (Galley and Manning, 2008) and a 5-gram
target LM trained with modified Kneser-Ney smoothing (Chen and Goodman,
1999). Since the large English-Italian data comes from very different sources
(TED talks and European proceedings), we construct phrase table and reorder-
ing models for this experiment using the fill-up technique (Bisazza et al., 2011).
Note that our baseline does not include previously proposed inflection mod-
els because the main goal of our experiment is to demonstrate the effectiveness
of the proposed approach for languages where no sizable disambiguated data
exists, which is indeed the case for Italian.

Feature weights are tuned with pairwise ranking optimization (PRO) (Hopkins
and May, 2011) on the union of IWSLT’s dev10 and test10 in Italian, and on
the first 2000 lines of wmt12 benchmark in Russian (Callison-Burch et al., 2012).
During tuning, 14 PRO parameter estimation runs are performed in parallel on
different samples of the n-best list after each decoder iteration. The weights
of the individual PRO runs are then averaged and passed on to the next de-
coding iteration. Performing weight estimation independently for a number of
samples corrects for some of the instability that can be caused by individual
samples.

3.6.2 Results

Translation quality is measured by case-insensitive BLEU (Papineni et al., 2002)
on IWSLT’s test12 and test14 in Italian, and on WMT newstest2013 and new-
stest2014 for Russian, all provided with one reference translation. To see whether
the differences between the approaches we compared in our experiments are
statistically significant, we apply approximate randomization (Noreen, 1989).
Riezler and Maxwell (2005) have shown that approximate randomization is less
sensitive to Type-I errors, i.e., less likely to falsely reject the null hypothesis, than
bootstrap resampling (Koehn, 2004b) in the context of SMT.

4(Green and DeNero, 2012) also tag each target phrase in context as it is produced. However,
they avoid the spurious ambiguity problem by only preserving the most probable tag sequence for
each phrase (incremental greedy decoding).
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Data Test Baseline Inf-NN

en!ru large newstest2013 19.0 19.3N(+0.3)
newstest2014 26.1 26.7N(+0.6)

en!it
small iwslt12 24.6 25.6N(+1.0)

iwslt14 20.4 20.9N(+0.5)

large iwslt12 25.0 25.8N(+0.8)
iwslt14 20.9 21.4N(+0.5)

Table 3.7: Impact on translation quality of the Inf-NN model. N marks significance level p < :01.

Results are presented in Table 3.7. Our Inf-NN model consistently leads to sig-
nificant improvements over a competitive baseline, for both language pairs and
all test sets, without affecting decoding speed. By comparing the two data con-
ditions in English-Italian, we see that most of the BLEU gain is preserved even
after adding a large amount of parallel training data. This suggests that mor-
phological phenomena are not sufficiently captured by phrases and stresses the
importance of specifically modeling word inflection. It is possible that adding
even more training data would reduce the impact of our inflection model, but
currently we do not have access to other data sets that would be relevant to our
translation tasks.

To put these results into perspective, our improvements are comparable to those
achieved by previous work (Chahuneau et al., 2013) that generated new phrase
inflections using a morphological disambiguator on the same large-scale English-
Russian task.

3.6.3 Examples

As previously mentioned, most previous approaches to inflection modeling for
SMT are not applicable to languages for which morphologically disambiguated
data is not available. It is then particularly interesting to analyze how our model
affects baseline translations. Table 3.8 presents a number of English-Italian SMT
output examples where the use of our soft-tag Inf-NN either resulted in a better
inflection choice (1-3) or not (4-5). Out of the ‘good’ examples, only (1) resulted
in a complete match with the reference translation, while in (2) and (3) the sys-
tem preferred an equally appropriate lexical choice, showing that automatically
evaluating inflection models in an SMT setting is far from trivial.

The usefulness of source-side features is demonstrated by example (3): here,
the translation of broken should agree in gender with the subject he but the base-
line system chose instead a feminine form (infranta). Since the subject pronoun
can be dropped in Italian, this error cannot be detected by the target language
model and may only be fixed by translating the sequence ‘he died broken’ as a
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src and if you’re wondering about those other spikes, those are also fridays
ref e se vi state chiedendo cosa sono questi altri picchi, sono anche loro dei venerdì

(1) base e se vi state chiedendo di queste altre picchi, sono anche il venerdì
infnn e se vi state chiedendo di questi altri picchi, sono anche il venerdì
Effect: Correct number agreement between adjectives and noun
src ... a three-hour version of this that’s been viewed four million times
ref ... una versione di tre ore che è stata vista 4 milioni di volte

(2) base ... una versione di tre ore di ciò che è stato visto 4 milioni di volte
infnn ... una versione di tre ore di questo che è stata osservata quattro milioni di volte
Effect: Correct gender agreement between subject and present perfect
src he died broken by history
ref morì distrutto dalla storia

(3) base morì infranta dalla storia
infnn morì devastato dalla storia
Effect: Correct gender agreement between subject and adjective
src in one , i was the classic asian student ...
ref in uno ero la classica studentessa asiatica ...

(4) base in uno stato il classico asiatica studente ...
infnn in uno stato il classico asiatico studente ...
Effect: Encouraged gender agreement between adjectives and noun, but gender is wrong
src in the other , i was enmeshed in lives that were precarious
ref nell’altro ero invischiata tra esistenze precarie

(5) base tra l’altro, sono stato profondamente impegnati in vita che erano più precaria
infnn nell’altro, ero profondamente impegnati in vita che erano più precaria
Effect: Failed to encourage gender agreement because surface form is not in the SMT models

Table 3.8: Examples of SMT output drawn from IWSLT English-Italian test12 showing the effect of
our inflection model on lexical selection.

single phrase, which was never observed in the training data. By contrast, Inf-
NN successfully exploited the source-side context and preferred a masculine
form (devastato).

Next are two unsuccessful examples: in (4) Inf-NN encouraged the system to
translate the whole phrase ‘the classic asian student’ as masculine whereas the
baseline translation used an incoherent mix of masculine and feminine. Un-
fortunately, though, the student in question, i.e., the speaker, happened to be
a woman, but this could not be inferred in any way from this sentence. In (5)
Inf-NN failed to fix the agreement between adjective and subject pronoun. By
inspecting the parallel data we found that the word enmeshed always occurred
with plural forms of Italian adjectives. This example shows that improving the
scoring of the existing translation options is not always sufficient. While we do
not address generation of new inflected forms in this work, this is an interesting
direction for future work.

3.6.4 Implementation

We implement Inf-NN model in Torch, a scientific computing framework with
wide support for machine learning algorithms. After training, we save model’s
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parameters in JSON5 (JavaScript Object Notation) format. We then build the
same neural network architecture that only computes the forward pass in C++
because C++ provides a natural interface to integrate Inf-NN model into our
in-house PSMT. To achieve efficient computation, we rely on the Eigen library
to perform matrix multiplications. Because our PSMT system is written in Perl,
we use SWIG6 (Simplified Wrapper and Interface Generator) to connect the Perl
program to the neural network module in C++. Additionally, we pre-compute
the hidden units of of the source context before non-linear layer. This trick
dramatically reduces the computational cost during tuning PSMT’s parameters
as shown in Devlin et al. (2014). Our implementation is available at https://
bitbucket.org/ketran/soft-tags.

3.7 Limitations

Although our approach can leverage the existing morphological analyzers to
build a better translation system into MRLs, at the time this thesis is written,
we realize that modeling at character-level using LSTMs (Ling et al., 2015) or
CNNs (Kim et al., 2016) can remove the need of morphological analyzer (Lee
et al., 2017). Given the current state of the field, it seems that the time for PSMT
is coming to an end: the future of machine translation looks brighter for deep
neural networks trained end-to-end, without pipeline of independent process-
ing steps.

Nevertheless, we believe that character-level modeling is not likely to be the fi-
nal answer for machine translation. It seems that using morphological analyses
can bring some benefit to the task; for instance, Vania and Lopez (2017) report
that neural network language models that access the true morphological anal-
yses outperform character-level models. Recent work of (Song et al., 2018) has
shown the benefit of modeling target stems and suffixes in a English!Russian
neural machine translation (NMT) in comparison to a full character-based NMT
(Lee et al., 2017). Thus, we hope that some aspects of our approach can be trans-
ferred to neural machine translation.

3.8 Conclusions

In this chapter, we aimed to improve machine translation where the target lan-
guage is morphologically rich and its morphological lexicon exists. To this
end, we have provided an empirical answer to the following research ques-
tion:

RQ1.2 Can neural network models leverage morphological labels to make context-sensitive
predictions about morphology?

5https://www.json.org
6http://www.swig.org

https://bitbucket.org/ketran/soft-tags
https://bitbucket.org/ketran/soft-tags
https://www.json.org
http://www.swig.org
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In order to answer this research question, we divide it into two sub-questions.
In the following, we revisit the two sub-questions posed at the beginning of the
chapter and highlight the main contributions and findings in addressing each
individual sub-question.
RQ1.2a Do we need to resolve morphological ambiguity if we are interested in making
prediction of the surface forms of words?

We have shown that morphological ambiguity does not need to be resolved
if the primary concern is to predict the correct surface form of words. We
have proposed soft-tag, a novel morphological representation scheme, that cir-
cumvents the problem of ambiguous word analyses and makes it possible to
improve translation into MRLs where a morphological lexicon but no manu-
ally disambiguated corpora exist. We evaluated soft-representations on a re-
inflection task and showed that the proposed soft tags achieve significantly
higher accuracy than (i) a model using standard tags and trained on morpho-
logically disambiguated data and (ii) a Maximum Entropy model that does not
learn distributed representations for source words and target tags.
RQ1.2b How can we model target inflection effectively using these soft morphological
representations?

We proposed a neural network model that leverages the soft-tags to predict
the target inflection accurately. Using distributed representations, our model
exploits the advantage of sharing statistical strength in soft-tags. When inte-
grated into a state-of-the-art SMT decoder, our inflection model significantly
improves translation quality in two different language pairs, without having
to perform morphological disambiguation during decoding. Our results thus
demonstrate the applicability of our approach to languages for which no mor-
phological disambiguator exists.



Chapter 4

Recurrent Memory Networks
for Language Modeling

4.1 Introduction and Research Questions

In the previous chapters, we have shown that feed-forward neural networks
offer many advantages for linguistic structure prediction. In this chapter, we
will study a more powerful class of neural networks, namely recurrent neural
networks (Elman, 1990; Mikolov et al., 2010).

Recurrent Neural Networks (RNNs) are remarkably powerful models for se-
quential data. Long Short-Term Memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997), a specific architecture of RNN, has shown to be successful for many
natural language processing tasks such as language modeling (Józefowicz et al.,
2015), dependency parsing (Dyer et al., 2015), sentence compression (Filippova
et al., 2015), and machine translation (Sutskever et al., 2014).

Within the context of natural language processing, a common assumption is
that LSTMs are able to capture certain linguistic phenomena. Evidences sup-
porting this assumption mainly come from evaluating LSTMs in downstream
applications: Bowman et al. (2015b) carefully design two artificial datasets where
sentences have explicit recursive structures. They show empirically that while
processing the input linearly, LSTMs can implicitly exploit recursive structures
of languages. Filippova et al. (2015) find that using explicit syntactic features
within LSTMs in their sentence compression model hurts the performance of
overall system. They then hypothesize that a basic LSTM is powerful enough
to capture syntactic aspects which are useful for compression.

To understand and explain which linguistic dimensions are captured by an
LSTM is non-trivial. This is due to the fact that the sequences of input histories
are compressed into several dense vectors by the LSTM’s components whose
purposes with respect to representing linguistic information is not evident. To
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the best of our knowledge, the only attempt to better understand the reasons of
an LSTM’s performance and limitations is the work of Karpathy et al. (2016) by
means of visualization experiments and cell activation statistics in the context
of character-level language modeling.

Our work is motivated by the difficulty in understanding and interpreting ex-
isting RNN architectures from a linguistic point of view. Here we ask:

Research question 2: From a linguistic perspective, what makes recurrent neural
networks work so well for language modeling?

To answer this research question, we divide it into three sub-questions:

RQ2.1 Can recurrent neural networks (RNNs) be made more interpretable?

We propose Recurrent Memory Networks (RMNs), a novel RNN archi-
tecture that combines the strengths of both LSTM and Memory Network
(Sukhbaatar et al., 2015). In RMNs, the Memory Block component—a
variant of a Memory Network—accesses the most recent input words and
selectively attends to words that are relevant for predicting the next word
given the current LSTM state. We demonstrate that our RMN outper-
forms competitive LSTM baselines in terms of perplexity on three large
German, Italian, and English datasets. Importantly, by looking at the at-
tention distribution over history words, our RMN allows us not only to
interpret the results but also to discover underlying dependencies present
in the data.

RQ2.2 What linguistic phenomena captured by RNNs make them so successful in
modeling language?

We perform an analysis along various linguistic dimensions that our model
captures. This is possible only because the Memory Block allows us to
look into its internal states and its explicit use of additional inputs at each
time step. We carry out analysis of the attention weights with respect
to lexical position and dependency syntax. Our analysis suggests that
RMNs capture lexical co-occurrences regardless of their distance as well
as some important syntactic dependencies.

RQ2.3 Do RMNs offer any extra modeling power in addition to their interpretability?

We show that, with a simple modification, our RMN can be successfully
applied to NLP tasks other than language modeling. On the Sentence
Completion Challenge (Zweig and Burges, 2012), our model achieves an
impressive 69.2% accuracy, surpassing the previous state of the art 58.9%
by a large margin.

The rest of the chapter is organized as follow: We briefly review LSTM networks
in Section §4.2. We introduce Recurrent Memory Networks in Section §4.3 to
answer RQ2.1. We then evaluate RMNs on language model benchmarks in Sec-
tion §4.4. In Section §4.5 we provide detailed analyses along various linguistic
dimensions captured by RMNs as the answer to RQ2.2. Next, we answer RQ2.3
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by applying RMNs to the sentence completion task in Section §4.6. We point out
the limitation of our models in Section §4.7. Finally, we conclude this chapter
in Section §4.8.

4.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) have shown impressive performances on
many sequential modeling tasks due to their ability to encode unbounded input
histories. However, training simple RNNs is difficult because of the vanishing
and exploding gradient problems (Bengio et al., 1994; Pascanu et al., 2013). A
simple and effective solution for exploding gradients is gradient clipping pro-
posed by Pascanu et al. (2013). To address the more challenging problem of van-
ishing gradients, several variants of RNNs have been proposed. Among them,
Long Short-Term Memory (Hochreiter and Schmidhuber, 1997) and Gated Re-
current Unit (Cho et al., 2014) are widely regarded as the most successful vari-
ants. In this work, we focus on LSTMs because they have been shown to out-
perform GRUs on language modeling tasks (Józefowicz et al., 2015). In the fol-
lowing, we will detail the LSTM architecture used in this work.

Long Short-Term Memory

Notation: Throughout this chapter, we denote matrices, vectors, and scalars us-
ing bold uppercase (e.g., W ), bold lowercase (e.g., b) and lowercase (e.g., n) let-
ters, respectively. The LSTM used in this work is specified as follows:

it D sigm.Wxi xt CWhi ht!1 C bi /

jt D sigm.Wxj xt CWhj ht!1 C bj /

ft D sigm.Wxf xt CWhf ht!1 C bf /

ot D tanh.Wxoxt CWhoht!1 C bo/

ct D ct!1 ˇ ft C it ˇ jt ;

ht D tanh.ct /ˇ ot

where xt is the input vector at time step t , ht!1 is the LSTM hidden state at the
previous time step, W# and b# are weights and biases. The symbol ˇ denotes
the Hadamard product or element-wise multiplication.

Despite the popularity of the LSTM in sequential modeling, its design is not
straightforward to justify and understanding why it works remains a challenge
(Hermans and Schrauwen, 2013; Chung et al., 2014; Greff et al., 2017; Józefowicz
et al., 2015; Karpathy et al., 2016). There have been few recent attempts to under-
stand the components of an LSTM from an empirical point of view: Greff et al.
(2017) carry out a large-scale experiment of eight LSTM variants. The results
from their 5,400 experimental runs suggest that forget gates and output gates
are the most critical components of LSTMs. Józefowicz et al. (2015) conduct and
evaluate over ten thousand RNN architectures and find that the initialization
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of the forget gate bias is crucial to the LSTM’s performance. While these find-
ings are important to help researchers choose appropriate LSTM architectures,
they do not shed light on what information is captured by the hidden states of
an LSTM.

4.3 Recurrent Memory Network

It has been demonstrated that RNNs can retain input information over a long
period. However, existing RNN architectures make it difficult to analyze what
information is exactly retained at their hidden states at each time step, espe-
cially when the data has complex underlying structures, which is common in
natural language. Motivated by this difficulty, we propose a novel RNN ar-
chitecture called Recurrent Memory Network (RMN). On linguistic data, the
RMN allows us not only to qualify which linguistic information is preserved
over time and why this is the case but also to discover dependencies within
the data (Section §4.5). Our RMN consists of two components: an LSTM and
a Memory Block (MB) (Section §4.3.1). The MB takes the hidden state of the
LSTM and compares it to the most recent inputs using an attention mechanism
(Gregor et al., 2015; Bahdanau et al., 2015; Graves et al., 2014). Thus, analyzing
the attention weights of a trained model can give us valuable insight into the
information that is retained over time in the LSTM.
In the following, we describe in detail the MB architecture and the combination
of the MB and the LSTM to form an RMN.

4.3.1 Memory Block

softmax

{xi}

hm

h

P

mi

ci

⇥

g

Figure 4.1: A graphical representation of the MB.

The Memory Block (Figure 4.1) is a variant of a Memory Network (Sukhbaatar
et al., 2015) with one hop (or a single-layer Memory Network). At time step
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t , the MB receives two inputs: the hidden state ht of the LSTM and a set fxig
of n most recent words including the current word xt . We refer to n as the
memory size. Internally, the MB consists of two lookup tables M and C of size
jV j % d , where jV j is the size of the vocabulary and d is the dimensionality
of word embeddings. With slight abuse of notation we denote Mi D M .fxig/
and Ci D C .fxig/ as n % d matrices where each row corresponds to an input
memory embedding Mi and an output memory embedding Ci of each element
of the set fxig. We use the matrix Mi to compute an attention distribution over
the set fxig:

pt D softmax.Mi ht / (4.1)
When handling data that exhibits a strong temporal relationship, such as nat-
ural language, an additional temporal matrix T 2 Rn"d can be used to bias at-
tention with respect to the position of the data points (Sukhbaatar et al., 2015).
In this case, equation 4.1 becomes

pt D softmax
!
.Mi C T /ht

"
(4.2)

We then use the attention distribution pt to compute a context vector represen-
tation of fxig:

st D C>i pt (4.3)
Finally, we combine the context vector st and the hidden state ht by a function
g.!/ to obtain the output hm

t of the MB. Instead of using a simple addition func-
tion g.st ;ht / D stCht as in Sukhbaatar et al. (2015), we propose to use a gating
unit that decides how much it should trust the hidden state ht and context st at
time step t . Our gating unit is a form of Gated Recurrent Unit (Cho et al., 2014;
Chung et al., 2014):

zt D sigm.Wszst C Uhzht / (4.4)
rt D sigm.Wsrst C Uhrht / (4.5)
Qht D tanh.Wst C U .rt ˇ ht // (4.6)

hm
t D .1 " zt /ˇ ht C zt ˇ Qht (4.7)

where zt is an update gate, rt is a reset gate.
The choice of the composition function g.!/ is crucial for the MB, especially
when one of its input comes from the LSTM. The simple addition function
might overwrite the information within the LSTM’s hidden state and therefore
prevent the MB from keeping track of information in the distant past. The gat-
ing function, on the other hand, can control the degree of information that flows
from the LSTM to the MB’s output.

4.3.2 RMN Architectures

As explained above, our proposed MB receives the hidden state of the LSTM
as one of its input. This leads to an intuitive combination of the two units
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by stacking the MB on top of the LSTM. We call this architecture Recurrent-
Memory (RM). The RM architecture, however, does not allow interaction be-
tween Memory Blocks at different time steps. To enable this interaction we can
stack one more LSTM layer on top of the RM (Figure 4.2). We call this architec-
ture Recurrent-Memory-Recurrent (RMR).

LSTM

MB

LSTM

LSTM

MB

LSTM

LSTM

MB

LSTM

LSTM

MB

LSTM

LSTM

MB

LSTM

Figure 4.2: A graphical illustration of an unfolded RMR with memory size 4. The MB takes the
output of the bottom LSTM layer and the 4-word history as its input. The output of the MB is then
passed to the second LSTM layer on top. There is no direct connection between MBs of different
time steps. The last LSTM layer carries the MB’s outputs recurrently.

4.4 Language Model Experiments

Language models play a crucial role in many NLP applications such as ma-
chine translation and speech recognition. Language modeling also serves as a
standard test bed for newly proposed models (Sukhbaatar et al., 2015; Kalch-
brenner et al., 2016). We conjecture that, by explicitly accessing history words,
RMNs will offer better predictive power than the existing recurrent architec-
tures. We therefore evaluate our RMN architectures against state-of-the-art
LSTMs in terms of perplexity.

4.4.1 Data

We evaluate our models on three languages: English, German, and Italian. We
are especially interested in German and Italian because of their larger vocabu-
laries and complex agreement patterns. Table 4.1 summarizes the data used in
our experiments.

The training data consits of approximately 1M sentences in each language. For
English, we use all the News Commentary data (8M tokens) and 18M tokens
from News Crawl 2014 for training. Development and test data are randomly
drawn from the concatenation of the WMT 2009-2014 test sets (Bojar et al., 2015).
For German, we use the first 6M tokens from the News Commentary data and
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Lang Train Dev Test jsj jV j
En 26M 223K 228K 26 77K
De 22M 202K 203K 22 111K
It 29M 207K 214K 29 104K

Table 4.1: Data statistics. jsj denotes the average sentence length and jV j the vocabulary size.

16M tokens from News Crawl 2014 for training. For development and test data
we use the remaining part of the News Commentary data concatenated with the
WMT 2009-2014 test sets. Finally, for Italian, we use a selection of 29M tokens
from the PAISÀ corpus (Lyding et al., 2014), mainly including Wikipedia pages
and, to a minor extent, Wikibooks and Wikinews documents. For development
and test we randomly draw documents from the same corpus.

4.4.2 Setup

Our baselines are a 5-gram language model with Kneser-Ney smoothing, a
Memory Network (MemN) (Sukhbaatar et al., 2015), a vanilla single-layer LSTM,
and two stacked LSTMs with two and three layers respectively. N-gram models
have been used intensively in many applications for their excellent performance
and fast training. Chen et al. (2016) show that n-gram model outperforms a pop-
ular feed-forward language model (Bengio et al., 2003) on a one billion word
benchmark (Chelba et al., 2013). While taking longer time to train, RNNs have
been proven superior to n-gram models (Mikolov et al., 2010).

We compare these baselines with our two model architectures: RMR and RM.
For each of our models, we consider two settings: with or without temporal
matrix (+tM or –tM), and linear versus gating composition function. In total,
we experiment with eight RMN variants.

For all neural network models, we set the dimension of word embeddings, the
LSTM hidden states, its gates, the memory input, and output embeddings to
128. The memory size is set to 15. The bias of the LSTM’s forget gate is ini-
tialized to 1 (Józefowicz et al., 2015) while all other parameters are initialized
uniformly in ."0:05; 0:05/. The initial learning rate is set to 1 and is halved
at each epoch after the forth epoch. All models are trained for 15 epochs with
standard stochastic gradient descent (SGD). During training, we rescale the gra-
dients whenever their norm is greater than 5 (Pascanu et al., 2013).

Sentences with the same length are grouped into buckets. Then, mini-batches
of 20 sentences are drawn from each bucket. We do not use truncated back-
propagation through time, instead gradients are fully back-propagated from
the end of each sentence to its beginning. When feeding in a new mini-batch,
the hidden states of LSTMs are reset to zeros, which ensures that the data is
modeled at the sentence level. For our RMN models, instead of using padding,
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at time step t < n, we use a slice T Œ1 W t ! 2 Rt"d of the temporal matrix T 2
Rn"d .

4.4.3 Results

Perplexities on the test data are given in Table 4.2. All RMN variants substan-
tially outperform n-gram and MemN models, and most RMN variants also out-
perform the competitive LSTM baselines. The best results overall are obtained
by RM with temporal matrix and gating composition (+tM-g).

Model De It En
5-gram – 225.8 167.5 219.0
MemN 1 layer 169.3 127.5 188.2

LSTM
1 layer 135.8 108.0 145.1
2 layers 128.6 105.9 139.7
3 layers 125.1 106.5 136.6

RMR
+tM-l 127.5 109.9 133.3
–tM-l 126.4 106.1 134.5
+tM-g 126.2 99.5 135.2
–tM-g 122.0 98.6 131.2

RM
+tM-l 121.5 92.4 127.2
–tM-l 122.9 94.0 130.4
+tM-g 118.6 88.9 128.8
–tM-g 129.7 96.6 135.7

Table 4.2: Perplexity comparison including RMN variants with and without temporal matrix (tM)
and linear (l) versus gating (g) composition function.

Our results agree with the hypothesis of mitigating prediction error by explic-
itly using the last nwords in RNNs (Karpathy et al., 2016). We further observe
that using a temporal matrix always benefits the RM architectures. This can
be explained by seeing the RM as a principled way to combine an LSTM and a
neural n-gram model. By contrast, RMR works better without temporal matrix
but its overall performance is not as good as RM. This suggests that we need a
better mechanism to address the interaction between MBs, which we leave to
future work. Finally, the proposed gating composition function outperforms
the linear one in most cases.

For historical reasons, we also run a stacked three-layer LSTM and a RM(+tM-g)
on the much smaller Penn Treebank dataset (Marcus et al., 1993) with the same
setting described above. The respective perplexities are 126.1 and 123.5.
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Figure 4.3: Average attention per position of RMN history. Top: RMR(–tM-g), bottom: RM(+tM-g).
Rightmost positions represent most recent history.

4.5 Attention Analysis

The goal of our RMN design is twofold: (i) to obtain better predictive power
and (ii) to facilitate understanding of the model and discover patterns in data.
In Section §4.4, we have validated the predictive power of the RMN and below
we investigate the source of this performance based on linguistic assumptions
of word co-occurrences and dependency structures.

4.5.1 Positional and Lexical Analysis

As a first step towards understanding RMNs, we look at the average attention
weights of each history word position in the MB of our two best model variants
(Figure 4.3). One can see that the attention mass tends to concentrate at the
rightmost position (the current word) and decreases when moving further to
the left (less recent words). This is not surprising since the success of n-gram
language models has demonstrated that the most recent words provide impor-
tant information for predicting the next word. Between the two variants, the
RM average attention mass is less concentrated to the right. This can be ex-
plained by the absence of an LSTM layer on top, meaning that the MB in the
RM architecture has to pay more attention to the more distant words in the past.
The remaining analyses described below are performed on the RM(+tM-g) ar-
chitecture as this yields the best perplexity results overall.

Beyond average attention weights, we are interested in those cases where atten-
tion focuses on distant positions. To this end, we randomly sample 100 words
from the test data and visualize attention distributions over the last 15 words.
Figure 4.4 shows the attention distributions for random samples of German
and Italian. Again, in many cases attention weights concentrate around the last
word (bottom row). However, we observe that many long distance words also
receive noticeable attention mass. Interestingly, for many predicted words, at-
tention is distributed evenly over memory positions, possibly indicating cases
where the LSTM state already contains enough information to predict the next
word.

To explain the long-distance dependencies, we first hypothesize that our RMN
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mostly memorizes frequent co-occurrences. We run the RM(+tM-g) model on
the German development and test sentences, and select those pairs of (most-
attended-word, word-to-predict) where the MB’s attention concentrates on a word
more than six positions to the left. Then, for each set of pairs with equal dis-
tance, we compute the mean frequency of corresponding co-occurrences seen
in the training data (Table 4.3). The lack of correlation between frequency and
memory location suggests that RMN does more than simply memorizing fre-
quent co-occurrences.

d 7 8 9 10 11 12 13 14 15
# 54 63 42 67 87 47 67 44 24

Table 4.3: Mean frequency (") of (most-attended-word, word-to-predict) pairs grouped by relative
distance (d ).

Previous work (Hermans and Schrauwen, 2013; Karpathy et al., 2016) studied
this property of LSTMs by analyzing simple cases of closing brackets. By con-
trast RMN allows us to discover more interesting dependencies in the data. We
manually inspect those high-frequency pairs to see whether they display cer-
tain linguistic phenomena. We observe that RMN captures, for example, sepa-
rable verbs and fixed expressions in German. Separable verbs are frequent in Ger-
man: they typically consist of preposition+verb constructions, such ab+hängen
(‘to depend’) or aus+schließen (‘to exclude’), and can be spelled together (abhän-
gen) or apart as in ‘hängen von der Situation ab’ (‘depend on the situation’), de-
pending on the grammatical construction. Figure 4.5a shows a long-dependency
example for the separable verb abhängen (to depend). When predicting the verb’s
particle ab, the model correctly attends to the verb’s core hängt occurring seven
words to the left. Figure 4.5b and 4.5c show fixed expression examples from
German and Italian, respectively: schlüsselrolle ... spielen (play a key role) and in-
signito ... titolo (awarded title). Here too, the model correctly attends to the key

de

it

en

Figure 4.4: Attention visualization of 100 word samples. Bottom positions in each plot represent
most recent history. Darker color means higher weight.
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word despite its long distance from the word to predict.

Other interesting examples found by the RMN in the test data include:

German: findet statt (takes place), kehrte zurück (came back), fragen antworten
(questions answers), kämpfen gegen (fight against), bleibt erhalten (remains
intact), verantwortung übernimmt (takes responsibility);

Italian: sinistra destra (left right), latitudine longitudine (latitude longitude), col-
legata tramite (connected through), sposò figli (got-married children), in-
signito titolo (awarded title).

4.5.2 Syntactic Analysis

It has been conjectured that RNNs, and LSTMs in particular, model text so well
because they capture syntactic structure implicitly. Unfortunately this has been
hard to prove, but with our RMN model we can get closer to answering this
important question.

We produce dependency parses for our test sets using the parser by Sennrich
et al. (2013) for German and Attardi et al. (2009) for Italian. Next we look at
how much attention mass is concentrated by the RM(+tM-g) model on differ-
ent dependency types. Figure 4.6 shows for each language a selection of ten
dependency types that are often long-distance.1 The German and Italian tag
sets are explained in Simi et al. (2014) and Foth (2006) respectively. Dependency
direction is marked by an arrow: e.g. !mod means that the word to predict is
a modifier of the attended word, while mod means that the attended word is
a modifier of the word to predict.2 White cells denote combinations of position
and dependency type that were not present in the test data.

While in most of the cases closest positions are attended the most, we can see
that some dependency types also receive noticeably more attention than the
average (all) on the long-distance positions. In German, this is mostly visible
for the head of separable verb particles (!avz), which nicely supports our ob-
servations in the lexical analysis (Section §4.5.1). Other attended dependencies
include: auxiliary verbs (!aux) when predicting the second element of a com-
plex tense (hat . . . gesagt / has said); subordinating conjunctions (konj ) when
predicting the clause-final inflected verb (dass sie sagen sollten / that they should
say); control verbs (!obji) when predicting the infinitive verb (versucht ihr zu
helfen / tries to help her). Out of the Italian dependency types selected for their
frequent long-distance occurrences (bottom of Figure 4.6), the most attended
are argument heads (!arg), complement heads (!comp), object heads (!obj)
and subjects (subj ). This suggests that the RMN is mainly capturing predicate

1The full plots are available at https://github.com/ketranm/RMN
2Some dependency directions, like obj in Italian, are almost never observed due to order con-

straints of the language.

https://github.com/ketranm/RMN
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argument structure in Italian. Notice that syntactic annotation is never used to
train the model, but only to analyze its predictions.

[-15, -12] [-11, -8] [-7, -4] -3 -2 -1
[ALL]

subj 
!rel
!obji
!objc
obja 
konj 
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0.4

0.5

Figure 4.6: Average attention weights per position, broken down by dependency relation
type+direction between the attended word and the word to predict. Top: German. Bottom: Italian.
More distant positions are binned.

We can also use our RMN to discover which complex dependency paths are
important for word prediction. To mention just a few examples, high attention
on the German path [subj ,!kon,!cj] indicates that the model captures mor-
phological agreement between coordinate clauses in non-trivial constructions
of the kind: spielen die Kinder im Garten und singen / the children play in the gar-
den and sing. In Italian, high attention on the path [!obj,!comp,!prep] denotes
cases where the semantic relatedness between a verb and its object does not stop
at the object’s head, but percolates down to a prepositional phrase attached to
it (passò buona parte della sua vita / spent a large part of his life). Interestingly, both
local n-gram context and immediate dependency context would have missed
these relations.

While much remains to be explored, our analysis shows that RMNs discover
patterns far more complex than pairs of opening and closing brackets, and sug-
gests that the network’s hidden state captures to a large extent the underlying
structure of text.
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4.6 Sentence Completion Challenge

In addition to demonstrating that RMNs provide an interpretable interface for
linguistic analysis, in this section, we evaluate the modeling power of RNNs
on a challenging NLP task, namely Sentence Completion. The Microsoft Re-
search Sentence Completion Challenge (Zweig and Burges, 2012) has recently
become a test bed for advancing statistical language modeling. We choose this
task to demonstrate the effectiveness of our RMN in capturing sentence coher-
ence. The test set consists of 1,040 sentences selected from five Sherlock Holmes
novels by Conan Doyle. For each sentence, a content word is removed and five
candidates of the missing word are provided. The task is to identify the correct
missing word among the five given candidates. The task is carefully designed
to be non-solvable for local language models such as n-gram models. The best
reported result is 58.9% accuracy (Mikolov et al., 2013)3 which is far below hu-
man accuracy of 91% (Zweig and Burges, 2012).

As baseline we use a stacked three-layer LSTM. Our models are two variants
of RM(+tM-g), each consisting of three LSTM layers followed by a MB. The
first variant (unidirectional-RM) uses n words preceding the word to predict,
the second (bidirectional-RM) uses the n words preceding and the n words fol-
lowing the word to predict, as MB input. We include bidirectional-RM in the
experiments to show the flexibility of utilizing future context in RMNs.

We train all models on the standard training data of the challenge, which con-
sists of 522 novels from Project Gutenberg, preprocessed similarly to (Mnih and
Kavukcuoglu, 2013). After sentence splitting, tokenization and lowercasing, we
randomly select 19,000 sentences for validation. The training and validation
sets include 47M and 190K tokens respectively. The vocabulary size is about
64,000.

We initialize and train all networks as described in Section §4.4.2. Moreover,
for regularization, we place dropout (Srivastava et al., 2014) after each LSTM
layer as suggested in (Pham et al., 2014). The dropout rate is set to 0.3 in all the
experiments.

Table 4.4 summarizes the results. It is worth mentioning that our LSTM baseline
outperforms a dependency RNN making explicit use of syntactic information
(Mirowski and Vlachos, 2015) and performs on par with the best published re-
sult (Mikolov et al., 2013). Our unidirectional-RM sets a new state of the art for
the Sentence Completion Challenge with 69.2% accuracy. Under the same set-
ting of d we observe that using bidirectional context does not bring additional
advantages to the model. Mnih and Kavukcuoglu (2013) also report a similar
observation. We believe that RMNs may achieve further improvements with
hyper-parameter optimization.

3The authors use a weighted combination of skip-ngram and RNN without giving any technical
details.
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The stage lost a fine , even as science lost an acute reasoner , when he
became a specialist in crime
a) linguist b) hunter c) actor| d) estate e) horseman}

What passion of hatred can it be which leads a man to in such a place at
such a time
a) lurk| b) dine} c) luxuriate d) grow e) wiggle

In my inmost heart I believed that I could where others failed , and
now I had the opportunity to test myself
a) smell b) succeed| c) lie d) spell e) forget}

My heart is already since i have confided my trouble to you
a) falling b) distressed} c) soaring d) lightened| e) punished

My morning’s work has not been , since it has proved that he has
the very strongest motives for standing in the way of anything of the sort
a) invisible b) neglected}| c) overlooked d) wasted e) deliberate

That is his fault , but on the whole he’s a good worker
a) main b) successful c) mother’s| d) generous e) favourite}

Figure 4.7: Examples of sentence completion. The correct option is in boldface. Predictions by the
LSTM baseline and by our best RMN model are marked by } and | respectively.

Figure 4.7 shows some examples where our best RMN beats the already very
competitive LSTM baseline, or where both models fail. We can see that in some
sentences the necessary clues to predict the correct word occur only to its right.
While this seems to conflict with the worse result obtained by the bidirectional-
RM, it is important to realize that prediction corresponds to the whole sentence
probability. Therefore a badly chosen word can have a negative effect on the
score of future words. This appears to be particularly true for the RMN due
to its ability to directly access (distant) words in the history. The better perfor-
mance of a unidirectional versus a bidirectional-RM may indicate that the atten-
tion in the memory block can be distributed reliably only over words that have
been already seen and summarized by the current LSTM state. In future work,
we may investigate whether different ways to combine two RMNs running in
opposite directions further improve accuracy on this challenging task.

4.7 Limitations

While our main goal is to understand the source of RNNs’ impressive perfor-
mance from a linguistic perspective, from a computational point of view, we
note that our proposed RMNs require a significant amount of additional com-
putation during training because they have a much larger number of param-
eters in comparison to LSTMs. However, it is possible to reduce the number
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Model n d Accuracy
LSTM – 256 56.0

unidirectional-RM 15 256 64.3
15 512 69.2

bidirectional-RM 7 256 59.6
10 512 67.0

Table 4.4: Accuracy on 1,040 test sentences. We use perplexity to choose the best model. Dimension
of word embeddings, LSTM hidden states, and gate g parameters are set to d .

of parameters in RMNs without sacrificing their interpretability. A straightfor-
ward solution, for example, is to share input/output memory embeddings with
word embeddings.

4.8 Conclusions

In this chapter, we have answered Research Question 2: From a linguistic per-
spective, what makes recurrent neural networks work so well for language modeling?
In order to answer this research question, we have broken it down into three
sub-questions and provided an answer to each of those. In the following, we
revisit the three sub-questions posed at the beginning of the chapter and high-
light the main contributions and findings in addressing each individual sub-
question.

RQ2.1 Can recurrent neural networks (RNNs) be made more interpretable?

We showed that recurrent neural networks can be made more interpretable by
equipping them with an attention-based memory addressing mechanism. The
Recurrent Memory Networks (RMNs) proposed in this chapter are an imple-
mentation of this idea. The Memory Blocks in RMNs provide an informative
interface to investigate the internal behavior of the models. By analyzing at-
tention distributions within Memory Blocks, we can identify important lexical
features for predicting the next words and inspect them from a linguistic per-
spective.

RQ2.2 What linguistic phenomena captured by RNNs make them so successful in mod-
eling language?

We performed the analysis of the attention weights in RMNs when they predict
the next word. We found that RMNs learn important co-occurrences regardless
of their distance. Even more interestingly, our RMNs implicitly capture certain
dependency types that are important for word prediction, despite being trained
without any syntactic information.

RQ2.3 Do RMNs offer any extra modeling power in addition to their interpretabil-
ity?



4.8. Conclusions 65

We evaluated RMNs on the Sentence Completion Challenge dataset. We showed
that RMNs obtain excellent performance at modeling sentence coherence, set-
ting a new state of the art on the challenging sentence completion task.
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Chapter 5

The Importance of Being
Recurrent for Modeling
Hierarchical Structure

5.1 Introduction and Research Questions

In the previous chapter, we have demonstrated that recurrent neural networks,
in particular Long Short-Term Memory networks (LSTMs), can be made more
powerful with augmented memory. Additionally, by analyzing augmented
memory, we have shown that RNNs can capture some important syntactic de-
pendencies without being provided with any syntactic annotations. Recent
work corroborates our findings that LSTMs can implicitly encode and exploit
hierarchical information when trained to solve common natural language pro-
cessing tasks such as language modeling (Linzen et al., 2016) and neural ma-
chine translation (Shi et al., 2016). While LSTMs appear to be a natural choice
for modeling sequential data, recently a class of non-recurrent models (Gehring
et al., 2017; Vaswani et al., 2017) have shown competitive performance on se-
quence modeling. Gehring et al. (2017) propose a fully convolutional sequence-
to-sequence model that achieves state-of-the-art performance in machine trans-
lation. Vaswani et al. (2017) introduce Transformer networks that do not use any
convolution or recurrent connections while obtaining the best translation per-
formance. These non-recurrent models are appealing due to their highly paral-
lelizable computations on modern GPUs. But do they have the same ability to
exploit hierarchical structures implicitly in comparison to RNNs? In this chapter,
we compare the two architectures—recurrent versus non-recurrent—with respect
to their ability to model hierarchical structure. We ask the following research
question

Research question 3 Do non-recurrent neural networks have the same ability to ex-
ploit hierarchical structures implicitly in comparison to their recurrent counterpart?
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Our interest here is the ability of capturing hierarchical structure without being
equipped with explicit structural representations (Bowman et al., 2015b; Linzen
et al., 2016). We choose Transformer as a non-recurrent model to study in this
paper. We refer to Transformer as Fully Attention Network (FANs) to empha-
size this characteristic. Our motivation to favor FANs over convolutional neural
networks (CNNs) is that FANs always have full access to the sequence history,
making them more suited for modeling long distance dependencies than CNNs.
Additionally, FANs promise to be more interpretable than LSTMs by visualiz-
ing attention weights.

In order to evaluate the learned representations of both models, it is important
to chose appropriate tasks wherein reasoning about hierarchical structure is the
key to achieve good performance. We study two tasks in this chapter, each of
which corresponds to a sub-question:

RQ3.1 Do FANs have the same ability as LSTMs to exploit hierarchical structure in
natural language data?

RQ3.2 Do FANs have the same ability as LSTMs to encode artificial tree-structured
data?

The rest of the chapter is organized as follows: We first describe the mechanics
of FAN (§ 5.2). We then highlight the differences between the two architectures
(§5.3) and introduce the two tasks (§5.4). Then we provide setup and results for
each task (§5.5 and §5.6) and discuss our findings (§5.7).

5.2 Fully Attention Network

FANs consist of several sub-layers stacked on top of each other. Figure 5.1 il-
lustrates the computational graph of a sub-layer in FANs. Let x D .x1; : : : ; xn/
be sequence of tokens xi . For each token xi , let xi 2 Rd be its embedding. We
denote the embedding matrix of sentence x by X D Œx1I : : : Ixn! 2 Rn"d . Given
an input X , a sub-layer L transforms x to output Y 2 Rn"d using a series of
transformations

Z DMultiHead.X/ (5.1)
H0 D LayerNormalization.X CZ / (5.2)
H1 D FeedForward.H0/CH0 (5.3)
Y D LayerNormalization.H1/ (5.4)

The MultiHead introduced by Vaswani et al. (2017) performs the following com-
putations:
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MultiHead.x/ D ŒZ1IZ2I : : : IZh!Wo (5.5)

Zi D softmax.
Qi K

>
ip

dh

/Vi (5.6)

Qi D XW
q

i W
q

i 2 Rd"dh (5.7)
Ki D XW k

i W k
i 2 Rd"dh (5.8)

Vi D XW v
i W v

i 2 Rd"dh (5.9)

where W
q

i , W
q

i , W
q

i and Wo 2 Rhdh"d are trainable parameters. The dimension
dh is chosen such that dh D d=h.

Each matrix Zi is a self-attention head that captures dependencies amongst
the input words xi . Having multiple heads can be useful to encode different
dependencies within the input. For instance, one head focuses on capturing
co-occurrence while another head specializes in detecting morphological agree-
ment. This is a simplified interpretation of the role of each head for the purpose
of understanding the model architecture.

The Layer Normalization is a technique to reduce training time of deep neu-
ral network by normalizing activities of the hidden units. The details of Layer
Normalization are given in Ba et al. (2016b). The FeedForward layer is given
by

FeedForward.x/ D max.0;xW1 C b1/W2 C b2 (5.10)

where W1 2 Rd"df , b1 2 Rdf , W2 2 Rdf "d , and b2 2 Rd are trainable parame-
ters. In our experiments, we set df D 2d .

In order to model word order, FANs use additional positional embeddings to
encode the relative position of words in the sentence. A positional embedding
epŒt ! 2 Rd at index t (corresponding to the t -th token) is given as

epŒt !Œ2i ! D sin. t

100002i=d
/ (5.11)

epŒt !Œ2i C 1! D cos. t

100002i=d
/ (5.12)

Each dimension of epŒt ! corresponds to a sinusoid. Using sinusoids for posi-
tional embeddings have several advantages. First, it allows the model to gen-
eralize for longer sequences. Second, for a fixed offset k, epŒt C k! is a linear
function of epŒt !. This property makes it easy for the model to learn positional
dependencies in the input.

For the mechanics of recurrent neural networks, we refer to Chapter 4 in this the-
sis. Next, we highlight the main differences between FANs and RNNs.
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self
attn

layer
norm

feed
forward

layer
norm

Figure 5.1: Sub-layer of FAN. The computation flows from bottom to top. Dashed lines indicate
skip connection.

5.3 FANs versus LSTMs

Conceptually, FANs differ from LSTMs in the way they utilize the previous in-
put to predict the next output. Figure 5.2 depicts the main difference in terms
of computation when each model is making predictions. At time step t , a FAN
can access information from all previous time steps directly with O.1/ compu-
tational operations. FANs do so by employing a self-attention mechanism to
compute the weighted average of all previous input representations. In con-
trast, LSTMs compress at each time step all previous information into a single
vector recursively based on the current input and the previous compressed vec-
tor. By its definition, LSTMs require O.d/ computational operations to access
the information at time step t " d .

We now proceed to measure both models’ ability to learn hierarchical structure
with a set of controlled experiments.

5.4 Tasks

We choose two tasks to study in this work:

1. subject-verb agreement

2. logical inference

The first task was proposed by Linzen et al. (2016) to test the ability of recurrent
neural networks to capture syntactic dependencies in natural language. We
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(a) LSTM (b) FAN

Figure 5.2: Diagram of the main difference between an LSTM and a FAN. The purple box indicates
the summarized vector at current time step t which is used to make prediction. Orange arrows
indicate the information flow from a previous input (orange box) to that vector.

choose this task to study RQ3.1. The input to the neural models is a sequence
of words without any additional annotations of syntactic dependency. In order
to solve the task, the model must learn the latent dependency between verb and
its subject in a sentence.

The second task was introduced by Bowman et al. (2015b) to compare tree-
based recursive neural networks against sequence-based recurrent networks
with respect to their ability to exploit hierarchical structures. We choose this
task to study RQ3.2. The input to the models is a string representation of a
binary tree. In order to solve that task, the model must utilize the underlying
tree-structured representation of the input.

The choice of tasks here is important to ensure that both models have to ex-
ploit hierarchical structural features instead of shallow ones (Jia and Liang,
2017).

5.5 Subject-Verb Agreement

Linzen et al. (2016) propose the task of predicting number agreement between
subject and verb in naturally occurring English sentences as a proxy for the abil-
ity of LSTMs to capture hierarchical structure in natural language. We use the
dataset provided by Linzen et al. (2016) and follow their experimental proto-
col of training each model using either (a) a general language model, i.e., next
word prediction objective, and (b) an explicit supervision objective, i.e., predict-
ing the number of the verb given its sentence history. Table 5.1 illustrates the
training and testing conditions of the task.

A challenge for subject-verb agreement task is the possibility of agreement at-
traction errors (Bock and Miller, 1991) because dependencies are not explicitly
provided to the model. The following examples illustrate the challenge posed
to both FANs and LSTMs where there are intervening nouns (underlined) be-
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Table 5.1: Examples of training and test conditions for the two subject-verb agreement subtasks.
The full input sentence is “The keys to the cabinet are on the table” where verb and subject are
bold and agreement attractor words are underlined.

Input Train Test
(a) the keys to the cabinet are p(are) > p(is)?
(b) the keys to the cabinet plural plural/singular?

tween the subject (bold) and the verb (bold). These intervening nouns have the
opposite number as the subject and are referred to as agreement attractors:

(a) The only championship banners that are currently displayed within the
building are for national or NCAA Championships.

(b) Yet the ratio of men who survive to the women and children who survive
is not clear in this story.

5.5.1 Data

Following the original setting in (Linzen et al., 2016), we take 10% of the data for
training, 1% for validation, and the rest for testing. The vocabulary consists of
the 10k most frequent words, while the remaining words are replaced by their
part-of-speech tag.

5.5.2 Hyper-parameters

In this experiment, both the LSTM and the FAN have 4 layers, the dropout rate
is 0.2, and word-embeddings and hidden sizes are set to 128. The weights of the
word embeddings and output layer are shared as suggested by Inan et al. (2016);
Press and Wolf (2017). The FAN has two attention heads. LSTMs are trained
with the Adam optimizer with a learning rate of 0.001. The FAN is trained with
Adam for the language model objective and the YellowFin optimizer (Zhang
et al., 2017)1 for the number prediction objective. The initial learning rate is set
to 0.001.

We first assess whether the LSTM and FAN models trained with respect to the
language model objective assign higher probabilities to the correctly inflected
verbs. As shown by Figure 5.3a and Figure 5.3b, both models achieve high
accuracies for this task, but LSTMs consistently outperform FANs. Moreover,
LSTMs are clearly more robust than FANs with respect to task difficulty, mea-
sured both in terms of word distance and number of agreement attractors be-
tween subject and verb.

1We found that YellowFin gives better results than Adam for FANs.
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(a) Language model objective, breakdown by
distance

(b) Language model objective, breakdown
by number of attractors

(c) Number prediction objective, breakdown
by distance

(d) Number prediction objective, breakdown
by number of attractors

Figure 5.3: Results of subject-verb agreement with different training objectives.

Interestingly, previous studies (Christiansen and Chater, 2016; Cornish et al.,
2017) have argued that human memory limitations give rise to important char-
acteristics of natural language, including its hierarchical structure. Similarly,
our experiments suggest that, by compressing the history into a single vector
before making predictions, LSTMs are forced to better learn the input structure.
On the other hand, despite having direct access to all words in their history,
FANs are less capable of detecting the verb’s subject. We note that the valida-
tion perplexities of the LSTM and FAN are 75.17 and 71.39, respectively. The
lack of correlation between perplexity and agreement accuracy indicates that
FANs might capture other aspects of language better than LSTMs. We leave
this question to future work.

Second, we evaluate FAN and LSTM models explicitly trained to predict the
verb number (Figure 5.3c and Figure 5.3d). Again, we observe that LSTMs con-
sistently outperform FANs. This is a particularly interesting result since the
self-attention mechanism in FANs connects two words in any position with a
O.1/ number of executed operations, whereas RNNs require more recurrent
operations. Despite this apparent advantage of FANs, the performance gap be-
tween FANs and LSTMs increases with the distance and number of attractors.
We note that our LSTM results are better than those in Linzen et al. (2016). Also
surprising is that the language model objective yields higher accuracies than
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the number prediction objective. We believe this may be due to better model
optimization and to the embedding-output layer weight sharing, but we leave
a thorough investigation to future work.
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`3 h0

`3 h1

Figure 5.4: Proportion of times the subject is the most attended word by different heads at different
layers (`3 is the highest layer). Only cases where the model made a correct prediction are shown.

To gain further insights into our results, we examine the attention weights com-
puted by FANs during verb-number prediction (supervised objective). Specif-
ically, for each attention head at each layer of the FAN, we compute the per-
centage of times the subject is the most attended word among all words in the
history. Figure 5.4 shows the results for all cases where the model made the
correct prediction. While it is hard to interpret the exact role of attention for
different heads and at different layers, we find that some of the attention heads
at the higher layers (`2 h1, `3 h0) frequently point to the subject with an accu-
racy that decreases linearly with the distance between subject and verb.

5.6 Logical Inference

In this task, we choose the artificial language introduced by Bowman et al.
(2015b). This language has six word types a, b, c, d, e, f and three logical op-
erations or, and, not. There are seven mutually exclusive logical relations that
describe the relationship between two sentences: entailment (@, A), equiva-
lence (&), exhaustive and non-exhaustive contradiction (^, j), and two types of
semantic independence (#, `). We generate 60,000 samples2 with the number
of logical operations ranging from 1 to 12. The train/dev/test dataset ratios are
set to 0.8/0.1/0.1. In the following, we show some samples of the training data.

2https://github.com/sleepinyourhat/vecrtor-entailment

https://github.com/sleepinyourhat/vecrtor-entailment
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( d ( or f ) ) A ( f ( and a ) )
( d ( and ( c ( or d ) ) ) ) # ( not f )

( not ( d ( or ( f ( or c ) ) ) ) ) @ ( not ( c ( and ( not d ) ) ) )
( ( not ( c ( or a ) ) ) ( and e ) ) j ( ( ( ( not d ) ( and e ) ) ( and a ) ) ( or c ) )

5.6.1 Why artificial data?

Despite the simplicity of the language, this task is not trivial. To correctly clas-
sify logical relations, the model must learn nested structures as well as the scope
of logical operations. We verify the difficulty of the task by training three bag-
of-words models followed by sum/average/max-pooling. The best of the three
models achieve less than 59% accuracy on the logical inference versus 77% on
the Stanford Natural Language Inference (SNLI) corpus (Bowman et al., 2015a).
This shows that the SNLI task can be largely solved by exploiting shallow fea-
tures without understanding the underlying linguistic structures.

5.6.2 Models

We follow the general architecture proposed in Bowman et al. (2015b): Premise
and hypothesis sentences are encoded by fixed-size vectors. These two vectors
are then concatenated and fed to a 3-layer feed-forward neural network with
ReLU nonlinearities to perform 7-way classification.

The LSTM architecture used in this experiment is similar to that of Bowman
et al. (2015b). We simply take the last hidden state of the top LSTM layer as a
fixed-size vector representation of the sentence. Here we use a 2-layer LSTM
with skip connections. The FAN maps a sentence x of length n to a matrix
Y D Œy1I : : : Iyn! 2 Rn"d . To obtain a fixed-size representation z, we use a self-
attention layer with two trainable queries q1; q2 2 R1"d :

zi D softmax
&

qi Y
>

p
d

'
Y i 2 f1; 2g

z D Œz1; z2!

5.6.3 Results

Following the experimental protocol of (Bowman et al., 2015b), the data is di-
vided into 13 bins based on the number of logical operations. Both FANs and
LSTMs are trained on samples with at most n logical operations and tested on
all bins. Figure 5.5 shows the result of the experiments with n 2 f3; 6; 9; 12g. We
see that FANs and LSTMs perform similarly when trained on the whole dataset
(Figure 5.5d). However when trained on a subset of the data (Figure 5.5b),
LSTMs obtain better accuracies on similar examples (n # 6) and LSTMs gen-
eralize better on longer examples (6 < n # 12).
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(a) n $ 3 (b) n $ 6

(c) n $ 9 (d) n $ 12

Figure 5.5: Results of logical inference

5.7 Conclusions

Using two controlled experiments, we have compared a recurrent architecture
(LSTM) to a non-recurrent one (FAN) with respect to the ability of capturing
hierarchical structure. Our findings provide an empirical answer to Research
question 3:

RQ3 Do non-recurrent neural networks have the same ability to exploit hierarchical
structures implicitly in comparison to their recurrent counterpart?

Our experiments show that LSTMs slightly but consistently outperform FANs.
Specifically, with the first experiment we have answered:

RQ3.1 Do FANs have the same ability as LSTMs to exploit hierarchical structure in
natural language data?

We evaluated both LSTMs and FANs on a subject-verb agreement task. Both
types of models performed well overall. However, we found that LSTMs are no-
tably more robust with respect to the presence of misleading features, whether
trained with explicit supervision or with a general language model objective.

With the second experiment we have answered:

RQ3.2 Do FANs have the same ability as LSTMs to encode artificial tree-structured
data?
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We evaluated two types of models on a logical inference task, where the input
is given in the form of bracketings. Our results suggest that both LSTMs and
FANs can exploit the structure of the input as they both perform better than
a bag-of-words baseline. However, we found that LSTMs generalize better to
longer sequences for the logical inference task.
These findings suggest that recurrency is a key model property which should
not be sacrificed for efficiency when hierarchical structure matters for the task.
This does not imply that LSTMs should always be preferred over non-recurrent
architectures. In fact, both FAN- and CNN-based networks have proved to per-
form comparably to or better than LSTM-based ones on a very complex task like
machine translation (Gehring et al., 2017; Vaswani et al., 2017). Nevertheless,
we believe that the ability of capturing hierarchical information in sequential
data remains a fundamental need for building intelligent systems that can un-
derstand and process language. Thus we hope that our insights will be useful
towards building the next generation of neural networks.
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Chapter 6

Unsupervised Neural Hidden
Markov Models

6.1 Introduction and Research Questions

In Chapter 4 and Chapter 5, we have shown that recurrent neural network LMs
can implicitly capture shallow syntactic dependency types that are important
for word prediction, despite being trained without any syntactic information.
Nevertheless, the word prediction objective is a supervised objective and neural
networks are known for their ability to exploit hierarchical structure in super-
vised learning (Linzen et al., 2016; Shi et al., 2016; Belinkov et al., 2017). In this
chapter, we explore the representational power of neural networks in a more
challenging setup, namely unsupervised linguistic structure prediction.

There are two important motivations for unsupervised linguistic structure pre-
diction: First, it plays a key role in many NLP applications such as topic mod-
eling (Blei et al., 2003) in information retrieval and word alignment in phrase-
based machine translation (Koehn et al., 2003). Second, while unsupervised
linguistic structure has been studied exhaustively in many aspect of computa-
tional linguistics such as part-of-speech induction (Christodoulopoulos et al.,
2010) and grammar induction (Klein and Manning, 2004), we are interested in
these unsupervised models that are parametrized by neural networks and that
can be trained in an end-to-end fashion. With the above motivations, in this
chapter we ask:

Research question 4: Can neural networks be used to induce linguistic structure in
a completely unsupervised manner?

We will answer this research question using probabilistic graphical models.
Probabilistic graphical models are among the most important tools available
to the NLP community. In particular, the ability to train generative models us-
ing Expectation-Maximization (EM), Variational Inference (VI), and sampling
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methods like Markov chain Monte Carlo (MCMC) has enabled the develop-
ment of unsupervised systems for tag and grammar induction, alignment, topic
models and more. These latent variable models discover hidden structure in
text which aligns to known linguistic phenomena and whose clusters are easily
identifiable.

Recently, much of supervised NLP has found great success by augmenting or re-
placing context, features, and word representations with embeddings derived
from deep neural networks. These models allow for learning highly expres-
sive non-convex functions by simply back-propagating prediction errors. In-
spired by Berg-Kirkpatrick et al. (2010), who bridged the gap between super-
vised and unsupervised training with features, we bring neural networks to un-
supervised learning by providing evidence that even in unsupervised settings,
simple neural network models trained to maximize the marginal likelihood can
outperform more complicated models that use expensive inference.

We investigate Research Question 3 by studying a simple directed graphical
model, namely the Hidden Markov Model. Concretely, we ask three following
sub-questions:

RQ4.1 Can an unsupervised Hidden Markov Model be fully expressed as a neural
network model?

In this work, we show how a single latent variable sequence model, Hid-
den Markov Models (HMMs), can be implemented with neural networks
by simply optimizing the incomplete data likelihood. The key insight is
to perform standard forward-backward inference to compute posteriors
of latent variables and then back-propagate the posteriors through the
networks to maximize the likelihood of the data.

RQ4.2 What are the advantages of the neural methods in comparison to traditional
Bayesian methods?

Using features in unsupervised learning has been a fruitful enterprise
(Das and Petrov, 2011; Berg-Kirkpatrick and Klein, 2010; Cohen et al.,
2011) and attempts to combine HMMs and Neural Networks date back to
1991 (Bengio et al., 1991). Additionally, similarity metrics derived from
word embeddings have also been shown to improve unsupervised word
alignment (Songyot and Chiang, 2014). Our focus in this work is to present
a generative neural approach to HMMs and demonstrate how this frame-
work lends itself to modularity (e.g., the easy inclusion of morphological
information via Convolutional Neural Networks §6.6), and the addition
of extra conditioning context (e.g., using an RNN to model the sentence
§6.7). Our approach will be demonstrated and evaluated on the simple
task of part-of-speech tag induction.

RQ4.3 Are neural models sensitive to parameter initialization in the same way as non-
neural models are?
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It is well known that optimizing a non-convex unsupervised loss is prob-
lematic (Dauphin et al., 2014). In the literature of part-of-speech induc-
tion, researchers often report the average the results over many runs with
different parameter initializations (Clark, 2003; Goldwater et al., 2006; John-
son, 2007). In section §6.9, we will explore the effect of parameter ini-
tialization and neural network hyper-parameters on the quality of the in-
duced tags.

Interest in the interface of graphical models and neural networks has grown re-
cently as new inference procedures have been proposed (Johnson et al., 2016).
Common to this work and ours is the use of neural networks to produce poten-
tials. The approach presented here is easily applied to other latent variable mod-
els where inference is tractable and which are typically trained with EM. We be-
lieve that the important strength of using a neural network to produce model
probabilities is that it allows for seamless integration of additional context not
easily represented by conditioning variables in a traditional model.

The rest of the chapter is organized as follow: We briefly provide a relevant
background of graphical models in Section §6.2. We then present our frame-
work in Section §6.3. Next, we introduce the task of part-of-speech induction
and the derivation of Baum-Welch in Section §6.4. We provide the details of
neural implementation of our framework (§6.5) and the extension (§6.6 and
§6.7). Three evaluation metrics are presented in Section §6.8. The details of
data and parameters are given in Section §6.9. We then present our experimen-
tal results and parameter ablation in Section §6.10. We conclude this chapter in
Section §6.12.

6.2 Graphical Models

Graphical models are widely used in natural language processing such as hid-
den Markov models (HMM), conditional random fields (CRF) or latent Dirich-
let allocation (LDA) models. In the context of unsupervised learning, we will
work with directed (probabilistic) graphical models. Directed graphical models are
a type of probabilistic model where all variables are structured into a directed
acyclic graph. Let x D fx1; : : : ; xN g be the set of random variables in a directed
graphical model. The joint distribution over random variables x has the follow-
ing factorization:

p$ .x1; : : : ; xN / D
NY

iD1

p$ .xi jpa.xi // (6.1)

wherepa.xi /denotes the set of parent variables of node xi in the directed graph
and ) are the parameters of the models.

The joint distribution p$ .x/ can also be expressed as a product of factors over
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Figure 6.1: (a) A directed graph with factorization p.x1/p.x2/p.x3 jx1; x2/. (b) A factor graph
represents the same joint distribution with factor f D p.x1/p.x2/p.x3 jx1; x2/. (c) A different
factor graph with three factors fa D p.x1/, fb D p.x2/, and fc D p.x3 jx1; x2/.

subsets of variables x:

p.x/ D
Y

s

fs.xs/ (6.2)

where xs denotes a subset of the variables and each factor fs is a function of
the set xs This expression introduces new factor nodes to the graph in addition
to variable nodes (Figure 6.1). The new graph construction is called a factor
graph. The advantage of using factor graphs is that they make the details of
computation more explicitly.
Next we will describe the sum-product algorithm—a powerful class of efficient,
exact inference algorithms—that work over tree-structured graphs (Bishop, 2006).
The sum-product algorithm is required in our framework (§6.3) to calculate the
gradients of the likelihood. We note that our proposed framework can be ap-
plied to any type of directed graphical models consisting of discrete variables,
which are a common interest in the field of NLP.

6.2.1 The Sum-product Algorithm

We evaluate the marginalp.x/ of a particular node x in the graph. This problem
arises quite often in NLP contexts where we wish to evaluate how likely a word
xi is a verb in sentence x. We marginalize out all the variables in x except
x:

p.x/ D
X
xnx

p.x/ (6.3)

The summation in equation (6.3) is expensive to compute. The idea of sum-
product algorithm is to interchange the summations and the products to obtain
an efficient algorithm. First, we assume that the joint probability p.x/ can be
factorized into a product over disjoint sets Xs

p.x/ D
Y

s2ne.x/

Fs.x;Xs/ (6.4)
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where ne.x/ denotes a set of factor nodes that are neighbor of x andXs denotes
the set of all variables in the subtree that connects to variable x via factor node
fs . Figure (6.2) illustrates this factorization. The marginal p.x/ is rewritten by

Fs(x,Xs)

µfs!x(x)

fs x

Figure 6.2: A fragment of a factor graph illustrates a message from a factor node fs to a variable
node x.

interchanging the sums and products:

p.x/ D
Y

s2ne.x/

2
4X

Xs

Fs.x;Xs/

3
5 (6.5)

D
Y

s2ne.x/

#fs!x.x/ (6.6)

where #fs!x.x/ is a message sent from factor fs to node x, and is defined
as

#fs!x.x/ &
X
Xs

Fs.x;Xs/ (6.7)

Assuming that the factor fs has M C 1 neighbor nodes x; x1; : : : ; xM . We can
write Fs.x;Xs/ as

Fs.x;Xs/ D fs.x; x1; : : : ; xM /G1.x1; Xs1/ : : : Gm.xm; Xsm/ (6.8)
Pluging Equation (6.8) to (6.7) we get

#fs!x.x/ D
X
x1

! ! !
X
xM

fs.x; x1; : : : ; xM /
Y

m2ne.fs/nx

2
4X

Xsm

Gm.xm; Xsm/

3
5

D
X
x1

! ! !
X
xM

fs.x; x1; : : : ; xM /
Y

m2ne.fs/nx
#xm!fs

.xm/ (6.9)

where #xm!fs
.xm/ is a message sent from node xm to factor fs.xm/, and is de-

fined as
#xm!fs

.xm/ D
X
Xsm

Gm.xm; Xsm/ (6.10)
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µfs!x(x)

fs x

µxm
!
fs
(xm

)

xm

Gm(xm, Xsm)

Figure 6.3: A fragment of a factor graph illustrates sent messages from all variable nodes associated
with a factor node fs .

Based on the factorization of the probability and the structure of the graph,
from Figure (6.3), we see that

Gm.xm; Xsm/ &
Y

l2ne.xm/nfs

Fl .xm; Xml / (6.11)

Pluging Equation (6.11) into (6.10) and interchange between summations and
products we arrive

#xm!fs
.xm/ D

Y
l2ne.xm/nfs

2
4X

Xml

Fl .xm; Xml /

3
5 (6.12)

D
Y

l2ne.xm/nfs

#fl!xm
.xm/ (6.13)

Equation (6.9) and (6.13) describe the relationships between two types of mes-
sages: messages from factor to node#fs!x.x/ and messages from node to factor
#xm!fs

.xm/. Finally, we define two special messages sending from leaf nodes
in Figure (6.4)

#x!f .x/ D 1 (6.14)
#f!x.x/ D f .x/ (6.15)

x

µx!f (x) = 1

f

(a) Message from node to factor.

x
µf!x(x) = f(x)

x f

(b) Message from factor to node.

Figure 6.4: Special messages from leaf nodes.

In some applications, we wish to evaluate the marginal p.xs/ over a set of vari-
ables xs in a factor fs.xs/. For instance, we would like to know how likely a
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word xj is as a parent of word xi in sentence x under all possible valid depen-
dency structures over the sentence. In this case, we still can reuse the computa-
tions of the sum-product algorithm effectively. Let xs D fx1; : : : ; xM g be the set
ofM variables associated with factor fs.xs/. The joint distribution p.x/ can be
rewritten as

p.x/ D fs.xs/

MY
iD1

Y
t2ne.xi /

Ft .xi ; Xt / (6.16)

where ne.xi / denotes the set of factor nodes that are neighbors of xi except
fs , Xt denotes the set of all variables in the subtree connected to the variable
node xi via the factor node ft , and Ft .xi ; Xt / represents the product of all the
factors in the group associated with factor ft . The marginal p.xs/ is obtained
by summing over all x n xs :

p.xs/ D
X
xnxs

p.x/ (6.17)

D
X
xnxs

fs.xs/

MY
iD1

Y
t2ne.xi /

Ft .xi ; Xt / (6.18)

D fs.xs/

MY
iD1

Y
t2ne.xi /

2
4X

Xt

Ft .xi ; Xt /

3
5 (6.19)

D fs.xs/

MY
iD1

Y
t2ne.xi /

#ft!xi
.xi / (6.20)

D fs.xs/

MY
iD1

#xi!fs
.xi / (6.21)

6.3 Framework

Graphical models have been widely used in NLP. Typically potential functions
 .z;x/ over a set of latent variables, z, and observed variables, x, are defined
based on hand-crafted features. Moreover, independence assumptions between
variables are often made for the sake of tractability. Here, we propose using
neural networks (NNs) to produce the potentials since neural networks are
universal function approximators. Neural networks can extract useful task-
specific abstract representations of data. Additionally, Long Short-Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997) based Recurrent Neural Net-
works (RNNs), allow for modeling unbounded context with far fewer parame-
ters than naive one-hot feature encodings. The reparameterization of potentials
with neural networks (NNs) is seamless:

 .z;x/ D fNN.z;x j )/ (6.22)
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The sequence of observed variables are denoted as x D fx1; : : : ; xng. In unsu-
pervised learning, we aim to find model parameters ) that maximize the evi-
dence p.x j )/. We focus on cases when the posterior is tractable and we can
use Generalized EM (Dempster et al., 1977) to estimate ) .

p.x/ D
X

z

p.x; z/ (6.23)

D Eq.z/Œlnp.x; z j )/!CHŒq.z/!C KL .q.z/ k p.z jx; )// (6.24)

where q.z/ is an arbitrary distribution, and H is the entropy function. The E-
step of EM estimates the posterior p.z jx/ based on the current parameters
) . In the M-step, we choose q.z/ to be the posterior p.z jx/, setting the KL-
divergence to zero. Additionally, the entropy term HŒq.z/! is a constant and
can therefore be dropped. This means updating ) only requires maximizing
Ep.z jx/Œlnp.x; z j )/!. The gradient is therefore defined in terms of the gradient
of the joint probability scaled by the posteriors:

J.)/ D
X

z

p.z jx/@ lnp.x; z j )/
@)

(6.25)

In order to perform the gradient update in Equation 6.25, we need to compute
the posterior p.z jx/. This can be done efficiently with the sum-product algo-
rithm (§6.2.1). Note that, in cases where the derivative @

@$ lnp.x; z j )/ is easy to
evaluate, we can perform direct marginal likelihood optimization (Salakhutdi-
nov et al., 2003). We do not address here the question of semi-supervised train-
ing, but believe the framework we present lends itself naturally to the incorpora-
tion of constraints or labeled data. Next, we demonstrate the application of this
framework to HMMs for the purpose of part-of-speech tag induction.

6.4 Part-of-Speech Induction

Part-of-speech tags encode morphosyntactic information about a language and
are a fundamental tool for many downstream NLP applications. In English, the
Penn Treebank (Marcus et al., 1994) distinguishes 36 categories and punctua-
tion. Tag induction is the task of taking raw text and both discovering these
latent clusters and assigning them to words in text. Classes can be very spe-
cific (e.g. six types of verbs in English) to their syntactic role. Example tags are
shown in Table 6.1. In this example, board is labeled as a singular noun while
Pierre Vinken are singular proper nouns.

Two natural applications of induced tags are as the basis for grammar induction
(Spitkovsky et al., 2011; Bisk et al., 2015) or to provide a syntactically informed,
though unsupervised, source of word embeddings.
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Text Pierre Vinken will join the board
PTB NNP NNP MD VB DT NN

Table 6.1: Example Part-of-Speech tagged text.

zt zt!1 zt ztC1 zT

x1 xt!1 xt xtC1 xT

Figure 6.5: Pictorial representation of a Hidden Markov Model. Latent variable (zt ) transitions
depend on the previous value (zt!1), and emit an observed word (xt ) at each time step.

6.4.1 The Hidden Markov Model

A common model for part-of-speech induction, and our primary workhorse,
is the Hidden Markov Model trained with the unsupervised message passing
algorithm, Baum-Welch (Welch, 2003).

Model HMMs model a sentence by assuming that (a) every word token is
generated by a latent class, and (b) the current class at time t is conditioned
on the local history t " 1. Formally, this gives us an emission p.xt j zt / and
transition p.zt j zt!1/ probability. The graphical model is drawn pictorially in
Figure 6.5, where shaded circles denote observations and empty ones are latent.
The probability of a given sequence of observations x and latent variables z is
given by multiplying transitions and emissions across all time steps (Equation
6.26). Finding the optimal sequence of latent classes corresponds to computing
the argmax over the values of z.

p.x; z/ D
nC1Y
tD1

p.zt j zt!1/

nY
tD1

p.xt j zt / (6.26)

Because our task is unsupervised we do not have a priori access to these distri-
butions, but they can be estimated via Baum-Welch. The algorithm’s outline is
provided in Algorithm 1.

Training an HMM with EM is highly non-convex and likely to get stuck in
local optima (Johnson, 2007). Despite this, sophisticated Bayesian smoothing
leads to state-of-the-art performance (Blunsom and Cohn, 2011). Blunsom and
Cohn (2011) further extend the HMM by augmenting its emission distributions
with character models to capture morphological information and a tri-gram
transition matrix which conditions on the previous two states. Recently, Lin
et al. (2015) extended several models including the HMM to include pre-trained
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Algorithm 1 Baum-Welch Algorithm
Randomly Initialize distributions () )
repeat

Compute forward messages: 8i;t ˛i .t/
Compute backward messages: 8i;t ˇi .t/
Compute posteriors:

p.zt D i jx; )/ / ˛i .t/ˇi .t/
p.zt D i; ztC1 D j jx; )/ / ˛i .t/p.ztC1Dj jztD i/

% ǰ .t C 1/p.xtC1jztC1Dj /
Update )

until Converged

word embeddings learned by different skip-gram models. Our work will fully
neuralize the HMM and learn embeddings during the training of our genera-
tive model. There has also been recent work by Rastogi et al. (2016) on neural-
izing Finite-State Transducers.

6.4.2 Additional Comparisons

The main focus of our chapter is the seamless extension of an unsupervised
generative latent variable model with neural networks. For completeness we
will also include comparisons to other techniques which do not adhere to the
generative assumption. We include Brown clusters (Brown et al., 1992) as a
baseline and two clustering techniques as state-of-the-art comparisons: Yatbaz
et al. (2012) and Christodoulopoulos et al. (2011).

Of particular interest to us is the work of (Brown et al., 1992). Brown clusters
group word types through a greedy agglomerative clustering according to their
mutual information across the corpus based on bigram probabilities. Brown
clusters do not account for a word’s membership in multiple syntactic classes,
but are a very strong baseline for tag induction. It is possible our approach
could be improved by augmenting our objective function to include mutual
information computations or a bias towards a harder clustering.

6.5 Neural HMM

The aforementioned training of an HMM assumes access to two distributions:
(1) Emissions withK%V parameters, and (2) Transitions withK%K parameters.
Here we assume there areK clusters and V word types in our vocabulary. Our
neural HMM (NHMM) will replace these matrices with the output of simple
feed-forward neural networks. All conditioning variables will be presented as
input to the network and its final softmax layer will provide probabilities. This
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should replicate the behavior of the standard HMM, but without an explicit
representation of the necessary distributions.

6.5.1 Producing Probabilities

Producing emission and transition probabilities allows standard inference to
take place in the model.

Emission Architecture Let vk 2 RD be vector embedding of tag zk , wi 2 RD

and bi vector embedding and bias of word i respectively. The emission proba-
bility p.wi j zk/ is given by

p.wi j zk/ D
exp.v>k wi C bi /PV

jD1 exp.v>k wj C bj /
(6.27)

The emission probability can be implemented by a neural network where wi is
the weight of unit i at the output layer of the network. The tag embeddings vk

are obtained by a simple feed-forward neural network consisting of a lookup
table following by a non-linear activation (ReLU). When using morphology in-
formation (§6.6), we will first use another network to produce the word embed-
ddings wi .

Transition Architecture We produce the transition probability directly by us-
ing a linear layer of K2 %D. More specifically, let q 2 RD be a query embedding.
The unnormalized transition matrix T is computed as

T D Uq C b (6.28)

where U 2 RK2"D and b 2 RK2 . We then reshape T to a K % K matrix and
apply a softmax layer per row to produce valid transition probabilities.

6.5.2 Training the Neural Network

The probabilities can now be used to perform the aforementioned forward and
backward passes over the data to compute posteriors. In this way, we perform
the E-step as though we were training a vanilla HMM. Traditionally, these val-
ues would simply be re-normalized during the M-step to re-estimate model
parameters. Instead, we use them to re-scale our gradients (following the dis-
cussion from §6.3). Combining the HMM factorization of the joint probability
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p.x; z/ from Equation 6.26 with the gradient from Equation 6.25, yields the fol-
lowing update rule:

J.)/ D
X

z

p.z jx/@ lnp.x; z j )/
@)

D
X

t

X
zt

p.zt jx/
@ lnp.xt j zt ; )/

@)

C
X
zt!1

p.zt ; zt!1 jx/
@ lnp.zt j zt!1; )/

@)
(6.29)

The posteriors p.zt jx/ and p.zt ; zt!1 jx/ are obtained by running Baum-Welch
as shown in Algorithm 1. Where traditional supervised training can follow a
clear gradient signal towards a specific assignment, here we are propagating
the model’s (un)certainty instead. An additional complication introduced by
this paradigm is the question of how many gradient steps to take on a given
minibatch. In incremental EM the posteriors are simply accumulated and nor-
malized. Here, we repeatedly recompute gradients on a minibatch until reach-
ing the maximum number of epochs or a convergence threshold is met.
Finally, notice that the factorization of the HMM allows us to evaluate the joint
distribution p.x; z j )/ easily. We therefore employ Direct Marginal Likelihood
(DML) (Salakhutdinov et al., 2003) to optimize the model’s parameters. After
trying both EM and DML we found EM to be slower to converge and perform
slightly weaker. For this reason, the presented results will all be trained with
DML.

6.5.3 HMM and Neural HMM Equivalence

An important result we see in Table 6.2 is that the Neural HMM (NHMM) per-
forms almost identically to the HMM. At this point, we have replaced the un-
derlying machinery, but the model still has the same information bottlenecks
as a standard HMM, which limit the amount and type of information carried
between words in the sentence. Additionally, both approaches are optimizing
the same objective function, data likelihood, via the computation of posteriors.
The equivalency is an important sanity check. The following two sections will
demonstrate the extensibility of this approach.

6.6 Convolutions for Morphology

The first benefit of moving to neural networks is the ease with which new infor-
mation can be provided to the model. The first experiment we will perform is
replacing words with embedding vectors derived from a Convolutional Neural
Network (CNN) (Kim et al., 2016; Jozefowicz et al., 2016). We use a convolu-
tional kernel with widths from 1 to 7, which covers up to 7 character n-grams
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Tag embeddings

ReLU

Linear

softmax

Char-CNN

w o r d s
Figure 6.6: Computational graph of Char-CNN emission network. A character convolutional neu-
ral network is used to compute the weight of the linear layer for every minibatch.

(Figure 6.6). This allows the model to automatically learn lexical representa-
tions based on prefix, suffix, and stem information about a word. No additional
changes to learning are required for this extension. Adding convolution does
not dramatically slow down our model because the emission distributions can
be computed for the whole batch in one operation. We simply pass the whole
vocabulary through the convolution in a single operation.

6.7 Infinite Context with LSTMs

One of the most powerful strengths of neural networks is their ability to cre-
ate compact representation of data. We will explore this here in the creation
of transition matrices. In particular, we chose to augment the transition matrix
with all preceding words in the sentence: p.zt j zt!1; w0; : : : ; wt!1/. Incorporat-
ing this amount of context in a traditional HMM is intractable and impossible
to estimate as the number of parameters grows exponentially.

For this reason, we use a stacked LSTM to form a low dimensional represen-
tation of the sentence (C0:::t!1) which can be easily fed to our network when
producing a transition matrix: p.zt j zt!1; C0:::t!1/ in Figure 6.7. By having the
LSTM only consume up to the previous word, we do not break any sequen-
tial generative model assumptions. This interpretation does not complicate the
computation of forward-backward messages when running Baum-Welch, al-
though it does, by design, break the Markovian assumption about knowledge
of the past. In terms of model architecture, the query embedding q will be
replaced by a hidden state ht!1 of the LSTM at time step t " 1.
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xtxt�1x1 xT

Tt�1,t

Figure 6.7: A graphical representation of our LSTM transition network. Transition matrix Tt!1;t

from time step t ! 1 to t is computed based on the hidden state of the LSTM at time t ! 1.

6.8 Evaluation

Once a model is trained, the one-best latent sequence is extracted for every sen-
tence and evaluated on three metrics:

Many-to-One (M-1) Many-to-one computes the most common true part-of-
speech tag for each cluster. It then computes tagging accuracy as if the cluster
were replaced with that tag. This metric is easily gamed by introducing a large
number of clusters.

One-to-One (1-1) One-to-One performs the same computation as Many-to-
One but only one cluster is allowed to be assigned to a given tag. This prevents
the gaming of M-1.

V-Measure (VM) V-Measure is an F-measure which trades off conditional
entropy between the clusters and gold tags. Christodoulopoulos et al. (2010)
found VM is to be the most informative and consistent metric, in part because
it is agnostic to the number of induced tags.

6.9 Data and Parameters

To evaluate our approaches, we follow the existing literature and train and test
on the full WSJ corpus. There are three components of our models which can
be tuned. This is something we have to be careful with when train and test are
the same data. To avoid cheating, no values were tuned in this work.

Architecture The first parameter is the number of hidden units. We chose
512 because it was the largest power of two we could fit in memory. When we
extended our model to include the convolutional emission network, we only
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used 128 units, due to the intensive computation of Char-CNN over the whole
vocabulary per minibatch.
The second design choice was the number of LSTM layers. We used a three
layer LSTM as it worked well for (Tran et al., 2016a), and we applied dropout
(Srivastava et al., 2014) over the vertical connections of the LSTMs (Pham et al.,
2014) with a rate of 0.5.
Finally, the maximum number of inner loop updates applied per batch is set
to six. We train all the models for five epochs and perform gradient rescaling
whenever the gradient norm is greater than five. To determine when to stop
applying the gradient during training we simply check when the log probability
has converged (new!old=old < 10!4) or if the maximum number of inner loops has
been reached. All optimization was done using Adam (Kingma and Ba, 2015)
with default hyper-parameters.

Initialization In addition to architectural choices we have to initialize all of our
parameters. Word embeddings (and character embeddings in the CNN) are
drawn from a Gaussian N .0; 1/. The weights of all linear layers in the model
are drawn from a uniform distribution with mean zero and a standard devia-
tion of

p
1=nin, where nin is the input dimension of the linear layer.1 Additionally,

weights for the LSTMs are initialized using N .0; 1=2n/, where n is the number of
hidden units, and the bias of the forget gate is set to 1, as suggested by Józefow-
icz et al. (2015). We present some parameter and modeling ablation analysis in
§6.11.
It is worth emphasizing that parameters are shared at the lower level of our net-
work architectures (see Figure 6.6 and Figure 6.7). Sharing parameters not only
allows the networks to share statistical strength, but also reduces the computa-
tional cost of computing sufficient statistics during training due to the marginal-
ization over latent variables.
In all of our experiments, we use a mini-batch size of 256 and sentences of 40
words or less due to memory constraints. Evaluation was performed on all
sentence lengths. Additionally, we map all digits to 0, but do not lower-case the
data or perform any other preprocessing. All model code is available online for
extension and replication at https://github.com/ketranm/neuralHMM.

6.10 Results

Our results are presented in Table 6.2 along with two baseline systems, and the
four top performing and state-of-the-art approaches. As noted earlier, we are
happy to see that our NHMM performs almost identically with the standard
HMM. Second, we find that our approach, while simple and fast, is compet-
itive with Blunsom and Cohn (2011)). Their Hierarchical Pitman-Yor Process

1This is the default parameter initialization in Torch.

https://github.com/ketranm/neuralHMM


94 Unsupervised Neural Hidden Markov Models

System M-1 1-1 VM

Ba
se HMM 62.5 41.4 53.3

Brown 68.2 49.9 63.0

SO
TA

Clark (2003) 71.2 65.6
Christodoulopoulos (2011) 72.8 66.1
Blunsom (2011) 77.5 69.8
Yatbaz (2012) 80.2 72.1

O
ur

W
or

k NHMM 59.8 45.7 54.2
+ Conv 74.1 48.3 66.1
+ LSTM 65.1 52.4 60.4
+ Conv & LSTM 79.1 60.7 71.7

Table 6.2: English Penn Treebank results with 45 induced clusters. We see significant gains from
both morphology (+Conv) and extended context (+LSTM). The combination of these approaches
results in a very simple system which is competitive with the best generative model in the literature.

Configuration M-1 1-1 VM
Uniform initialization 65.5 50.1 61.7
1 LSTM layer, no dropout 69.3 52.7 63.6
1 LSTM layer, dropout 71.0 55.7 66.2
3 LSTM layers, no dropout 72.7 52.2 65.1
Best Model 79.1 60.7 71.7

Table 6.3: Exploring different configurations of NHMM

for trigram HMMs with character modeling is a very sophisticated Bayesian
approach and the most appropriate comparison to our work.

We see that both extended context (+LSTM) and the addition of morphologi-
cal information (+Conv) substantially boost the performance. Interestingly, the
gains are not completely complementary, as we note that the six and twelve
point gains of these additions only combine to a total of sixteen points in VM
improvement. This might imply that at least some of the syntactic context be-
ing captured by the LSTM is mirrored in the morphology of the language. This
hypothesis is something future work should investigate with morphologically
rich languages.

Finally, the newer work of (Yatbaz et al., 2012) outperforms our approach. It
is possible our performance could be improved by following their lead and in-
cluding knowledge of the future.
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6.11 Parameter Ablation

Our model design decisions and weight initializations were chosen based on
best practices set forth in the supervised training literature. Fortunately they
also behaved well in the unsupervised setting. Within unsupervised structure
prediction, to the best of our knowledge, there has been no empirical study
on neural network architecture design and weight initialization. We therefore
provide an initial overview on the topic for several of our decisions.

Weight Initialization We run our best model (NHMM+Conv+LSTM) with all
the weights initialized from a uniform distribution uniform."10!4; 10!4/. We
choose small standard derivation here for numerical stability when computing
forward-backward messages. We find a dramatic drop in V-Measure perfor-
mance (61.7 vs. 71.7 in Table 6.3). This is consistent with the common wisdom
that unlike supervised learning (Luong et al., 2015a), weight initialization is im-
portant to achieve good performance on unsupervised tasks. It is possible that
performance could be further enhanced via the popular technique of ensem-
bling. This would allow for combining models which converged to different
local optima.

LSTM Layers And Dropout We find that dropout is important in training
an unsupervised NHMM. Removing dropout causes performance to drop six
points. To avoid tuning the dropout rate, future work might investigate the
effect of variational dropout (Kingma et al., 2015) in unsupervised learning. We
also observed that the number of LSTM layers has an impact on V-Measure.
Had we simply used a single layer we would have lost nearly five points. It is
possible that more layers, perhaps coupled with more data, would yield even
greater gains.

6.12 Conclusion

In this chapter, we have answered Research Question 4 Can neural networks be
used to induce linguistic structure in a completely unsupervised manner? In order to
answer this research question, we have broken it down into three sub-questions
and provided an answer to each of those. In the following, we revisit the three
sub-questions posed at the beginning of the chapter and highlight the main
contributions and findings in addressing each individual sub-question.

RQ4.1 Can an unsupervised Hidden Markov Model be fully expressed as a neural
network model?

We proposed a neural network parametrization for transition and emission po-
tentials in HMM. This allows us to express an unsupervised HMM as a com-
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putational graph consisting of two neural networks: transition and emission
networks.
RQ4.2 What are the advantages of the neural methods in comparison to traditional
Bayesian methods?

We demonstrated that neural methods enable seamless integration of morpho-
logical features via char-CNN and unbounded context via LSTM.
RQ4.3 Are neural models sensitive to parameter initialization in the same way as non-
neural models are?

We validated empirically with different parameter initialization and have found
that our neural HMMs are sensitive to initialization.
Within the context of part-of-speech induction, in addition to parameter tun-
ing and multilingual evaluation, the biggest open questions for our approach
are the effects of additional data and augmenting the loss function. Neural
networks are notoriously data hungry, indicating that while we achieve com-
petitive results, it is possible our model will scale well when running with
large corpora. This would likely require the use of techniques like noise con-
trastive estimation (Gutmann and Hyvärinen, 2010) which have been shown to
be highly effective in related tasks like neural language modeling (Mnih and
Teh, 2012; Vaswani et al., 2013). Secondly, despite focusing on ways to aug-
ment an HMM, Brown clustering and systems inspired by it perform very well.
They aim to maximize mutual information rather than likelihood. It is possi-
ble that augmenting or constraining our loss will yield additional performance
gains.
Beyond simply maximizing performance on tag induction, a more subtle, but
powerful contribution of this chapter may be its demonstration of the ease and
effective nature of using neural networks with Bayesian models traditionally
trained with EM. We hope this approach transfers well to many other domains
and tasks.



Chapter 7

Inducing Grammars with and
for Neural Machine

Translation

7.1 Introduction and Research Questions

In the previous chapter, we have demonstrated an application of an unsuper-
vised neural latent variable model for discovering syntactic categories in the
data. These discovered syntactic categories can be used as additional features
in an NLP system. However, the features learned by an unsupervised model
might not be optimal for a given language task. In this chapter, we investigate a
type of models that can jointly induce structure from the input and optimize the
task performance. In this way, the learned structure is expected to be directly
beneficial for the task of interested. We choose sequence to sequence (seq2seq),
a general purpose model, to study in this chapter.

Seq2seq models have exploded in popularity due to their apparent simplicity
and yet surprising modeling strength. These models have been strengthened
with attention mechanisms (Bahdanau et al., 2015), and variational dropout
(Gal and Ghahramani, 2016), in addition to important advances in expressivity
via gating like Long Short-Term Memory (LSTM) cells (Hochreiter and Schmid-
huber, 1997) and advanced gradient optimizers like Adam (Kingma and Ba,
2015).

Despite these impressive advances, the community has still largely been at a
loss to explain how these models are so successful at a wide range of linguis-
tic tasks. Recent work has shown that the LSTM captures a surprising amount
of syntax implicitly (Shi et al., 2016; Linzen et al., 2016; Belinkov et al., 2017),
but this is evaluated via downstream tasks designed to test the model’s abili-
ties and does not explore what kind of structure is needed to maximize task
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performance.

Our goal is to develop a neural network model that operates explicitly on latent
linguistic structure of the input. By making the computation explicit, we can in-
spect the model’s learned structure from a linguistic perspective with respect
to NLP tasks. An important desideratum of the model is that it should learn
the structure of the data without being provided with any structured represen-
tation (i.e., syntactic trees). Therefore, we design our model based on the idea
of integrating discrete latent variable models with neural networks presented in
Chapter 6. In contrast to the unsupervised model in Chapter 6, the model in this
chapter is trained with a supervised objective while simultaneously discovering
useful (linguistic) structure that is beneficial to a task of interest. Concretely, we
ask:

Research question 5: What type of model can learn to induce linguistic structure
and utilize those learnt structures to improve task-specific performance?

The boy sitting next to the girls ordered a coffee

Figure 7.1: Our model aims to capture syntactic dependency (verb ordered).

In this work, we choose neural machine translation (NMT) as a task of interest.
Language has syntactic structure and translation models need to understand
grammatical dependencies to resolve the semantics of a sentence and preserve
agreement (e.g. number, gender, etc). To motivate our work and the importance
of structure in translation, consider the process of translating the sentence “The
boy sitting next to the girls ordered a coffee” from English to German. The depen-
dency tree of the sentence is given in Figure 7.1. In German, translating the verb
“ordered”, requires knowledge of its subject “boy” to correctly predict the verb’s
number “bestellte” instead of “bestellten” if the model wrongly identifies “girls”
as the subject. This is a case where syntactic agreement requires long-distance
information transfer. On the other hand, translating the word “next” can be
done in isolation without knowledge of neither its head nor child dependen-
cies. While its true the decoder can, in principle, utilize previously predicted
words (e.g. the translation of the “boy”) to reason about subject-verb agreement,
in practice LSTMs still struggle with long-distance dependencies (Linzen et al.,
2016). Moreover, Belinkov et al. (2017) showed that using attention reduces the
capacity of the decoder to learn target side syntax.

Recent research in NMT has shown the benefit of modeling syntax explicitly us-
ing parse trees (Bastings et al., 2017; Li et al., 2017; Eriguchi et al., 2017) rather
than assuming the model will automatically discover and encode it. Li et al.
(2017) present a mixed encoding of words and a linearized constituency-based
parse tree of the source sentence. Bastings et al. (2017) propose to use Graph



7.1. Introduction and Research Questions 99

Convolution to encode source sentences given their dependency links and at-
tachment labels. Here, we attempt to contribute to both modeling syntax and
investigating a more interpretable interface for testing the syntactic content of
a new seq2seq model’s internal representation. To achieve our goal, we break
Research Question 5 into three sub-questions:

RQ5.1 Can we design a translation model that learns to induce a dependency tree-like
representation of the source sentence?

We achieve this by augmenting seq2seq with a gate that allows the model
to decide between syntactic and alignment objectives. The syntactic ob-
jective is encoded via a syntactic structured attention (Section §7.3) from
which we can extract dependency trees. Our goal is to have a model which
reaps the benefits of syntactic information (i.e. parse trees) without requir-
ing explicit annotation. In this way, learning the internal representation
of our model is related to work done in unsupervised grammar induc-
tion except that by focusing on translation we require both syntactic and
semantic knowledge. The alignment objective is the word translation pre-
diction. It is often captured by attention, as an analogy to word-alignment
model in phrase-based MT (Koehn et al., 2003). The syntactic objective is
captured implicitly in the decoder because it ensures the fluency of the
translation. For grammar induction, the translation objective provides
more guidance than the marginal likelihood typically used in unsuper-
vised learning (Chapter 6). However, we note that the quality of the in-
duced grammar also depends on the choice of the target language (§7.6).

RQ5.2 Are the dependency trees learnt with the translation objective recognizable from
a linguistic perspective?

In addition to demonstrating improvements in translation quality with
our proposed models, we are also interested in analyzing the aforemen-
tioned dependency trees learned by the model. Recent work has begun
to analyze task-specific latent trees (Williams et al., 2018). It has been
shown that incorporating hierarchical structures leads to better task per-
formance. Unlike the previous work that induced latent trees explicitly
for a language inference task, we present the first results on learning la-
tent trees with a translation objective.

RQ5.3 Is there any correlation between the interpretability of the learned structure and
the translation quality?

While our proposed model improves NMT, we will show that there is
no correlation between the learned dependency’s quality and translation
quality. This suggests that when optimizing for task-specific performance,
the model might benefit from using a different structure that is not recog-
nizable to linguistics.

The rest of the chapter is organized as follow: We describe our NMT baseline
in Section §7.2. Our proposed models are detailed in Section §7.3. We present
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the experimental setups and translation results in Section §7.4. In Section §7.5
we analyze models’ behavior by means of visualization which pairs with our
analysis of the latent trees induced by our model in Section §7.6. We conclude
this chapter in Section §7.7.

7.2 Neural Machine Translation

Given a training pair of source and target sentences .x;y/ of length n and m
respectively, Neural Machine Translation (NMT) is a conditional probabilistic
model p.y jx/ implemented using neural networks

logp.y jxI !/ D
mX

jD1

logp.yj jyi<j ;xI !/

where ! is the model’s parameters. We will omit the parameters ! herein for
readability.
The NMT system used in this work is a seq2seq model that consists of a bidirec-
tional LSTM encoder and an LSTM decoder coupled with an attention mech-
anism (Bahdanau et al., 2015; Luong et al., 2015a). Our system is based on a
PyTorch implementation1 of OpenNMT (Klein et al., 2017). Let fsi 2 Rd gniD1 be
the output of the encoder

S D BiLSTMenc.x/ (7.1)

Here we use S D Œs1I : : : I sn! 2 Rd"n as a concatenation of fsig. The decoder
is composed of stacked LSTMs with input-feeding. Specifically, the inputs of
the decoder at time step t are the previous hidden state ht!1, a concatenation
of the embedding of previous generated word yt!1 and a vector ut!1:

ht!1 D LSTMdec.Œyt!2Iut!2!/ (7.2)
ut!1 D g.ht!1; ct!1/ (7.3)

where g is a one layer feed-forward network and ct!1 is a context vector com-
puted by an attention mechanism

˛t!1 D softmax.h>t!1WaS / (7.4)
ct!1 D S˛>t!1 (7.5)

where Wa 2 Rd"d is a trainable weight matrix.
Finally a single layer feed-forward network f takes ut as input and returns a
multinomial distribution over all the target words

yt ' f .ut / (7.6)
1http://opennmt.net/OpenNMT-py/

http://opennmt.net/OpenNMT-py/
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7.3 Syntactic Attention Models

We propose a syntactic attention model2 (Figure 7.2) that differs from standard
NMT in two crucial aspects. First, our encoder outputs two sets of annotations:
content annotations S and syntactic annotations M (Figure 7.2a). The content
annotations are the outputs of a standard BiLSTM while the syntactic annota-
tions are produced by a head word selection layer (§7.3.1). The syntactic annota-
tions M capture syntactic dependencies amongst the source words and enable
syntactic transfer from the source to the target. Second, we incorporate the
source side syntax into our model by modifying the standard attention (from
target to source) in NMT such that it attends to both S and M through a shared
attention layer. The shared attention layer biases our model toward capturing
source side dependency. It produces a dependency context d (Figure 7.2c) in
addition to the standard context vector c (Figure 7.2b) at each time step. Moti-
vated by the example in Figure 7.1 that some words can be translated without
resolving their syntactic roles in the source sentence, we include a gating mech-
anism that allows the decoder to decide the amount of syntax needed when it
generates the next word. Next, we describe the head word selection layer and
how source side syntax is incorporated into our model.

(a) Structured Self Atten-
tion Encoder: the first
layer is a standard BiL-
STM, the top layer is a syn-
tactic attention network.

↵ c

(b) Compute the context
vector (blue) as in a stan-
dard NMT model. The at-
tention weights ˛ are in
green.

↵ cd

(c) Use the attention
weights ˛, as computed
in the previous step, to
calculate syntactic vector
(purple).

Figure 7.2: A visual representation of our proposed mechanism for shared attention.

7.3.1 Head Word Selection

The head word selection layer learns to select a soft head word for each source
word via structured attention. This layer does not have access to any depen-
dency labels from the source. The head word selection layer transforms S into a
matrix M that encodes implicit dependency structure of x using self-structured-
attention. First we apply three trainable weight matrices Wq;Wk ;Wv 2 Rd"d to
map S to query, key, and value matrices Sq;Sk ;Sv 2 Rd"n respectively:

Sq D WqS Sk D WkS Sv D WvS (7.7)
2https://github.com/ketranm/sa-nmt

https://github.com/ketranm/sa-nmt
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Then we compute structured attention probabilities ˇ relying on a function
sattn that we will describe in detail shortly.

ˇ D sattn.S>q Sk/ (7.8)
M D Svˇ (7.9)

The structured self attention function sattn is inspired by the work of Kim et al.
(2017) but differs in two important ways. First we model non-projective depen-
dency trees. Second, we utilize the Kirchhoff’s Matrix-Tree Theorem (Tutte, 1984)
instead of the sum-product algorithm presented in (Kim et al., 2017) for fast
evaluation of the attention probabilities. We note that Liu and Lapata (2018)
first propose using the Matrix-Tree Theorem for evaluating the marginals in
end-to-end training of neural networks. Their work, however, focuses on the
task of natural language inference (Bowman et al., 2015a) and document classi-
fication instead of machine translation. Additionally, we will evaluate our struc-
tured self attention on datasets that are up to 20 times larger than the datasets
studied in previous work (Liu and Lapata, 2018).
Let z 2 f0; 1gn"n be an adjacency matrix encoding a source’s dependency tree.
Let " 2 Rn"n be a scoring matrix such that cell "i;j scores how likely word xi

is to be the head of word xj . The matrix " is obtained simply by

" D S>q Sk (7.10)

The probability of a dependency tree z is therefore given by

p.z jxI"/ D
exp

(P
i;j zi;j "i;j

)

Z."/
(7.11)

where Z."/ is the partition function.
In the head selection model, we are interested in the marginalp.zi;j D 1 jxI"/

ˇi;j D p.zi;j D 1 jxI"/ D
X

z W zi;jD1

p.z jxI"/ (7.12)

We use the framework presented by Koo et al. (2007) to compute the marginal
of non-projective dependency structures. Koo et al. (2007) use the Kirchhoff’s
Matrix-Tree Theorem (Tutte, 1984) to compute p.zi;j D 1 jxI"/ by first defining
the Laplacian matrix L 2 Rn"n as follows:

Li;j ."/ D

8̂
<̂
ˆ̂:

nP
kD1
k¤j

exp."k;j / if i D j

" exp."i;j / otherwise
(7.13)

Now we construct a matrix OL that accounts for root selection

OLi;j ."/ D
(

exp."j;j / if i D 1
Li;j ."/ if i > 1

(7.14)
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The boy sitting next to the girls ordered a coffee

Figure 7.3: A latent tree learned by our model. Notice that the encoder decides “The” is the head
of “ordered”. This dependency may provide a useful clue for the translation of “ordered” since the
information at the head word “The” also contains the information about the neighboring subject
“boy” as a result of using a bidirectional LSTM layer in the encoder.

The marginals ˇ are then

ˇi;j D .1 " ı1;j / exp."i;j /
h
OL!1."/

i
j;j
" .1 " ıi;1/ exp."i;j /

h
OL!1."/

i
j;i

(7.15)

where ıi;j is the Kronecker delta. For the root node, the marginals are given
by

ˇk;k D exp."k;k/
h
OL!1."/

i
k;1

(7.16)

The computation of the marginals is fully differentiable, thus we can train the
model in an end-to-end fashion by maximizing the conditional likelihood of
the translation.

7.3.2 Incorporating Syntactic Context

We encourage the decoder to use syntactic annotations by means of attention.
Essentially, if the model attends to a particular source word xi when generating
the next target word, we also want the model to attend to the head word of xi .
We implement this idea using a new shared attention layer from decoder’s state
h to encoder’s annotations S and M . First, we compute standard attention
weights ˛t!1 D softmax.h>t!1WaS / as in Equation 7.4. We then compute a
weighted syntactic vector:

dt!1 DM˛>t!1 (7.17)

Note that the syntactic vector dt!1 and the context vector ct!1 share the same at-
tention weights ˛t!1 at time step t . We share the attention weights ˛t!1 because
we expect that, if the model picks a source word xi to translate with the high-
est probability ˛t!1Œi !, the contribution of xi ’s head in the syntactic vector dt!1

should also be highest. Figure 7.3 shows the latent tree learned by our transla-
tion objective. Unlike the gold tree provided in Figure 7.1, the model decided
that “the boy” is the head of “ordered”. This is common in our model because the
BiLSTM context is actually a summary of its local context/constituent.
It is not always useful or necessary to access the syntactic context dt!1 every
time step t . Ideally, we should let the model decide whether it needs to use this
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information. For example, the model might decide when it needs to resolve
long distance dependencies in the source side. To control the amount of source
side syntactic information we introduce a gating mechanism:

Odt!1 D dt!1 ˇ ".Wght!1/ (7.18)

The vector ut!1 from Equation 7.2 now becomes

ut!1 D g.ht!1; ct!1; Odt!1/ (7.19)

An alternative to incorporate syntactic annotation M to the decoder is to use
a separate attention layer to compute the syntactic vector dt!1 at time step
t :

#t!1 D softmax.h>t!1WmM / (7.20)
dt!1 DM#>t!1 (7.21)

We will provide a comparison to this approach in our results.

7.3.3 Hard Attention over Tree Structures

Finally, to simulate the scenario where the model has access to a dependency
tree given by an external parser we report results with hard attention. Forc-
ing the model to make hard decisions during training mirrors the extraction
and conditioning on a dependency tree (§7.6.1). We expect this technique will
improve the performance on grammar induction, despite making translation
lossy. A similar observation has been reported in (Hashimoto and Tsuruoka,
2017) which showed that translation performance degraded below their base-
line when they provided dependency trees to the encoder.
Recall the marginal ˇi;j gives us the probability that word xi is the head of
word xj . We convert these soft weights to hard ones Ň by

Ň
k;j D

(
1 if k D arg maxi ˇi;j

0 otherwise
(7.22)

We train this model using the straight-through estimator (Bengio et al., 2013).
Note that in this setup, each word has a parent but there is no guarantee that
the structure given by hard attention will result in a tree (i.e. it may contain cy-
cles). A more principled way to enforce tree structure is to decode the best tree
T using the maximum spanning tree algorithm (Chu and Liu, 1965; Edmonds,
1967) and to set Ňk;j D 1 if the edge .xk ! xj / 2 T . Unfortunately, maximum
spanning tree decoding can be prohibitively slow as the Chu-Liu-Edmonds al-
gorithm is not GPU friendly. We therefore resort to greedily picking a parent
word for each word xj in the sentence using Equation 7.22. This is a principled
simplification as greedily assigning a parent for each word is the first step in
Chu-Liu-Edmonds algorithm.
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Train Valid Test Vocabulary
En$De 5.9M 2,169 2,999 / 3,004 36,251 / 35,913
En$Ru 2.1M 2,998 3,001 34,872 / 34,989
Ru!Ar 11.1M 4,000 4,000 32,735 / 32,955

Table 7.1: Statistics of the data.

7.4 Experiments

In this section, we will discuss our experimental setup and report results for
English$German (En$De), English$Russian (En$Ru), and Russian!Arabic
(Ru!Ar) translation models.

7.4.1 Data

We use the WMT17 (Bojar et al., 2017) data in our experiments. Table 7.1 shows
the statistics of the data. For En$De, we use a concatenation of Europarl, Com-
mon Crawl, Rapid corpus of EU press releases, and News Commentary v12.
We use newstest2015 for development and newstest2016, newstest2017 for testing.
For En$Ru, we use Common Crawl, News Commentary v12, and Yandex Cor-
pus. The development data comes from newstest2016 and newstest2017 and is
reserved for testing. For Ru!Ar, we use the data from the six-way sentence-
aligned subcorpus of the United Nations Parallel Corpus v1.0 (Ziemski et al.,
2016). The corpus also contains the official development and test data.

Our language pairs were chosen to compare results across and between mor-
phologically rich and poor languages. This will prove particularly interesting
in our grammar induction results where different pairs must preserve different
amounts of syntactic agreement information.

We use BPE (Sennrich et al., 2016) with 32,000 merge operations. We run BPE
for each language instead of using BPE for the concatenation of both source and
target languages.

7.4.2 Baselines

Our baseline is an NMT model with input-feeding (§7.2). As we will be making
several modifications from the basic architecture in our proposed structured
self attention NMT (SA-NMT), we will verify each choice in our architecture
design empirically. First we validate the structured self attention module by
comparing it to a self-attention module (Lin et al., 2017; Vaswani et al., 2017).
Self attention computes attention weights ˇ simply as ˇ D softmax."/. Since
self-attention does not assume any hierarchical structure over the source sen-
tence, we refer it as flat-attention NMT (FA-NMT). Second, we validate the ben-
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efit of using two sets of annotations in the encoder. We combine the hidden
states of the encoder s with syntactic context d to obtain a single set of annota-
tion using the following equation:

Nsi D si C ".Wgsi /ˇ di (7.23)

Here we first down-weigh the syntactic context di before adding it to si . The
sigmoid function ".Wgsi / decides the weight of the head word of xi based on
whether translating xi needs additinaly dependency information. We refer to
this baseline as SA-NMT-1set. Note that in this baseline, there is only one atten-
tion layer from the target to the source NS D fNsign1 .

In all the models, we share the weights of target word embeddings and the
output layer as suggested by Inan et al. (2016); Press and Wolf (2017).

7.4.3 Hyper-parameters and Training

For all the models, we set the word embedding size to 1024, the number of
LSTM layers to 2, and the dropout rate to 0.3. Parameters are initialized uni-
formly in ."0:04; 0:04/. We use the Adam optimizer (Kingma and Ba, 2015)
with an initial learning rate of 0.001. We evaluate our models on development
data every 10,000 updates for De$En and Ru!Ar, and every 5,000 updates for
Ru$En. If the validation perplexity increases, we decay the learning rate by
0.5. We stop training after decaying the learning rate five times as suggested
by Denkowski and Neubig (2017). The mini-batch size is 64 in Ru!Ar experi-
ments and 32 in the rest. We report the BLEU scores using the multi-bleu.perl
script.

7.4.4 Translation Results

Table 7.2 shows the BLEU scores in our experiments. We test statistical signif-
icance using bootstrap resampling (Riezler and Maxwell, 2005). Statisical sig-
nificance are marked as %p < 0:05 and &p < 0:01 when compared against the
baselines. Additionally, we also report statistical significance 4p < 0:05 and
Np < 0:01when compared against the FA-NMT models that have two separate
attention layers from the decoder to the encoder. Overall, the SA-NMT (shared)
model performs best, gaining more than 0.5 BLEU De!En on wmt16, up to 0.82
BLEU on En!De wmt17 and 0.64 BLEU En!Ru direction over a competitive
NMT baseline. The gain of the SA-NMT model on Ru!Ar is small (0.45 BLEU)
but significant. The results show that structured attention is useful when trans-
lating from English to languages that have long-distance dependencies and
complex morphological agreements. We also see that the gain is marginal com-
pared to self-attention models (FA-NMT) and not significant. Within FA-NMT
models, sharing attention is helpful. Our results also confirm the advantage of
having two separate sets of annotations in the encoder when modeling syntax.
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The hard structured attention model (SA-NMT-hard) performs comparable to
the baseline. While this is a somewhat expected result from the hard attention
model, we will show in the next section (§7.6) that the quality of induced trees
from hard attention is far better than the soft ones.

Model Shared De!En Ru!En En!De En!Ru Ru!Ar
wmt16 wmt17 wmt17 wmt16 wmt17 wmt17

NMT - 33.16 28.94 30.17 29.92 23.44 26.41 37.04

FA yes 33.55 29.43 30.22 30.09 24.03 26.91 37.41
no 33.24 29.00 30.34 29.98 23.97 26.75 37.20

SA-1set - 33.51 29.15 30.34 30.29" 24.12 26.96 37.34
SA-hard yes 33.38 28.96 29.98 29.93 23.84 26.71 37.33

SA yes 33.73#4 29.45#N 30.41 30.22 24.26#4 27.05# 37.49#4
no 33.18 29.19 30.15 30.17 23.94 27.01 37.22

Table 7.2: Results for translating En$De, En$Ru, and Ru!Ar. Statistical significances are
marked as "p < 0:05 and #p < 0:01 when compared against the baselines and 4/N when com-
pared against the FA-NMT (no-shared). The results indicate the strength of our proposed shared-
attention for NMT.

7.5 Gate Activation Visualization

As mentioned earlier, our models allow us to ask the question: When does the
target LSTM need to access source side structural information? We investigate this
by analyzing the gate activations of our best model, SA-NMT (shared). At time
step t , when the model is about to predict the target word yt , we compute the
norm of the gate activations

zt D k".Wght!1/k2 (7.24)

The activation norm zt allows us to see how much syntactic information flows
into the decoder. We collect statistics of gate activation norm on En!De new-
stest2016 dataset and observe that zt has its highest value when the decoder
is about to generate a verb while it has its lowest value when the end of sen-
tence token </s> is predicted. Figure 7.4 shows some examples of German
target sentences. The darker colors represent higher activation norms and bold
words indicate the highest activation norms when those words are being pre-
dicted.
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Figure 7.4: Visualization of gate activation norm. Darker means the model is using more syntactic
information.

It is clear that translating verbs requires structural information. We also see
that after verbs, the gate activation norms are highest at nouns Zeit (time), Mut
(courage), Dach (roof ) and then tail off as we move to function words which
require less context to disambiguate. Below are the frequencies with which the
highest activation norm in a sentence is applied to a given part-of-speech tag
on newstest2016. We include the top 7 most common activations.

Figure 7.5: Top part-of-speech tags with the highest activation norm when the model is forced to
decode the target sentences.
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PUNCT 580 184

ADJ 43 170

DET 33 160

ADV 42

SCONJ 3

PART 3

X 11
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NUM 12
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We see that while nouns are often the most common tag in a sentence, syntax
is disproportionately used for translating verbs.

7.6 Grammar Induction

NLP has long assumed that hierarchical structured representations were impor-
tant to understanding language. In this work, we have borrowed that intuition
to inform the construction of our model. We investigate whether the internal
latent representations discovered by our models share syntactic properties pre-
viously identified within linguistics and if not, what important differences exist.
We investigate the interpretability of our model’s representations by: 1) A quan-
titative attachment accuracy and 2) A qualitative look at model outputs.

Unlike in the grammar induction literature our model is not specifically con-
structed to recover traditional dependency grammars nor have we provided
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the model with access to part-of-speech tags or universal rules (Naseem et al.,
2010; Bisk and Hockenmaier, 2013). The model only uncovers the syntactic
information necessary for translation in a given language pair, though future
work should investigate if structural linguistic constraints benefit MT.

7.6.1 Extracting a Tree

For extracting non-projective dependency trees, we use Chu-Liu-Edmonds al-
gorithm (Chu and Liu, 1965; Edmonds, 1967). First, we must collapse BPE seg-
ments into words. Assume the k-th word corresponds to BPE tokens from index
u to v. We obtain a new matrix O" by summing over "i;j that are the correspond-
ing BPE segments.

O"i;j D

8̂
ˆ̂<
ˆ̂̂:

"i;j if i 62 Œu; v! ^ j 62 Œu; v!Pv
lDu "i;l if j D k ^ i 62 Œu; v!Pv
lDu "l;j if i D k ^ j 62 Œu; v!Pv
lDu

Pv
hDu "l;h otherwise

(7.25)

7.6.2 Grammatical Analysis

To analyze performance we compute unlabeled directed and undirected attach-
ment accuracies of our predicted trees on gold annotations from Universal De-
pendencies (UD version 2) dataset3. We choose this representation because of
its availability in many languages, though it is atypical for grammar induction.
Our five model settings in addition to left and right branching baselines are
presented in Table 7.3. The results indicate that the target language effects the
source encoder’s induction performance and several settings are competitive
with branching baselines for determining headedness. Recall that syntax is be-
ing modeled on the source language so adjacent rows are comparable.

We observe a huge boost in DA/UA scores for English and Russian in FA-NMT
and SA-NMT-shared models when the target language are morphologically
rich (Russian and Arabic respectively). In comparison to previous work (Be-
linkov et al., 2017; Shi et al., 2016) on the encoder’s ability to capture source side
syntax, we show a stronger result that even when the encoders are designed to
capture syntax explicitly, the choice of the target language has a great influence
on the amount of syntax learned by the encoder.

We also see performance gains from hard attention and several models out-
perform baselines for undirected dependency metrics (UA). Hard attention ap-
pears to help when the target languages are morphologically rich.

3http://universaldependencies.org

http://universaldependencies.org
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Successfully extracting linguistic structure with hard attention indicates that
models can capture interesting structures beyond semantic co-occurrence via
discrete actions. This corroborates previous work (Choi et al., 2017; Yogatama
et al., 2017) which has shown that non-trivial structures are learned by using
REINFORCE (Williams, 1992) or the Gumbel-softmax trick (Jang et al., 2016)
to backprop through discrete units. Our approach also outperforms that of
Hashimoto and Tsuruoka (2017) despite our model lacking access to additional
resources like part-of-speech tags. Although the numbers are not directly com-
parable since they use WSJ corpus to evaluate the UA score.

Dependency Accuracies While the SA-NMT-hard model gives the best directed
attachment scores on German, English and Russian, the BLEU scores of this
model are below other SA-NMT models as shown in Table 7.2. The lack of cor-
relation between syntactic performance and NMT contradicts the intuition of
previous work and suggests that useful structures learned in the context of a
task might not necessarily benefit from or correspond directly to known lin-
guistic formalisms. We want to raise three important differences between these
induced structures and UD.

First, we see there is a blurred boundary between dependency and constituency
representations. As noted briefly earlier, the BiLSTM provides a local summary.
When the model chooses a head word, it is actually choosing hidden states from
a BiLSTM and therefore gaining access to a constituent or region. This means
there is likely little difference between attending to the noun vs the determiner
in a phrase (despite being wrong according to UD). Future work might be able
to force this distinction by replacing the BiLSTM with a bag-of-words but this
will likely lead to substantial losses in NMT performance.

Second, because the model appears to be using syntax for agreement, often verb
dependencies link to subjects directly to capture predicate argument structures
like those in combinatory categorial grammar or semantic role labeling. UD
instead follows the convention of attaching all verbs that share a subject to one
another or their conjunctions. We have colored some subject–verb links in Fig-
ure 7.6. For example, we see links between I and both went and was.

Finally, headedness and disconnectedness. The model’s notion of headedness
is atypical as it roughly translates to “helpful when translating”. The head word
gets incorporated into the the shared representation which may cause the arrow
to flip from traditional formalisms. Additionally, because the model can turn
on and off syntax as necessary, it is likely to produce high confidence treelets
rather than complete parses. This means arcs produced from words with weak
gate activations (Figure 7.4) are not actually used during translation and likely
not-syntactically meaningful.

We will not take a stance here on whether these are desirable properties or is-
sues to address with constraints, but the model’s decisions appear well moti-
vated and our formulation allows us to have the discussion.
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I still have surgically induced hair loss

I went to this urgent care center and was blown away with their service

(a) Gold parses.

I still have surgically induced hair loss

I went to this urgent care center and was blown away with their service

(b) SA-NMT (shared)

Figure 7.6: Samples of induced trees for English by our (En!Ru) model. Notice the red arrows
from subject$verb which are necessary for translating Russian verbs.

7.7 Conclusions

In this last research chapter, we investigated a neural latent variable model that
can jointly infer a latent dependency structure of the source sentence and max-
imize translation performance. Specifically, we have answered Research Ques-
tion 5:

RQ5 What type of model can learn to induce linguistic structure and utilize those learnt
structures to improve task-specific performance?

Searching over the space of possible structures is intractable. Therefore, we
limit our search space by working with a specific type of structures, namely de-
pendency structure. We have chosen machine translation as the task of interest
to study in this chapter. This leads us to an answer to the first sub-question:

RQ5.1 Can we design a translation model that learns to induce a dependency tree-like
representation of the source sentence?

We have proposed such a design of neural architectures, namely structured-
attention NMT. Our models consist of a structured attention encoder that learns
to induce a dependency tree-like representation of the source sentence. The
models presented here do not access any external information such as parse-
trees or part-of-speech tags yet appear to use and induce structure when given
the opportunity. In addition to learning latent trees of the source sentences, we
showed that our models achieve significant gains in performance over a strong
baseline on standard WMT benchmarks.

By design, our models allow us to extract dependency trees that are useful for
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translation. This lead us to an answer to the second sub-question:
RQ5.2 Are the dependency trees learnt with the translation objective recognizable from
a linguistic perspective?

We evaluated the quality of induced trees on Universal Dependency datasets
and showed that our models outperform branching baselines for English and
Russian. Our grammar induction results indicate that the induced trees by the
models overlap with undirected UD trees by 40-52%. A large percentage of
arcs in the induced trees is not recognizable from dependency grammar. This
implies that not all syntactic dependencies of the source sentence are needed
when optimizing the translation objective. Interestingly, we see our induction
performance is language pair dependent, which invites an interesting research
discussion as to the role of syntax in translation and the importance of working
with morphologically rich languages.
Having the results of grammar induction and translation, we provide an answer
to the last sub-question:
RQ5.3 Is there any correlation between the interpretability of the learned structure and
the translation quality?

Our results showed that while the hard structured attention models give the
best UA score on the UD dataset, they do not outperform the baselines in trans-
lation. The lack of correlation between the quality of induced trees and the
quality of translation indicates that latent trees learned with respect to a task
might not be recognizable from a linguistic perspective.
Our results corroborate previous findings (Hashimoto and Tsuruoka, 2017). We
agree and provide stronger evidence that syntactic information can be discov-
ered via latent structured self attention, but we also present preliminary results
that indicate that conventional definitions of syntax may be at odds with task
specific performance.
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Chapter 8

Conclusions

In this final chapter, we summarize the main findings of this thesis and discuss
possible directions for future research.

8.1 Main Findings

This thesis focuses on incorporating linguistic knowledge into NLP systems as
well as understanding the capability of neural networks in capturing linguistic
phenomena.

We use neural networks as the main workhorse of this thesis for predicting, an-
alyzing, and discovering structure in languages. In the following, we revisit the
five main research questions asked in the thesis and summarize our main find-
ings for each question.

Research question 1: Do neural networks offer modeling advantages for linguistic
structure prediction in comparison to non-neural methods?

We address this question in the context of machine translation where the
target languages are morphologically rich. We proposed bilingual neural
network architectures that utilize morphological knowledge of the target
languages to make accurate predictions. The morphological knowledge
given to neural networks is obtained from supervised or unsupervised
morphological segmentation tools (Chapter 2). Neural networks can also
utilize soft morphological representations to make context-sensitive pre-
dictions (Chapter 3). We compared distributed representations used by
neural networks with one-hot encodings typically used in log-linear mod-
els and showed the superior performance of neural network models. We
integrated our neural network models into an in-house phrase-based ma-
chine translation system and demonstrated significant gains in translation
quality.
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Research question 2: From a linguistic perspective, what makes recurrent neural
networks work so well for language modeling?

To answer this question, we proposed recurrent memory networks, a set
of recurrent neural networks with augmented memory. The memory ad-
dressing mechanism in our models allows us to perform precise linguis-
tic analyses when the models make their predictions. Evaluating our
networks for language modeling tasks, we found that our models cap-
ture important co-occurrences and dependency types that are essential
for predicting the next word. In addition to being more interpretable, we
evaluated our models on the Sentence Completion Challenge dataset and
obtained a new state-of-the-art result.

Research question 3: Do non-recurrent neural networks have the same ability to ex-
ploit hierarchical structures implicitly in comparison to their recurrent counter-
part?

We evaluated the performance of LSTMs and Transformers (non-recurrent
architectures) on subject-verb agreement and logical inference tasks. The
subject-verb agreement task is chosen to test the ability of the models
to infer hierarchical structure in unstructured text. The logical inference
task is chosen to test the ability of the model to exploit hierarchical struc-
ture in tree-structured text. The results of our experiments on both tasks
showed that LSTMs slightly but consistently outperform Transformers.
Our findings suggested that recurrency is important for modeling hierar-
chical structure implicitly.

Research question 4: Can neural networks be used to induce linguistic structure in
a completely unsupervised manner?

We investigated this question in the context of part-of-speech induction.
We parametrized an unsupervised Hidden Markov Model with neural
networks. The transition and emission probabilities are produced by an
LSTM and a character-CNN. We provided Expectation-Maximization train-
ing algorithm for our model. We showed that our proposed framework
enables seamless integration of linguistic features. We evaluated our frame-
work on a part-of-speech induction benchmark and obtained state-of-the-
art results within generative approaches.

Research question 5: What type of model can learn to induce linguistic structure
and utilize those learnt structures to improve task-specific performance?

We provided an answer to this question in the context of neural machine
translation. We proposed a class of structured attention augmented NMT
models that perform translation while simultaneously inducing depen-
dency structures of the source sentences. Our models achieved substan-
tial gains in translation performance and outperformed branching base-
lines in grammar induction. We noticed that grammar induction perfor-
mance is correlated with the richness of the target language morphology.
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Additionally, our experimental results suggest that the models prefer to
use syntactic structure when given the opportunity. However, the kind
of structure learned by the models for the purpose of a task might be dif-
ferent from known dependency structures identified by linguists.

8.2 Future Work

Based on the answers provided by this thesis to our five research questions, we
identify three possible directions for future research:

1. Investigating a neural architecture that benefits from both recurrent connections
and attention mechanisms.

In Chapter 5, we showed that recurrency is important for capturing hi-
erarchical structure. The self-attention mechanism offers direct access to
long distance input tokens however it increases the computational cost
linearly with the size of the context (i.e., number of tokens in the past).
While in Chapter 4, we proposed a simple class of models that combine
recurrency and attention, we believe that the future generation of neural
networks could benefit from both recurrency and attention in a more ele-
gant way such as using fast weights (Ba et al., 2016a) or read-write mech-
anisms (Graves et al., 2014). Additionally, the evaluation of such models
should be done on more realistic and challenging language tasks, such as
translating into morphologically rich languages or document level MT.

2. Exploring alternative structural constraints that can be learned and exploited
effectively by the models.

In Chapter 7, we focused on the dependency structure of the source and
have not explored different kinds of structures such as constituent struc-
tures. Having the right structural constraints can introduce positive bias
to the models and reduce the search space of all possible structures. Fu-
ture research should investigate what kind of structural constraints are
needed for a given language task and whether that structural constraint
can be learned efficiently. Moreover, we have not yet investigated the type
of structure that can be induced incrementally by the decoder in seq2seq
models. The incrementality property is inspired by a psycholinguistic
model of the human parser that allows the model to build up a partial
tree structure from a partially observed sequence of words. This opens
up an avenue for future exploration in language modeling and transla-
tion.

3. Inducing grammars with and for multilingual neural machine translation.

In Chapter 7, we evaluated our model for grammar induction and trans-
lation performance using bilingual corpora. Future research should in-
vestigate the model’s performance and its learned representation using



118 Conclusions

multilingual data. Previous work (Johnson et al., 2017; Lee et al., 2017; Fi-
rat et al., 2016) has demonstrated that NMT can map multiple languages
into a shared space of representation. By extending our work to multilin-
gual NMT, we can investigate the question of whether a shared structure
exists amongst languages. If there is such a shared structure, we would
like to analyze it from a linguistic perspective and investigate if it helps
improving translation by transferring knowledge across languages.



Bibliography

Jacob Andreas and Dan Klein. 2015. When and why are log-linear models self-
normalizing? In Proceedings of the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technologies,
pages 244–249, Denver, Colorado. Association for Computational Linguistics.

Giuseppe Attardi, Felice Dell’Orletta, Maria Simi, and Joseph Turian. 2009. Ac-
curate dependency parsing with a stacked multilayer perceptron. In Proceed-
ings of Evalita’09, Evaluation of NLP and Speech Tools for Italian, Reggio Emilia,
Italy.

Michael Auli, Michel Galley, Chris Quirk, and Geoffrey Zweig. 2013. Joint lan-
guage and translation modeling with recurrent neural networks. In Proceed-
ings of the 2013 Conference on Empirical Methods in Natural Language Processing,
pages 1044–1054, Seattle, Washington, USA.

Eleftherios Avramidis and Philipp Koehn. 2008. Enriching morphologically
poor languages for statistical machine translation. In Proceedings of ACL-08:
HLT, pages 763–770, Columbus, Ohio. Association for Computational Linguis-
tics.

Jimmy Ba, Geoffrey Hinton, Volodymyr Mnih, Joel Z. Leibo, and Catalin
Ionescu. 2016a. Using fast weights to attend to the recent past. In Proceed-
ings of the 30th International Conference on Neural Information Processing Systems,
NIPS’16, pages 4338–4346, USA. Curran Associates Inc.

Lei Jimmy Ba, Ryan Kiros, and Geoffrey E. Hinton. 2016b. Layer normalization.
ArXiv e-prints.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural ma-
chine translation by jointly learning to align and translate. In International
Conference on Learning Representations, San Diego, CA, USA.

Joost Bastings, Ivan Titov, Wilker Aziz, Diego Marcheggiani, and Khalil
Simaan. 2017. Graph convolutional encoders for syntax-aware neural machine

http://arxiv.org/abs/1607.06450


120 Bibliography

translation. In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pages 1947–1957. Association for Computational Linguis-
tics.

Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic and natural noise both
break neural machine translation. In International Conference on Learning Rep-
resentations.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan Sajjad, and James
Glass. 2017. What do neural machine translation models learn about mor-
phology? In Proceedings of the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages 861–872. Association for
Computational Linguistics.

Yoshua Bengio, Renato De Mori, Flammia Giovanni, and Ralf Kompe. 1991.
Global optimization of a neural network - Hidden Markov Model hybrid. In
Proceedings of the International Joint Conference on Neural Networks, Seattle, WA.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. 2003.
A neural probabilistic language model. The Journal of Machine Learning Research,
3:1137–1155.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. 2013. Estimating or
propagating gradients through stochastic neurons for conditional computa-
tion. arXiv preprint arXiv:1308.3432.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. 1994. Learning long-term
dependencies with gradient descent is difficult. Transaction on Neural Networks,
5(2):157–166.

Taylor Berg-Kirkpatrick, Alexandre Bouchard-Côté, John DeNero, and Dan
Klein. 2010. Painless unsupervised learning with features. In Human Language
Technologies: The 2010 Annual Conference of the North American Chapter of the As-
sociation for Computational Linguistics, pages 582–590, Los Angeles, California.
Association for Computational Linguistics.

Taylor Berg-Kirkpatrick and Dan Klein. 2010. Phylogenetic grammar induc-
tion. In Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics, pages 1288–1297, Uppsala, Sweden.

Arianna Bisazza and Christof Monz. 2014. Class-based language modeling
for translating into morphologically rich languages. In Proceedings of COLING
2014, the 25th International Conference on Computational Linguistics: Technical Pa-
pers, pages 1918–1927, Dublin, Ireland. Dublin City University and Associa-
tion for Computational Linguistics.

Arianna Bisazza, Nick Ruiz, and Marcello Federico. 2011. Fill-up versus Inter-
polation Methods for Phrase-based SMT Adaptation. In International Workshop
on Spoken Language Translation (IWSLT), pages 136–143, San Francisco, CA.

yonatan2:2017
yonatan2:2017
https://doi.org/10.1109/72.279181
https://doi.org/10.1109/72.279181


Bibliography 121

Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ,
USA.

Yonatan Bisk, Christos Christodoulopoulos, and Julia Hockenmaier. 2015. La-
beled grammar induction with minimal supervision. In Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Processing (Volume 2: Short Papers),
pages 870–876, Beijing, China.

Yonatan Bisk and Julia Hockenmaier. 2013. An hdp model for inducing com-
binatory categorial grammars. Transactions of the Association for Computational
Linguistics, pages 75–88.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent dirichlet
allocation. J. Mach. Learn. Res., 3:993–1022.

Phil Blunsom and Trevor Cohn. 2011. A hierarchical pitman-yor process hmm
for unsupervised part of speech induction. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language Tech-
nologies, pages 865–874, Portland, Oregon, USA. Association for Computa-
tional Linguistics.

Victor Bocharov, Svetlana Alexeeva, Dmitry Granovsky, Ekaterina Pro-
topopova, Maria Stepanova, and Alexey Surikov. 2013. Crowdsourcing mor-
phological annotation. In Proceedings of the International Conference "Dialogue",
Bekasovo, Russia.

Kathryn Bock and Carol A. Miller. 1991. Broken agreement. Cognitive Psychol-
ogy, 23:45–93.

Ondřej Bojar, Zdeněk Žabokrtský, Ondřej Dušek, Petra Galuščáková, Martin
Majliš, David Mareček, Jiří Maršík, Michal Novák, Martin Popel, and Aleš
Tamchyna. 2012. The joy of parallelism with czeng 1.0. In Proceedings of
LREC2012, Istanbul, Turkey. ELRA, European Language Resources Associa-
tion.

Ondřej Bojar, Christian Buck, Chris Callison-Burch, Christian Federmann,
Barry Haddow, Philipp Koehn, Christof Monz, Matt Post, Radu Soricut, and
Lucia Specia. 2013. Findings of the 2013 Workshop on Statistical Machine
Translation. In Proceedings of the Eighth Workshop on Statistical Machine Trans-
lation, pages 1–44, Sofia, Bulgaria. Association for Computational Linguistics.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry
Haddow, Shujian Huang, Matthias Huck, Philipp Koehn, Qun Liu, Varvara
Logacheva, Christof Monz, Matteo Negri, Matt Post, Raphael Rubino, Lucia
Specia, and Marco Turchi. 2017. Findings of the 2017 conference on machine
translation (wmt17). In Proceedings of the Second Conference on Machine Trans-
lation, pages 169–214, Copenhagen, Denmark. Association for Computational
Linguistics.



122 Bibliography

Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Barry Haddow,
Matthias Huck, Chris Hokamp, Philipp Koehn, Varvara Logacheva, Christof
Monz, Matteo Negri, Matt Post, Carolina Scarton, Lucia Specia, and Marco
Turchi. 2015. Findings of the 2015 workshop on statistical machine translation.
In Proceedings of the Tenth Workshop on Statistical Machine Translation, pages 1–46,
Lisbon, Portugal. Association for Computational Linguistics.

Jan A. Botha and Phil Blunsom. 2014. Compositional Morphology for Word
Representations and Language Modelling. In Proceedings of the 31st Interna-
tional Conference on Machine Learning, Beijing, China.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D.
Manning. 2015a. A large annotated corpus for learning natural language in-
ference. In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 632–642. Association for Computational Linguis-
tics.

Samuel R. Bowman, Christopher D. Manning, and Christopher Potts. 2015b.
Tree-structured composition in neural networks without tree-structured archi-
tectures. In Proceedings of Proceedings of the NIPS 2015 Workshop on Cognitive
Computation: Integrating Neural and Symbolic Approaches.

Peter F Brown, Peter V deSouza, Robert L Mercer, Vincent J Della Pietra, and
Jenifer C Lai. 1992. Class-Based n-gram Models of Natural Language. Compu-
tational Linguistics, 18.

Chris Callison-Burch, Philipp Koehn, Christof Monz, Matt Post, Radu Soricut,
and Lucia Specia. 2012. Findings of the 2012 workshop on statistical machine
translation. In Proceedings of the Seventh Workshop on Statistical Machine Transla-
tion, pages 10–51, Montréal, Canada. Association for Computational Linguis-
tics.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa Bentivogli, and Marcello
Federico. 2014. Report on the 11th IWSLT evaluation campaign. In International
Workshop on Spoken Language Translation (IWSLT), pages 2–17, Lake Tahoe, Cal-
ifornia.

Victor Chahuneau, Eva Schlinger, Noah A. Smith, and Chris Dyer. 2013. Trans-
lating into morphologically rich languages with synthetic phrases. In Proceed-
ings of the Conference on Empirical Methods in Natural Language Processing, pages
1677–1687, Seattle, USA.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants,
Phillipp Koehn, and Tony Robinson. 2013. One billion word benchmark
for measuring progress in statistical language modeling. Technical report,
Google.

Stanley F. Chen and Joshua Goodman. 1999. An empirical study of smoothing
techniques for language modeling. Computer Speech and Language, 4(13):359–
393.



Bibliography 123

Wenlin Chen, David Grangier, and Michael Auli. 2016. Strategies for training
large vocabulary neural language models. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 1975–1985, Berlin, Germany. Association for Computational Linguistics.

Colin Cherry, Robert C. Moore, and Chris Quirk. 2012. On hierarchical re-
ordering and permutation parsing for phrase-based decoding. In Proceedings
of the Seventh Workshop on Statistical Machine Translation, pages 200–209, Mon-
tréal, Canada. Association for Computational Linguistics.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Ben-
gio. 2014. On the properties of neural machine translation: Encoder–decoder
approaches. In Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and
Structure in Statistical Translation, pages 103–111, Doha, Qatar. Association for
Computational Linguistics.

Jihun Choi, Kang Min Yoo, and Sang goo Lee. 2017. Learning to compose
task-specific tree structures. AAAI.

Morten H. Christiansen and Nick Chater. 2016. The now-or-never bottleneck:
A fundamental constraint on language. Behavioral and Brain Sciences, 39.

Christos Christodoulopoulos, Sharon Goldwater, and Mark Steedman. 2010.
Two Decades of Unsupervised POS induction: How far have we come? In
Proceedings of the 2010 Conference on Empirical Methods in Natural Language Pro-
cessing, Cambridge, MA.

Christos Christodoulopoulos, Sharon Goldwater, and Mark Steedman. 2011. A
Bayesian Mixture Model for Part-of-Speech Induction Using Multiple Features.
In Proceedings of the 2011 Conference on Empirical Methods in Natural Language
Processing, Edinburgh, Scotland, UK.

Y. J. Chu and T. H. Liu. 1965. On the shortest arborescence of a directed graph.
Science Sinica, 14.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio.
2014. Empirical evaluation of gated recurrent neural networks on sequence
modeling. In NIPS Deep Learning and Representation Learning Workshop.

Alexander Clark. 2003. Combining distributional and morphological informa-
tion for part of speech induction. In Proceedings of the Tenth Conference on Eu-
ropean Chapter of the Association for Computational Linguistics - Volume 1, EACL
’03, pages 59–66, Stroudsburg, PA, USA. Association for Computational Lin-
guistics.

Shay B. Cohen, Dipanjan Das, and Noah A. Smith. 2011. Unsupervised struc-
ture prediction with non-parallel multilingual guidance. In Proceedings of the
2011 Conference on Empirical Methods in Natural Language Processing, pages 50–
61, Edinburgh, Scotland, UK. Association for Computational Linguistics.

https://doi.org/10.1017/S0140525X1500031X
https://doi.org/10.1017/S0140525X1500031X


124 Bibliography

Ronan Collobert and Jason Weston. 2008. A unified architecture for natural lan-
guage processing: deep neural networks with multitask learning. In Proceed-
ings of the 25th Annual International Conference on Machine Learning, volume 12,
pages 2493–2537.

Hannah Cornish, Rick Dale, Simon Kirby, and Morten H Christiansen. 2017.
Sequence memory constraints give rise to language-like structure through it-
erated learning. PloS one, 12(1):e0168532.

Dipanjan Das and Slav Petrov. 2011. Unsupervised part-of-speech tagging
with bilingual graph-based projections. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics: Human Language Technolo-
gies, pages 600–609, Portland, Oregon, USA. Association for Computational
Linguistics.

Yann N. Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya
Ganguli, and Yoshua Bengio. 2014. Identifying and attacking the saddle point
problem in high-dimensional non-convex optimization. In Proceedings of the
27th International Conference on Neural Information Processing Systems - Volume 2,
NIPS’14, pages 2933–2941, Cambridge, MA, USA. MIT Press.

A Dempster, N Laird, and D Rubin. 1977. Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society. Series B
(Methodological).

Michael Denkowski and Graham Neubig. 2017. Stronger baselines for
trustable results in neural machine translation. In Proceedings of the First Work-
shop on Neural Machine Translation, pages 18–27, Vancouver. Association for
Computational Linguistics.

Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas Lamar, Richard
Schwartz, and John Makhoul. 2014. Fast and robust neural network joint mod-
els for statistical machine translation. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics, pages 1370–1380, Baltimore,
Maryland. Association for Computational Linguistics.

Kevin Duh, Graham Neubig, Katsuhito Sudoh, and Hajime Tsukada. 2013.
Adaptation data selection using neural language models: Experiments in ma-
chine translation. In Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics, pages 678–683, Sofia, Bulgaria.

Nadir Durrani, Alexander Fraser, and Helmut Schmid. 2013. Model with min-
imal translation units, but decode with phrases. In Proceedings of Conference of
the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1–11, Atlanta, Georgia, USA.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A.
Smith. 2015. Transition-based dependency parsing with stack long short-term
memory. In Proceedings of the 53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint Conference on Natural Language

http://dl.acm.org/citation.cfm?id=2969033.2969154
http://dl.acm.org/citation.cfm?id=2969033.2969154


Bibliography 125

Processing, pages 334–343, Beijing, China. Association for Computational Lin-
guistics.

Jack Edmonds. 1967. Optimum Branchings. Journal of Research of the National
Bureau of Standards, 71B:233–240.

Jeffrey L. Elman. 1990. Finding structure in time. Cognitive Science, 14(2):179–
211.

Akiko Eriguchi, Yoshimasa Tsuruoka, and Kyunghyun Cho. 2017. Learning
to parse and translate improves neural machine translation. In Proceedings of
the 55th Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), pages 72–78. Association for Computational Linguistics.

Allyson Ettinger, Sudha Rao, Hal Daumé III, and Emily M. Bender. 2017. To-
wards linguistically generalizable NLP systems: A workshop and shared task.
In Proceedings of the First Workshop on Building Linguistically Generalizable NLP
Systems, pages 1–10, Copenhagen, Denmark. Association for Computational
Linguistics.

Katja Filippova, Enrique Alfonseca, Carlos A. Colmenares, Lukasz Kaiser, and
Oriol Vinyals. 2015. Sentence compression by deletion with LSTMs. In Proceed-
ings of the 2015 Conference on Empirical Methods in Natural Language Processing,
pages 360–368, Lisbon, Portugal. Association for Computational Linguistics.

Orhan Firat, Kyunghyun Cho, and Yoshua Bengio. 2016. Multi-way, multi-
lingual neural machine translation with a shared attention mechanism. In
Proceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pages 866–875, San
Diego, California. Association for Computational Linguistics.

Kilian A. Foth. 2006. Eine umfassende Constraint-Dependenz-Grammatik des
Deutschen. Fachbereich Informatik.

Alexander Fraser, Marion Weller, Aoife Cahill, and Fabienne Cap. 2012. Mod-
eling inflection and word-formation in smt. In Proceedings of the 13th Conference
of the European Chapter of the Association for Computational Linguistics, pages 664–
674, Avignon, France. Association for Computational Linguistics.

Yarin Gal and Zoubin Ghahramani. 2016. A theoretically grounded applica-
tion of dropout in recurrent neural networks. In Proceedings of the 30th Interna-
tional Conference on Neural Information Processing Systems, NIPS’16, pages 1027–
1035, USA. Curran Associates Inc.

Michel Galley and Christopher D. Manning. 2008. A simple and effective hier-
archical phrase reordering model. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, pages 847–855, Honolulu, Hawaii. As-
sociation for Computational Linguistics.

Jianfeng Gao, Xiaodong He, Wen-tau Yih, and Li Deng. 2014. Learning con-
tinuous phrase representations for translation modeling. In Proceedings of the

https://doi.org/10.1016/0364-0213(90)90002-E
https://doi.org/10.18653/v1/P17-2012
https://doi.org/10.18653/v1/P17-2012
http://www.aclweb.org/anthology/N16-1101
http://www.aclweb.org/anthology/N16-1101


126 Bibliography

52nd Annual Meeting of the Association for Computational Linguistics, pages 699–
709. Association for Computational Linguistics.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N.
Dauphin. 2017. Convolutional sequence to sequence learning. In Proceedings
of the 34th International Conference on Machine Learning, volume 70 of Proceed-
ings of Machine Learning Research, pages 1243–1252, International Convention
Centre, Sydney, Australia. PMLR.

Kevin Gimpel and Noah A. Smith. 2008. Rich source-side context for statistical
machine translation. In Proceedings of the Third Workshop on Statistical Machine
Translation, pages 9–17, Columbus, Ohio, USA.

Sharon Goldwater, Mark Johnson, and Thomas L. Griffiths. 2006. Interpolat-
ing between types and tokens by estimating power-law generators. In Y. Weiss,
B. Schölkopf, and J. C. Platt, editors, Advances in Neural Information Processing
Systems 18, pages 459–466. MIT Press.

Alex Graves, Greg Wayne, and Ivo Danihelka. 2014. Neural Turing machines.
CoRR, abs/1410.5401.

Spence Green and John DeNero. 2012. A class-based agreement model for
generating accurately inflected translations. In Proceedings of the 50th Annual
Meeting of the Association for Computational Linguistics, ACL ’12, pages 146–155,
Stroudsburg, PA, USA. Association for Computational Linguistics.

Klaus Greff, Rupesh Kumar Srivastava, Jan Koutník, Bas R. Steunebrink, and
Jürgen Schmidhuber. 2017. LSTM: A search space odyssey. IEEE Transactions
on Neural Networks and Learning Systems, 28(10):2222–2232.

Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan
Wierstra. 2015. DRAW: A recurrent neural network for image generation. In
Proceedings of the 32nd International Conference on Machine Learning, ICML 2015,
Lille, France, 6-11 July 2015, pages 1462–1471.

Michael Gutmann and Aapo Hyvärinen. 2010. Noise-contrastive estimation:
A new estimation principle for unnormalized statistical models. In Interna-
tional Conference on Artificial Intelligence and Statistics.

Rejwanul Haque, Sudip Kumar Naskar, Antal Bosch, and Andy Way. 2011. In-
tegrating source-language context into phrase-based statistical machine trans-
lation. Machine Translation, 25(3):239–285.

Kazuma Hashimoto and Yoshimasa Tsuruoka. 2017. Neural machine transla-
tion with source-side latent graph parsing. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing, pages 125–135. Association
for Computational Linguistics.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep
into rectifiers: Surpassing human-level performance on imagenet classifica-
tion. ArXiv e-prints.

http://proceedings.mlr.press/v70/gehring17a.html
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1502.01852


Bibliography 127

Michiel Hermans and Benjamin Schrauwen. 2013. Training and analysing
deep recurrent neural networks. In C.J.C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K.Q. Weinberger, editors, Advances in Neural Information
Processing Systems 26, pages 190–198. Curran Associates, Inc.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory.
Neural Computation, 9(8):1735–1780.

Mark Hopkins and Jonathan May. 2011. Tuning as ranking. In Proceedings of the
2011 Conference on Empirical Methods in Natural Language Processing, pages 1352–
1362, Edinburgh, Scotland, UK. Association for Computational Linguistics.

Yuening Hu, Michael Auli, Qin Gao, and Jianfeng Gao. 2014. Minimum trans-
lation modeling with recurrent neural networks. In Proceedings of the 14th
Conference of the European Chapter of the Association for Computational Linguis-
tics, pages 20–29, Gothenburg, Sweden. Association for Computational Lin-
guistics.

Hakan Inan, Khashayar Khosravi, and Richard Socher. 2016. Tying word vec-
tors and word classifiers: A loss framework for language modeling. ArXiv
e-prints.

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical reparameterization
with gumbel-softmax. In International Conference on Learning Representations.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. 2015.
On using very large target vocabulary for neural machine translation. In Pro-
ceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pages 1–10, Beijing, China. Association for Computational Lin-
guistics.

Minwoo Jeong, Kristina Toutanova, Hisami Suzuki, and Chris Quirk. 2010. A
discriminative lexicon model for complex morphology. In The Ninth Conference
of the Association for Machine Translation in the Americas.

Robin Jia and Percy Liang. 2017. Adversarial examples for evaluating read-
ing comprehension systems. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 2011–2021, Copenhagen, Den-
mark. Association for Computational Linguistics.

Mark Johnson. 2007. Why doesn’t em find good hmm pos-taggers? In Proceed-
ings of the 2007 Joint Conference on Empirical Methods in Natural Language Pro-
cessing and Computational Natural Language Learning (EMNLP-CoNLL), pages
296–305, Prague, Czech Republic. Association for Computational Linguistics.

Matthew Johnson, David K Duvenaud, Alex Wiltschko, Ryan P Adams, and
Sandeep R Datta. 2016. Composing graphical models with neural networks
for structured representations and fast inference. In D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information
Processing Systems 29, pages 2946–2954. Curran Associates, Inc.

http://arxiv.org/abs/1611.01462
http://arxiv.org/abs/1611.01462


128 Bibliography

Melvin Johnson, Mike Schuster, Quoc Le, Maxim Krikun, Yonghui Wu,
Zhifeng Chen, Nikhil Thorat, Fernand a Viégas, Martin Wattenberg, Greg Cor-
rado, Macduff Hughes, and Jeffrey Dean. 2017. Google’s multilingual neural
machine translation system: Enabling zero-shot translation. Transactions of the
Association for Computational Linguistics, 5:339–351.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui
Wu. 2016. Exploring the Limits of Language Modeling. ArXiv e-prints.

Rafal Józefowicz, Wojciech Zaremba, and Ilya Sutskever. 2015. An empirical
exploration of recurrent network architectures. In Proceedings of the 32nd Inter-
national Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015,
pages 2342–2350.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent continuous translation
models. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pages 1700–1709, Seattle, USA.

Nal Kalchbrenner, Ivo Danihelka, and Alex Graves. 2016. Grid long short-term
memory. In International Conference on Learning Representations.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. 2014. A convo-
lutional neural network for modelling sentences. In Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics, pages 655–665.
Association for Computational Linguistics.

Andrej Karpathy, Justin Johnson, and Fei-Fei Li. 2016. Visualizing and under-
standing recurrent networks. In International Conference on Learning Represen-
tations.

Ahmed El Kholy and Nizar Habash. 2012. Translate, predict or generate: Mod-
eling rich morphology in statistical machine translation. In Proceedings of the
16th Conference of the European Association for Machine Translation (EAMT).

Yoon Kim, Carl Denton, Luong Hoang, and Alexander M. Rush. 2017. Struc-
tured attention networks. In International Conference on Learning Representa-
tions.

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M. Rush. 2016.
Character-aware neural language models. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, AAAI’16, pages 2741–2749. AAAI Press.

Diederik Kingma and Jimmy Ba. 2015. Adam: A method for stochastic op-
timization. In International Conference on Learning Representations, San Diego,
CA, USA.

Diederik P Kingma, Tim Salimans, and Max Welling. 2015. Variational
dropout and the local reparameterization trick. In Advances in Neural Infor-
mation Processing Systems 28, pages 2575–2583. Curran Associates, Inc.

Dan Klein and Christopher Manning. 2004. Corpus-based induction of syn-
tactic structure: Models of dependency and constituency. In Proceedings of

http://arxiv.org/abs/1602.02410


Bibliography 129

the 42nd Meeting of the Association for Computational Linguistics (ACL’04), Main
Volume, pages 478–485, Barcelona, Spain.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander
Rush. 2017. Opennmt: Open-source toolkit for neural machine translation.
In Proceedings of ACL 2017, System Demonstrations, pages 67–72, Vancouver,
Canada. Association for Computational Linguistics.

Philipp Koehn. 2004a. Pharaoh: A beam search decoder for phrase-based sta-
tistical machine translation models. In Proceedings of the 6th Conference of the
Association for Machine Translations in the Americas (AMTA 2004), pages 115–
124.

Philipp Koehn. 2004b. Statistical significance tests for machine translation eval-
uation. In Proceedings of the 2004 Conference on Empirical Methods in Natural
Language Processing, pages 388–395.

Philipp Koehn. 2010. Statistical Machine Translation, 1st edition. Cambridge
University Press, New York, NY, USA.

Philipp Koehn, Abhishek Arun, and Hieu Hoang. 2008. Towards better ma-
chine translation quality for the German-English language pairs. In Proceed-
ings of the Third Workshop on Statistical Machine Translation, pages 139–142,
Columbus, Ohio. Association for Computational Linguistics.

Philipp Koehn and Hieu Hoang. 2007. Factored translation models. In Proceed-
ings of the 2007 Joint Conference on Empirical Methods in Natural Language Pro-
cessing and Computational Natural Language Learning (EMNLP-CoNLL), pages
868–876, Prague, Czech Republic. Association for Computational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Mar-
cello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra Constantin, and Evan
Herbst. 2007. Moses: Open Source Toolkit for Statistical Machine Translation.
In Proceedings of the 45th Annual Meeting of the Association for Computational Lin-
guistics Companion Volume Proceedings of the Demo and Poster Sessions, pages 177–
180, Prague, Czech Republic. Association for Computational Linguistics.

Philipp Koehn, Franz Josef Och, and Daniel Marcu. 2003. Statistical phrase-
based translation. In Proceedings of HLT-NAACL 2003, pages 127–133, Edmon-
ton, Canada.

Terry Koo, Amir Globerson, Xavier Carreras, and Michael Collins. 2007. Struc-
tured prediction models via the matrix-tree theorem. In Proceedings of the 2007
Joint Conference on Empirical Methods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-CoNLL), pages 141–150, Prague,
Czech Republic. Association for Computational Linguistics.

Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, and Samuel J. Ger-
shman. 2017. Building machines that learn and think like people. Behavioral
and Brain Sciences, 40.

http://www.aclweb.org/anthology/D/D07/D07-1091
https://doi.org/10.1017/S0140525X16001837


130 Bibliography

Hai-Son Le, Alexandre Allauzen, and François Yvon. 2012. Continuous space
translation models with neural networks. In Proceedings of the 2012 Confer-
ence of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 39–48, Montréal, Canada. Association for
Computational Linguistics.

Hai-Son Le, Ilya Oparin, Alexandre Allauzen, J Gauvain, and François Yvon.
2011. Structured output layer neural network language model. In Proceedings
of Proceedings of ICASSP.

Jason Lee, Kyunghyun Cho, and Thomas Hofmann. 2017. Fully character-level
neural machine translation without explicit segmentation. Transactions of the
Association for Computational Linguistics, 5:365–378.

Yoong Keok Lee, Aria Haghighi, and Regina Barzilay. 2011. Modeling syn-
tactic context improves morphological segmentation. In Proceedings of the Fif-
teenth Conference on Computational Natural Language Learning, pages 1–9, Port-
land, Oregon, USA. Association for Computational Linguistics.

Junhui Li, Deyi Xiong, Zhaopeng Tu, Muhua Zhu, Min Zhang, and Guodong
Zhou. 2017. Modeling source syntax for neural machine translation. In Pro-
ceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 688–697. Association for Computational Lin-
guistics.

Chu-Cheng Lin, Waleed Ammar, Chris Dyer, and Lori Levin. 2015. Unsuper-
vised pos induction with word embeddings. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 1311–1316, Denver, Colorado.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang,
Bowen Zhou, and Yoshua Bengio. 2017. A Structured Self-attentive Sentence
Embedding. In International Conference on Learning Representations.

Wang Ling, Chris Dyer, Alan W Black, Isabel Trancoso, Ramon Fermandez,
Silvio Amir, Luis Marujo, and Tiago Luis. 2015. Finding function in form:
Compositional character models for open vocabulary word representation. In
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1520–1530, Lisbon, Portugal. Association for Computational Lin-
guistics.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg. 2016. Assessing the abil-
ity of LSTMs to learn syntax-sensitive dependencies. Transactions of the Associ-
ation for Computational Linguistics, 4:521–535.

Yang Liu and Mirella Lapata. 2018. Learning structured text representations.
Transactions of the Association for Computational Linguistics, 6:63–75.

Thang Luong, Hieu Pham, and Christopher D. Manning. 2015a. Effective ap-
proaches to attention-based neural machine translation. In Proceedings of the

https://doi.org/10.18653/v1/P17-1064


Bibliography 131

2015 Conference on Empirical Methods in Natural Language Processing, pages 1412–
1421, Lisbon, Portugal.

Thang Luong, Richard Socher, and Christopher Manning. 2013. Better word
representations with recursive neural networks for morphology. In Proceedings
of the Seventeenth Conference on Computational Natural Language Learning, pages
104–113, Sofia, Bulgaria. Association for Computational Linguistics.

Thang Luong, Ilya Sutskever, Quoc Le, Oriol Vinyals, and Wojciech Zaremba.
2015b. Addressing the rare word problem in neural machine translation. In
Proceedings of the 53rd Annual Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 11–19, Beijing, China. Association for Computa-
tional Linguistics.

Verena Lyding, Egon Stemle, Claudia Borghetti, Marco Brunello, Sara Castag-
noli, Felice Dell’Orletta, Henrik Dittmann, Alessandro Lenci, and Vito Pirrelli.
2014. The PAISÀ corpus of Italian web texts. In Proceedings of the 9th Web as
Corpus Workshop (WaC-9), pages 36–43, Gothenburg, Sweden. Association for
Computational Linguistics.

Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven
Bethard, and David McClosky. 2014. The Stanford CoreNLP natural language
processing toolkit. In Proceedings of 52nd Annual Meeting of the Association for
Computational Linguistics: System Demonstrations, pages 55–60. Association for
Computational Linguistics.

Mitchell P Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre,
Ann Bies, Mark Ferguson, Karen Katz, and Britta Schasberger. 1994. The Penn
Treebank: Annotating Predicate Argument Structure. In ARPA Human Lan-
guage Technology Workshop.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993.
Building a large annotated corpus of English: The Penn Treebank. Comput.
Linguist., 19(2):313–330.

Arne Mauser, Saša Hasan, and Hermann Ney. 2009. Extending statistical ma-
chine translation with discriminative and trigger-based lexicon models. In
Proceedings of the 2009 Conference on Empirical Methods in Natural Language Pro-
cessing: Volume 1 - Volume 1, EMNLP ’09, pages 210–218, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Gábor Melis, Chris Dyer, and Phil Blunsom. 2018. On the state of the art of
evaluation in neural language models. In International Conference on Learning
Representations.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. In International Conference
on Learning Representations.

http://arxiv.org/abs/1707.05589
http://arxiv.org/abs/1707.05589


132 Bibliography

Tomas Mikolov, Martin Karafiát, Lukás Burget, Jan Cernocký, and Sanjeev
Khudanpur. 2010. Recurrent neural network based language model. In INTER-
SPEECH 2010, 11th Annual Conference of the International Speech Communication
Association, Makuhari, Chiba, Japan, September 26-30, 2010, pages 1045–1048.

George A. Miller. 1995. Wordnet: A lexical database for English. Commun.
ACM, 38(11):39–41.

Einat Minkov, Kristina Toutanova, and Hisami Suzuki. 2007. Generating com-
plex morphology for machine translation. In Proceedings of the 45th Annual
Meeting of the Association of Computational Linguistics, pages 128–135.

Piotr Mirowski and Andreas Vlachos. 2015. Dependency recurrent neural lan-
guage models for sentence completion. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 2: Short Papers), pages 511–
517, Beijing, China. Association for Computational Linguistics.

Andriy Mnih and Geoffrey E. Hinton. 2007. Three new graphical models for
statistical language modelling. In Proceedings of the 24th International Conference
on Machine Learning, pages 641–648, New York, NY, USA.

Andriy Mnih and Koray Kavukcuoglu. 2013. Learning word embeddings
efficiently with noise-contrastive estimation. In C.J.C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors, Advances in Neu-
ral Information Processing Systems 26, pages 2265–2273. Curran Associates, Inc.

Andriy Mnih and Yee Whye Teh. 2012. A fast and simple algorithm for training
neural probabilistic language models. In Proceedings of the 29th International
Conference on Machine Learning (ICML-12), pages 1751–1758, New York, NY,
USA.

Thomas Müller, Hinrich Schütze, and Helmut Schmid. 2012. A comparative
investigation of morphological language modeling for the languages of the Eu-
ropean Union. In Proceedings of the 2012 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technologies,
pages 386–395, Montréal, Canada. Association for Computational Linguistics.

Tahira Naseem, Harr Chen, Regina Barzilay, and Mark Johnson. 2010. Using
universal linguistic knowledge to guide grammar induction. In Proceedings of
the 2010 Conference on Empirical Methods in Natural Language Processing, pages
1234–1244, Cambridge, MA.

Eric W. Noreen. 1989. Computer Intensive Methods for Testing Hypotheses. An
Introduction. Wiley-Interscience.

Franz Josef Och and Hermann Ney. 2003. A systematic comparison of various
statistical alignment models. Computational Linguistics, 29(1):19–51.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU:
a method for automatic evaluation of machine translation. In Proceedings of the



Bibliography 133

40th Annual Meeting of the Association of Computational Linguistics (ACL), pages
311–318, Philadelphia, PA.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the difficulty
of training recurrent neural networks. In ICML (3), volume 28 of JMLR Pro-
ceedings, pages 1310–1318.

Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543,
Doha, Qatar. Association for Computational Linguistics.

Vu Pham, Christopher Bluche, Théodore Kermorvant, and Jérôme Louradour.
2014. Dropout improves recurrent neural networks for handwriting recogni-
tion. In International Conference on Frontiers in Handwriting Recognition (ICFHR),
pages 285–290.

Matt Post and Daniel Gildea. 2008. Parsers as language models for statistical
machine translation. In Proceedings of the Eighth Conference of the Association for
Machine Translation in the Americas, pages 172–181.

Ofir Press and Lior Wolf. 2017. Using the output embedding to improve lan-
guage models. In Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 2, Short Papers, pages 157–163.
Association for Computational Linguistics.

Chris Quirk and Arul Menezes. 2006. Do we need phrases? challenging the
conventional wisdom in statistical machine translation. In Proceedings of the
Human Language Technology Conference of the NAACL, Main Conference, pages
9–16, New York City, USA. Association for Computational Linguistics.

Pushpendre Rastogi, Ryan Cotterell, and Jason Eisner. 2016. Weighting finite-
state transductions with neural context. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 623–633, San Diego, California.

Stefan Riezler and John T. Maxwell. 2005. On some pitfalls in automatic eval-
uation and significance testing for MT. In Proceedings of the ACL Workshop on
Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Sum-
marization, pages 57–64, Ann Arbor, Michigan. Association for Computational
Linguistics.

Ruslan Salakhutdinov, Sam Roweis, and Zoubin Ghahramani. 2003. Optimiza-
tion with em and expectation-conjugate-gradient. In Proceedings, Intl. Conf. on
Machine Learning (ICML, pages 672–679.

Helmut Schmid. 1994. Probabilistic part-of-speech tagging using decision
trees. In International Conference on New Methods in Language Processing, Manch-
ester, UK.

https://doi.org/10.1109/ICFHR.2014.55
https://doi.org/10.1109/ICFHR.2014.55


134 Bibliography

Holger Schwenk. 2012. Continuous space translation models for phrase-based
statistical machine translation. In Proceedings of COLING.

Holger Schwenk, Daniel Dechelotte, and Jean-Luc Gauvain. 2006. Continuous
space language models for statistical machine translation. In Proceedings of the
COLING/ACL 2006 Conference, pages 723–730, Sydney, Australia. Association
for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural machine
translation of rare words with subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 1715–1725, Berlin, Germany. Association for Computational Linguistics.

Rico Sennrich, Martin Volk, and Gerold Schneider. 2013. Exploiting syner-
gies between open resources for german dependency parsing, pos-tagging,
and morphological analysis. In Recent Advances in Natural Language Processing
(RANLP 2013), pages 601–609.

Serge Sharoff, Mikhail Kopotev, Tomaz Erjavec, Anna Feldman, and Dagmar
Divjak. 2008. Designing and evaluating a Russian tagset. In Proceedings of the
Sixth International Conference on Language Resources and Evaluation (LREC’08),
Marrakech, Morocco. European Language Resources Association (ELRA).

Xing Shi, Inkit Padhi, and Kevin Knight. 2016. Does string-based neural MT
learn source syntax? In Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 1526–1534, Austin, Texas. Association for
Computational Linguistics.

Maria Simi, Cristina Bosco, and Simonetta Montemagni. 2014. Less is more?
towards a reduced inventory of categories for training a parser for the Ital-
ian Stanford dependencies. In Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14), Reykjavik, Iceland. European
Language Resources Association (ELRA).

Noah A. Smith. 2011. Linguistic Structure Prediction, 1st edition. Morgan &
Claypool Publishers.

Noah A. Smith and Jason Eisner. 2005. Contrastive estimation: Training log-
linear models on unlabeled data. In Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics (ACL’05), pages 354–362, Ann Arbor,
Michigan. Association for Computational Linguistics.

Richard Socher, Brody Huval, Christopher D. Manning, and Andrew Y. Ng.
2012. Semantic compositionality through recursive matrix-vector spaces. In
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, pages 1201–1211. As-
sociation for Computational Linguistics.

Richard Socher, Jeffrey Pennington, Eric H. Huang, Andrew Y. Ng, and
Christopher D. Manning. 2011. Semi-supervised recursive autoencoders for
predicting sentiment distributions. In Proceedings of the Conference on Empirical



Bibliography 135

Methods in Natural Language Processing, pages 151–161, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Kai Song, Yue Zhang, Min Zhang, and Weihua Luo. 2018. Improved English
to Russian translation by neural suffix prediction. In AAAI.

Theerawat Songyot and David Chiang. 2014. Improving word alignment using
word similarity. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1840–1845, Doha, Qatar.

Radu Soricut and Franz Och. 2015. Unsupervised morphology induction us-
ing word embeddings. In Proceedings of the 2015 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, pages 1627–1637, Denver, Colorado. Association for Computational
Linguistics.

Valentin I. Spitkovsky, Hiyan Alshawi, Angel X. Chang, and Daniel Jurafsky.
2011. Unsupervised dependency parsing without gold part-of-speech tags.
In Proceedings of the 2011 Conference on Empirical Methods in Natural Language
Processing, pages 1281–1290, Edinburgh, Scotland, UK.

Drahomíra Spoustová, Jan Hajič, Jan Votrubec, Pavel Krbec, and Pavel Květoň.
2007. The best of two worlds: Cooperation of statistical and rule-based taggers
for czech. In Proceedings of the Workshop on Balto-Slavonic Natural Language Pro-
cessing, pages 67–74, Prague, Czech Republic. Association for Computational
Linguistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. 2014. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res., 15(1):1929–1958.

Michael Subotin. 2011. An exponential translation model for target language
morphology. In Proceedings of the 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technologies, pages 230–238, Portland,
Oregon, USA. Association for Computational Linguistics.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. 2015.
End-to-end memory networks. In C. Cortes, N.D. Lawrence, D.D. Lee,
M. Sugiyama, R. Garnett, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 28, pages 2431–2439. Curran Associates, Inc.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence
learning with neural networks. In Z. Ghahramani, M. Welling, C. Cortes, N.D.
Lawrence, and K.Q. Weinberger, editors, Advances in Neural Information Pro-
cessing Systems 27, pages 3104–3112. Curran Associates, Inc.

Kristina Toutanova, Chris Brockett, Ke M. Tran, and Saleema Amershi. 2016. A
dataset and evaluation metrics for abstractive compression of sentences and
short paragraphs. In Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 340–350, Austin, Texas. Association for
Computational Linguistics.

http://www.aclweb.org/anthology/D14-1197
http://www.aclweb.org/anthology/D14-1197
http://www.aclweb.org/anthology/N15-1186
http://www.aclweb.org/anthology/N15-1186


136 Bibliography

Kristina Toutanova, Hisami Suzuki, and Achim Ruopp. 2008. Applying mor-
phology generation models to machine translation. In Proceedings of ACL-08:
HLT, pages 514–522, Columbus, Ohio. Association for Computational Linguis-
tics.

Ke Tran, Arianna Bisazza, and Christof Monz. 2015. A distributed inflection
model for translating into morphologically rich languages. In Proceedings of
the 15th Machine Translation Summit (MT-Summit 2015), pages 145–159, Miama,
USA.

Ke Tran, Arianna Bisazza, and Christof Monz. 2016a. Recurrent memory net-
works for language modeling. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pages 321–331, San Diego, California.

Ke Tran, Arianna Bisazza, and Christof Monz. 2018. The importance of being
recurrent for modeling hierarchical structure. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Processing, pages 4731–4736,
Brussels, Belgium. Association for Computational Linguistics.

Ke Tran and Yonatan Bisk. 2018. Inducing grammars with and for neural ma-
chine translation. In Proceedings of the 2nd Workshop on Neural Machine Transla-
tion and Generation, pages 25–35, Melbourne, Australia. Association for Com-
putational Linguistics.

Ke M. Tran, Arianna Bisazza, and Christof Monz. 2014. Word translation pre-
diction for morphologically rich languages with bilingual neural networks.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1676–1688, Doha, Qatar. Association for Computa-
tional Linguistics.

Ke M. Tran, Yonatan Bisk, Ashish Vaswani, Daniel Marcu, and Kevin Knight.
2016b. Unsupervised Neural Hidden Markov Models. In Proceedings of the
Workshop on Structured Prediction for NLP, pages 63–71, Austin, TX. Association
for Computational Linguistics.

W. T Tutte. 1984. Graph theory. Cambridge University Press.

Jakob Uszkoreit and Thorsten Brants. 2008. Distributed word clustering for
large scale class-based language modeling in machine translation. In Proceed-
ings of ACL-08: HLT, pages 755–762, Columbus, Ohio. Association for Compu-
tational Linguistics.

Clara Vania and Adam Lopez. 2017. From characters to words to in between:
Do we capture morphology? In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 2016–
2027. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

https://doi.org/10.18653/v1/P17-1184
https://doi.org/10.18653/v1/P17-1184


Bibliography 137

you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems 30, pages 6000–6010. Curran Associates, Inc.
Ashish Vaswani, Yinggong Zhao, Victoria Fossum, and David Chiang. 2013.
Decoding with large-scale neural language models improves translation. In
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1387–1392, Seattle.
Lloyd R Welch. 2003. Hidden Markov Models and the Baum-Welch Algorithm.
IEEE Information Theory Society Newsletter, 53(4):1–24.
Adina Williams, Andrew Drozdov, and Samuel R. Bowman. 2018. Do latent
tree learning models identify meaningful structure in sentences? Transactions
of the Association for Computational Linguistics.
Ronald J. Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine Learning, 8(3-4):229–256.
Mehmet Ali Yatbaz, Enis Sert, and Deniz Yuret. 2012. Learning syntactic cat-
egories using paradigmatic representations of word context. In Proceedings
of the 2012 Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning, pages 940–951, Jeju Island, Korea.
Association for Computational Linguistics.
Dani Yogatama, Phil Blunsom, Chris Dyer, Edward Grefenstette, and Wang
Ling. 2017. Learning to compose words into sentences with reinforcement
learning. International Conference on Learning Representations.
Eros Zanchetta and Marco Baroni. 2005. Morph-it! a free corpus-based mor-
phological resource for the Italian language. Corpus Linguistics 2005, 1(1).
Jian Zhang, Ioannis Mitliagkas, and Christopher Ré. 2017. Yellowfin and the
art of momentum tuning. arXiv preprint arXiv:1706.03471.
Michał Ziemski, Marcin Junczys-Dowmunt, and Bruno Pouliquen. 2016. The
United Nations parallel corpus v1.0. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation (LREC 2016), Paris, France. Eu-
ropean Language Resources Association (ELRA).
Will Y. Zou, Richard Socher, Daniel Cer, and Christopher D. Manning. 2013.
Bilingual word embeddings for phrase-based machine translation. In Proceed-
ings of the 2013 Conference on Empirical Methods in Natural Language Processing,
pages 1393–1398, Seattle, USA.
Geoffrey Zweig and Chris J. C. Burges. 2012. A challenge set for advancing
language modeling. In Proceedings of the NAACL-HLT 2012 Workshop: Will We
Ever Really Replace the N-gram Model? On the Future of Language Modeling for
HLT, WLM ’12, pages 29–36, Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696


138 Bibliography



Summary

In the field of natural language processing (NLP), recent research has shown
that deep neural network models are quite brittle and can only model linguistic
principles to a limited degree. In order to build NLP systems that can generalize
and work well in practice, it is important to integrate linguistic knowledge into
such systems as well as investigate the ability of current models in capturing
linguistic phenomena. This thesis attempts to address those two aspects from
four different angles.
First, this thesis demonstrates that neural network models enable the integra-
tion of morphological knowledge seamlessly into phrase-based machine trans-
lation systems without any feature engineering.
Second, this thesis investigates what linguistic phenomena are implicitly cap-
tured by recurrent neural networks by augmenting them with an external mem-
ory. This thesis also studies the impact of recurrent vs non-recurrent architec-
tures in modeling hierarchical structure.
Third, while neural networks are well known to be powerful supervised learn-
ers, this thesis investigates whether they offer the same benefits for unsuper-
vised structure learning. This thesis proposes an unsupervised Neural Hidden
Markov Model for the purpose of part-of-speech induction.
Finally, this thesis asks whether neural networks can induce meaningful struc-
ture from non-annotated text. This thesis proposes structured attention models
that induce a dependency-like tree representation of the input sentence for the
purpose of translation. Moreover, this thesis shows that the models learn some
basic elements of the source language grammar.



Samenvatting

Recent onderzoek op het gebied van Natural Language Processing (NLP) heeft
aangetoond dat diepe neurale netwerken behoorlijk broos zijn en linguïstis-
che principes slechts in beperkte mate kunnen modeleren. Om NLP-systemen
te kunnen bouwen die goed kunnen generaliseren en die goed in de praktijk
werken, is het belangrijk om linguïstische kennis in dergelijke system te integr-
eren. Bovendien is het van belang om huidige systemen te onderzoeken op hun
vermogen om linguïstische verschijnselen te vatten. In dit proefschrift worden
deze twee aspecten vanuit vier verschillende invalshoeken benaderd.
Ten eerste wordt in dit proefschrift aangetoond dat neurale netwerken de inte-
gratie van morfologische kennis in phrase-based machine translation systemen
mogelijk maken, zonder enige vorm van feature engineering.
Ten tweede wordt in dit proefschrift onderzocht welke linguïstische verschi-
jnselen door recurrent neural networks impliciet worden vastgelegd. Dit wordt
onderzocht door deze netwerken te verrijken met een extern geheugen. In dit
proefschrift wordt ook de impact van recurrent versus non-recurrent architec-
turen op het modeleren van hiërarchische structuren bekeken.
Ten derde, waar neurale netwerken bekend staan goed te kunnen leren in een
supervised setting, wordt in dit proefschrift ook de unsupervised setting bekeken.
In dit proefschrift wordt een unsupervised Neural Hidden Markov Model aange-
dragen voor part-of-speech inductie.
Ten slotte wordt in dit proefschrift ook de vraag gesteld of neurale netwerken
betekenisvolle structuren kunnen afleiden uit niet geannoteerde tekst. In dit
proefschrift worden gestructureerde attention modellen voorgesteld die een
dependency-achtige tree representatie van de inputzin afleiden die gebruikt
kan worden voor machine translation. In dit proefschrift wordt ook aangetoond
dat de modellen bepaalde basiselementen van de grammatica van de brontaal
leren.
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