
Light-Weight Entailment Checking for
Computational Semantics

Christof Monz Maarten de Rijke

Institute for Logic, Language and Computation (ILLC)
University of Amsterdam, Plantage Muidergracht 24

1018 TV Amsterdam, The Netherlands
E-mail: christof,mdr@science.uva.nl

Abstract

Inference tasks in computational semantics have mostly been tackled by
means of first-order theorem proving tools. While this is an important and
welcome development, it has some inherent limitations. First, generating
first-order logic representations of natural language documents is hampered
by the lack of efficient and sufficiently robust NLP tools. Second, the com-
putational costs of deploying first-order logic theorem proving tools in real-
world situations may be prohibitive. And third, the strict yes/no decisions
delivered by such tools are not always appropriate.

In this paper we report on an approach to inference in semantics that
works on very minimal representations which can easily be generated for
arbitrary domains. Moreover, our approach is computationally efficient, and
provides graded outcomes instead of strict yes/no decisions. Our approach is
fully implemented, and a preliminary evaluation of the approach is discussed
in the paper.

1 Introduction

It has been observed that automated first-order inference systems can serve some of
the needs of natural language processing, and, in particular, of discourse process-
ing [Blackburnet al., 1999]. For instance, first-order theorem proving and model
generation can be used to implement pragmatic constraints on presupposition pro-
jection. The core issues here can be successfully tackled in terms of consistency
checks, informativity checks, and minimality checks. Each of these tasks admits
a natural interpretation within automated reasoning systems[Gardent and Webber,
2000].

It is safe to say that this emphasis on deploying first-order logic tools for a rel-
atively small number of discourse related tasks characterizes much of today’s work
in computational semantics[Monz and de Rijke, 2000]. The aim of the present
paper is to argue for a much broader view of inference in semantics. First of all,
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we want to emphasize that there is a whole spectrum of reasoning tools from which
semanticists can choose. These range from theorem proving in first-order logic to
satisfiability checking in restricted logics (such as modal and description logics)
to various forms of abductive reasoning to model checking in temporal logic to
probabilistic reasoning.

Second, there is a wide variety of domains in which such tools can be used
to perform semantical tasks, including discourse processing, dialogue processing,
and information processing.

Third, the choice of one particular reasoning service over another should be
guided by a variety of concerns, including performance, as well as the ability to
efficiently and robustly generate representations of text or speech that can be fed
to a reasoning service. By and large, computational semanticists seem to have
ignored the latter requirement. While some may argue that adequate performance
is unfeasible given current techniques, our take on this matter is that semanticists
should get to work with, and try to get the most out of, currently available NLP
techniques, without waiting, say, for the perfect parser.

The fourth point we want to get across is that, ultimately, the choice of one
particular representation and inference mechanism over others should be decided
upon by means of proper testing and evaluation techniques.

Our general agenda, then, is to pursue computational semantics using currently
available techniques, and to determine not only how far we can get, but also to
what extent moving to richer representations and deeper levels of analysis pays
off. This is similar to the trade-off between partial and full parsing: although
partial parsing is not as reliable as full parsing, it is often used because it is more
efficient, robust, and often provides sufficient information. Attempts to use deeper
representations should then be motivated by the fact that more shallow ways of
building representations are unable to provide the information needed.

To make matters concrete, we focus onentailment checkingand its use in com-
putational semantics. In Section 2 we briefly discuss areas in which the need for
efficient entailment checking arises. In Section 3 we list a number of criteria for se-
lecting a method for checking entailment, and we zoom in on one particular choice,
based on ideas from information retrieval. In Sections 4 and 5 we describe exper-
iments that we carried out to provide a preliminary evaluation of our method for
entailment checking, and in Section 6 we conclude and outline future work.

2 Background: Informativity

Informativity is about determining whether a piece of information (e.g., a reading
or an utterance or a piece of text) is already entailed by its local context. Infor-
mativity is an often used notion in natural language processing and understanding.
For instance,[Blackburnet al., 1999] show that informativity can be treated as an
entailment problem: a piece of new informationNEW is informative with respect
a discourse contextOLD and general world knowledgeKB just in case the impli-
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Figure 1: Two Segmentized Documents (Topic 6).
Reuters (31 Oct 2000 16:39 GMT) AP (31 Oct 2000 16:25 GMT)

Reuters 1: TAIPEI (Reuters) - A Singapore
Airlines plane bound for Los Angeles crashed
during a typhoon at Taiwan’s international air-
port on Tuesday, an airport police official said.
Reuters 2: It was not immediately known how
many of the 159 passengers and 20 crew were
killed or injured, Civil Aeronautics Adminis-
tration deputy director Chang Kuo-cheng told
reporters. ”The plane burst into flames and ex-
ploded shortly after takeoff,” an airport police
official told reporters.
Reuters 3: Local television was reporting that
over 120 injured had been taken to hospital.
Reuters 4: The SIA Boeing 747-400 was tak-
ing off during a storm and hit by strong winds.
It hit two other planes on the tarmac, includ-
ing a China Airlines plane, police said. A Tai-
wan vice transport minister said no one was on
board the other two planes.
Reuters 5: The injured were rushed to hospi-
tal. No other details were immediately avail-
able.

...

AP 1: TAIPEI, Taiwan (AP) - A Singa-
pore Airlines jetliner bound for Los Angeles
crashed on takeoff in a storm Tuesday night
and slammed into another plane on the runway,
a Taiwanese official said.
AP 2: There were 179 people on board Singa-
pore Airlines Flight SQ006, which local media
reports said was a 747. It was not immediately
known how many people were hurt or killed,
but local media reports said some injured peo-
ple were being taken to the hospital. Strong
winds seemed to have forced the plane down.
There was an explosion as it struck a China
Airlines plane on the runway at Taipei’s Chi-
ang Kai-shek International Airport, emergency
official Wu Bi-chang said. Local media reports
said the China Airlines plane was empty.
AP 3: The crash occurred at 11:18 p.m. lo-
cal time, and rescue workers were being dis-
patched to the scene, Wu said. Minutes later,
the flashing lights of rescue vehicles were vis-
ible on the wet tarmac. Local media reports
said there was a fire on the runway after the
crash but that it had been extinguished.

...

cationOLD ∧ KB → NEW is not valid. [Gardent and Webber, 2000] show how
informativity may be used in the discourse interpretation of phenomena such as
noun-noun compounds, metonymy, and definite noun phrases.

The computation of entailment relations is also important in areas of compu-
tational linguistics other than discourse processing. Let’s consider two examples.
The first is document summarization[Barzilay et al., 1999; Mani and Bloedorn,
1999]. [Radev, 2000] describes 24 cross-document relations that can hold between
segments of documents, one of which is theentailmentrelation. It can be used to
compute the informativity of one text segment compared to another one. In the
context of summarization this is used to avoid redundancy, i.e., if a segment entails
another segment, only the entailing segment should be included in the summary.

Figure 1 shows an example of two segmentized documents, both covering a
plane crash in Taiwan. A superficial glance reveals some entailments; for instance,
AP 2 is at least as informative asReuters 4and asReuters 5. On the other hand,
it seems clear thatAP 2 does not contain the specific information mentioned in
Reuters 3.

Formally, the task at hand may be formulated as follows:si,d (thei-th segment
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of documentd) is at least as informative assj,d′ (the j-th segment of document
d′) if si,d entailssj,d′ . Clearly, determining the informativity of a text segment is a
task on the interface of computational semantics and inference.

Our final example of the need for entailment checking in NLP concerns con-
cept hierarchies, that is, collections of terms organized in a hierarchical structure,
where a conceptA is higher in the hierarchy than a conceptB if A is more gen-
eral thanB in the sense that allB-instances areA-instances, that is, ifB entails
A [Donini et al., 1996]. Concept hierarchies have proved useful for a variety of
purposes, including retrieval, browsing and navigation. Currently, the most com-
mon forms of concept hierarchies are the well-known categorization schemes such
as Yahoo[Yahoo, 2001], and the WordNet thesaurus[WordNet, 2001], an orga-
nization of terms with synonym, antonym, hyponym/hypernym (is-a/is-a-type-of),
and meronym/holonym (has-part/is-part-of) relations.

Most of these hierarchies are hand-coded, and, usually, a pair of concepts is in-
cluded in the hierarchy only if the one entails the other in the traditional, strict sense
of the word. There has been some work on automatically deriving thesaural rela-
tionships from texts. In recent work, Sanderson and Croft[Sanderson and Croft,
1999] report on the use of basic information retrieval techniques for this purpose;
the hierarchical relation educed from a set of documents is certainly not strict log-
ical entailment, but something like ‘the child concept is a related subtopic of the
parent concept.’

3 Entailment Checking

As we have just seen, there is a variety of areas in computational linguistics where
entailment checking is an essential inference task. But what kind of entailment
checking is appropriate? And what kind of algorithms should we use?

3.1 Three Criteria

There is a wide spectrum of methods for entailment checking that can — in princi-
ple — be used. In deciding which method to use, the following criteria are among
the main ones:

1. the robustness and coverage of methods for generating representations that
our system can work on,

2. the computational costs (and behavior) of the entailment checks, and

3. the type of outcomes or output that we want to have.

Below we discuss these criteria in a bit more detail; after that we present our own
approach to entailment checking.
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Generating Representations. Obviously, whichever tool we use for entailment
checking, it needs to operate onrepresentationsof the input documents. Seman-
ticists have a tendency to opt for rich representation formalisms so as to be able
to capture as many relevant aspects as possible. In practice, ‘rich’ often means
‘includes (at least) first-order logic.’ What does it take to generate first-order logic
representations of documents? Traditionally, this is taken to involve a number of
levels, including syntactic structure, logical form, and some form of contextual in-
terpretation[Allen, 1995]. Despite important recent advances, relevant tools (such
as parsers) lack the robustness and coverage needed to efficiently generate deep
semantic representations of arbitrary natural language documents. Moreover, the
traditional demand that representations be precise and unambiguous may lead to
representations whose size is exponential (or worse) in the size of the input doc-
ument. Indeed, practicable methods for generating first-order representations are
very rare.

An obvious way out is to turn to more light-weight representations that can
be obtained by more shallow and more robust NLP techniques. Partial parsing or
chunk parsing can be used to build such representations in an efficient and robust
manner, while avoiding full disambiguation[Abney, 1996; Hobbs et al., 1996].

Bags of (stemmed) words, possibly filtered through a stopword list, are even
more shallow representations of natural language documents. At the cost of giving
up virtually all syntactic structure, bag-of-words representations provide very con-
cise representations that are easy to generate, and that are typically used for large
text collections[Baeza-Yates and Ribeiro-Neto, 1999]. The method for entailment
checking that we propose below uses bag-of-words representations.

Computational Costs. How hard is it to reason with pieces of information in
a given representation format? If one opts for first-order logic as one’s represen-
tation formalism, the entailment problem is obviously undecidable. Admittedly,
recent advances in first-order theorem provers and model generators do seem to
make them of practical use in some classes of linguistic problems[Blackburnet
al., 1999]. And there is the hope that the development of test suites for, e.g., dis-
course understanding will allow the tuning of automated inference systems to excel
at strategies that support efficient inference for semantics[Gardent and Webber,
2000]. Nevertheless, we are dealing with an undecidable problem; in practice this
means that minor variations in do-able instances may cause time outs and explod-
ing memory usage.

We see two possible replies to this problem. One is to ignore it and to accept
the fact that there are problem instances for which the available computational
resources are guaranteed not to suffice. The other is to stick to wide coverage
but to simplify the reasoning task so that it is guaranteed to behave well on each
problem instance; the latter is the approach that we adopt below.
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Type of Outcomes. There is another fundamental issue here. Most reasoning
methods currently used or proposed in computational semantics are based on strict,
binary logical reasoning, and if they produce an outcome at all, it will be a strict
yes or no. As any textbook on AI will explain, there are many reasons why ap-
proximate reasoning should be preferred in some cases. For the purposes of entail-
ment checking in computational semantics, two reasons are particularly relevant.
First, in many practical situations, such as document summarization, we simply are
content withapproximateanswers, and prefer approximate answers to having no
answer at all.

Second, we have found that, usually, the strict binary entailment relation only
holds between text segmentssi,d andsj,d′ (in that order) wheneversi,d is a copy
of sj,d′ or an extension of a copy ofsj,d′ . In other words, if only Boolean answers
are allowed, the entailment relation may be too sparse (i.e., hold between too few
pairs of text segments) to be of any practical use.

3.2 Our Approach

We propose a simple yet effective method for entailment checking that is based on
a familiar similarity measure from information retrieval. Here are the basic ideas.
First of all, we represent text segments as bags of (weighted) words. Next, to
explain how weights are computed, we need to introduce a few notions. By atopic
we mean a set of related documents; these are documents for which we need to
compute entailment relations. Further, to define the weights, we useN to denote
the total number of segments in the topic, andni for the number of segments in
which the termti occurs. Then, the weight of a termti within a given topic as
assigned by the equation

idf i = log
(
N

ni

)
(1)

is known as itsinverse document frequencyin an information retrieval setting
[Baeza-Yates and Ribeiro-Neto, 1999]. Terms that occur in many segments (i.e.,
for whichni is rather large), such asthe, some, etc., receive a loweridf -score than
terms that occur only in a few segments. The intuition behind theidf -score is that
terms with a higheridf -score are better suited for discriminating the content of a
particular segment from the other segments in the topic, or to put it differently, they
are more content-bearing. Note, that the logarithm in (1) is only used to smoothen
the differences between the scores.

Let d, d′ be two documents. Given the term weights as defined in (1), we com-
pute theentailment score, entscore(si,d, sj,d′), of two segmentssi,d in d andsj,d′
in d′ by comparing the sum of the weights of terms that appear in both segments to
the sum of the weights of all terms insj,d′ :

entscore(si,d, sj,d′) =

∑
tk∈(si,d∩sj,d′ ) idf k∑

tk∈sj,d′ idf k
. (2)
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In words: how many of the content-bearing terms insj,d′ occur insi,d? Clearly,
entscore(si,d, sj,d′) varies from 0 to 1, thus providing the possibility of approxi-
mate entailment judgments.

A few remarks are in order. First, note that our entailment score is not just a
notion of similarity: in general,entscore(si,d, sj,d′) 6= entscore(sj,d′ , si,d).

Second, to work withentscore and conclude thatsi,d entailssj,d′ , it may not be
sufficient to have a non-zero entailment score: we may need some positive ‘entail-
ment threshold.’ For an example that illustrates this point, consider Figure 1 again.
As we pointed out earlier, segmentAP 2 entailsReuters 4andReuters 5. The en-
tailment scores obtained using (2) are as follows:entscore(AP 2,Reuters 4) ≈
0.52, while entscore(AP 2,Reuters 5) ≈ 0.28, suggesting an obvious upper-
bound for the entailment threshold. In contrast,Reuters 4→ AP 2 does not seem
to be a valid implication, suggesting that the entailment threshold should be larger
thanentscore(Reuters 4,AP 2) ≈ 0.08. The mechanism of entailment thresholds
offers a large amount of flexibility for fine-tuning the entailment relation to one’s
purposes. See Section 5 for further discussions on this point.

Third, what kind oflogical properties does the entailment relation that is com-
puted using (2) enjoy? While it satisfies some properties that we usually assign to
entailment relations, such as reflexivity (i.e.,entscore(si,d, si,d) = 1 for any seg-
mentsi,d), it also fails to satisfy some, such as transitivity. For instance, Topic 6
in our test collection contains the AP and Reuters document displayed in Figure 1,
as well as a document from CNN. We foundentscore(AP 1,Reuters 2) ≈ 0.63
andentscore(Reuters 2,CNN 5) ≈ 0.32, so with an entailment threshold of, say,
0.27, we would get a ‘yes’ for both implications, but we would get a ‘no’ for the
implication AP 1 → CNN 5 as we foundentscore(AP 1,CNN 5) ≈ 0.16, well
below the subsumption threshold. Unfortunately, further explorations of the purely
properties of the entailment relations computed by (2) are beyond the scope of this
paper. Instead, our next task is to evaluate our approach.

4 Experimental Set-Up

In this section we describe our experimental set-up, including our test collection as
well as some figures concerning the generation of representations and the computa-
tions of the entailment scores. Details of our preliminary evaluation are described
in Section 5 below.

4.1 Data Source and Preparation

For our experiments we prepared a small corpus consisting of 69 news stories from
the AP news wire, BBC, CNN,L.A. Times, Reuters,USA Today, Washington Post,
andWashington Times. The collection was categorized into 21 topics; this was
done by hand. All documents belonging to a single topic were released on the same
day and describe the same event; see Figure 1 for two documents from Topic 6.
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Table 1: Statistics on the Test Collection (21 topics, 69 documents).
average per topic

number of documents 3.3 docs.
document length 612 words
total length of documents 2115 words
length of longest document 783 words
length of shortest document 444 words
segments per document 16.4
total number of segments 55.9

The documents were segmented into paragraphs; in news stories these tend to be
short, and we found that they rarely exceed 4 sentences. On average a document
consisted of 16.4 segments, and a topic of a total of 55.9 segments; see Table 1.

4.2 Generating Representations

In a bag-of-words approach, the generation of representations is rather trivial, in-
volving three fairly simple steps. First, the input is tokenized, where word bound-
aries are recognized and punctuation is removed. Then, each word (or token) is
normalized to its lemma, where morphological information, such as inflection and
plural indicators are removed. For tokenization and lemmatization we use TreeTag-
ger [Schmid, 1994], a decision-tree-based part-of-speech tagger. Although Tree-
Tagger assigns part-of-speech information to each word, this information is not
used for further processing in the current system. The last step is to assign anidf -
score to each word within a topic, where theidf -score is computed as described in
Section 3.2.

4.3 Computing Entailment Scores

Now, to be able to carry out entailment checks, we need to compute entailment
scores usingentscore. Given two documentsd, d′ belonging to the same topic,
we compute the entailment score for each pair of segments (si,d, sj,d′). Although
the pairwise computation ofentscore is exponential in the number of documents
in the topic, it still remains computationally tractable in practice. For instance, for
4 documents (slightly more than the average case), with a total of about 1600 pairs
of text segments, it takes under 10 seconds to compute all entailment scores. For
8 documents (an extreme case, which did not occur in the current collection but
was artificially constructed) it takes 66 seconds; both times were measured on a
600 MHz Pentium III PC.
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5 Evaluation

The literature on logic and semantics is full of examples of ideas that look interest-
ing on paper, but perform poorly in practice. Theoretical studies do not provide an
indication of the effectiveness of information processing algorithms such as the en-
tailment scoring method that we have proposed. Hence, empirical testing is called
for. Below, we first discuss the method and measures that we have used, and then
we present our testing results.

5.1 Method

We compared automatically generated entailment relations to ‘ideal’ entailment
relations. For each of the 21 topics in our test corpus we randomly selected two
documents in the topic, and asked a human subject to determine all entailment rela-
tions between segments in different documents (within the same topic). Judgments
were made on a scale 0–2, according to the extent to which one segment was found
to entail another. Put differently, if a segmentsi,d was found to entail segmentsj,d′
the pair (si,d, sj,d′) would be rated 2, while it would be rated 0 if no entailment was
found. Thus, the human judge was allowed a spectrum of entailment in the ratings
0, 1, 2.

Let’s look at some examples to illustrate these ratings; in Topic 6, the AP and
Reuters documents listed in Figure 1 were selected for human assessment.

Score 2: In Topic 6, the implicationsAP 2→ Reuters 4andAP 2→ Reuters 5
both scored 2, because all information in the segments on the right-hand side
is present — either implicitly or explicitly — in the segment on the left-hand
side.

Score 1: An implication si,d → sj,d′ was rated 1 wheneversi,d entailed a sub-
stantial subsegment ofsj,d′ . For instance,AP 1 (in Topic 6) says nearly
everything expressed byReuters 4except for the type of the aircraft and the
fact that it was empty.

Score 0: An example where no entailment is found is given byReuters 4 and
AP 2: AP 2 contains a significant amount of information that is not present
in Reuters 4. In such cases a score 0 was to be assigned.

Let a potential entailment pairbe an ordered pair of text segments(si,d, sj,d′)
that may or may not stand in the entailment relation. Out of the 12083 potential
entailment pairs that our human judge had to consider, 501 (4.15%) received a
score of 1, and only 89 (0.73%) received a score of 2. All other potential entailment
pairs received a score equal to 0.

How can we use these human assessments for measuring the performance of
our entailment checking method? Let acorrect entailment pair be a potential en-
tailment pair(si,d, sj,d′) for which si,d does indeed entailsj,d′ according to our
human judge. Further, acomputedentailment pair is a potential entailment pair for
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Figure 2: (a) Average precision with human judgments> 0 and> 1. (b) Average
recall with human judgments> 0 and> 1.

which our entailment method has produced a score above the entailment thresh-
old. Precisionis a useful measure for determining the accuracy of our entailment
checking method. It is defined as the fraction of computed entailment pairs that is
correct:

Precision=
number of correct entailment pairs computed
total number of entailment pairs computed

.

Recall is used to measure the extent to which our entailment checking method is
exhaustive. It is defined as the proportion of the total number of correct entailment
pairs that were computed:

Recall=
number of correct entailment pairs computed

total number of correct entailment pairs
.

Observe that precision and recall depend on the entailment threshold that we use.
For instance, with a very low entailment threshold, we can expect a larger number
of computed entailment pairs, and hence a larger number of correctly computed
entailment pairs; that is, with a low entailment threshold recall will increase.

5.2 Results

Using human judgments for the two selected documents per topic, we computed
average recall and precision at 11 different entailment thresholds, ranging from 0
to 1, with .1 increments; the average was computed over all topics. The results are
summarized in Figures 2 (a) and (b).

There were two ways in which we compared the computed entailment scores
against the human assessments. First, we used a human rating of more than 0 to
classify an entailment pair as correct; the resulting precision and recall are indi-
cated with ‘Human judgment> 0’ in Figures 2 (a) and (b). Second, we required
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a human rating of more than 1 for a entailment pair to be correct; the resulting
measures are indicated with ‘Human judgment> 1.’

There are several things worth noting about our experimental results. First, as
expected, precision is higher when human judgments> 0 are used to determine the
correct entailment pairs than with human judgments> 1. Further, the highest score
is obtained for a entailment threshold around0.3, thus suggesting that some value
around0.3 is the optimal entailment threshold. As expected, initially precision
increases as the entailment threshold is increased, but there are drops in precision
around0.3 and again around0.8. This may be explained as follows. For some
topics, the threshold is higher than the maximum entailment score, and in such
cases no entailment pairs are computed and precision for those topics drops to 0.

As to recall (Figure 2 (b)), as expected recall is higher when human judgments
> 1 are used to determine the correct entailment pairs than with human judgments
> 0. Moreover, recall increases as the entailment threshold decreases, thus sug-
gesting that a entailment threshold equal to0 is the preferred one if recall is the
most important measure.

Since precision and recall suggest two different optimal entailment thresholds,
there is an obvious question: what is the optimal threshold if precision and recall
are equally important? In information retrieval, various methods have been sug-
gested for generating a single performance number, which combines precision and
recall aspects, to quantify the usefulness of retrieval methods. One of these is the
harmonic meanF of recall and precision[Shaw Jret al., 1997] which is computed
as

F =
2

1
Recall + 1

Precision

.

TheF -score assumes a high value only when both recall and precision are high.
We have plotted the averageF -scores in Figure 3 (a). Observe that the optimal
entailment threshold for human judgments> 0 seems to be around 0.18, and ap-
proximately0.4 for human judgments> 1. This conforms to the intuition that a
higher entailment threshold is more effective when human judgments are stricter.

In Figure 3 (b) we have plottedF -scores per topic, with human judgments> 0.
The average over these curves corresponds to the solid line in (a), and, indeed, the
shape of the solid line in (a) can be recognized in (b). Note that there is some
variance between the topics, and that there are some clear outliers, such as Topic 1
and Topic 2.

TheF -score suggests that 0.2 (0.4) is to be taken as entailment threshold for
identifying entailing segments with a human judgment score of at least 1 (2). This
results in an overall precision of 0.33 (0.28) and an overall recall of 0.48 (0.48).
Obviously, precision and recall figures in the 30% and 40% range are not opti-
mal, but computing entailment is a hard task, and relatively poor results should not
come as a surprise. Nevertheless, even when working with extremely simple rep-
resentations, our experiments indicate that almost half of all entailment relations
are identified! It might appear that identifying only a third of them correctly is
unsatisfactory, but, again, note that entailment relations are very sparse, viz. only
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Figure 3: (a) AverageF -scores with human judgments> 0 and> 1. (b)F -scores
across topics, with human judgments> 0.

4% of all potential entailment pairs received a human rating of 1, and even fewer,
0.7%, received a human rating of 2.

At the end of the day, we’re left with the following question: Did we really com-
puteentailmentbetween text segments, or merely some kind of topic overlap? It
is generally accepted thatidf can assess when two text segments concern a simi-
lar subject matter. In many cases, and especially for newswires, it is to expected
that similar subject matter implies alternative stories about the same events, and,
therefore, thatidf will be a reasonable measure of entailment. This measure may
or may not suffice, depending on the task at hand — the important thing is that our
method and the human judgments on which its preliminary evaluation are based,
give us a baseline against which other methods can be compared.

6 Conclusion

In this paper we have argued for a very liberal view of inference for computational
semantics. We have also argued that the costs of building representations should be
a key concern when deciding which inference method to use for semantical tasks.
We have also argued that, instead of waiting for perfect tools to arrive and deliver
perfect representations, computational semanticists should try to get the most out
of currently available NLP techniques.

To illustrate these ideas we proposed a simple yet effective method for entail-
ment checking that is based on the use ofidf . While the use ofidf is nothing new,
we believe that our scoring function and its application to measure entailments are.
Our approach is computationally efficient, and provides graded outcomes instead
of strict yes/no decisions. Moreover, the approach is fully implemented.
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Another message of this paper is the need and importance of empirical eval-
uation in computational semantics. We provided a preliminary evaluation of our
entailment checking method using a small corpus of 69 news stories, organized in
21 topics.

Our future work will be pursued along two main lines: enhancements to our entail-
ment checking method, and improvements to our evaluation.

Enhancing the Method. While human judgments require a substantial effort,
we believe that it is essential to have a reasonably sized test corpus so as to be able
to successfully pursue our main interest, of which the present paper is only a first
step: to generate various kinds of representations of natural language documents, to
perform inference tasks with these representations, and to determine, by empirical
means, how representation and inference are connected.

The next step along this line is to improve and extend the current entailment
scoring method, first of all by using lexical semantic information in the form of
WordNet synonyms and hyponyms/hypernyms. Then, we want to move to a richer
level of representation such as simple argument structures, and to perform entail-
ment checks at that level and compare the resulting precision and recall measures
to those obtained in the present paper. As suggested by one of our referees, the
substantial literature on text classification may provide useful input here, in partic-
ular Bayesian methods[Koller and Sahami, 1996] and pattern-recognition meth-
ods based on optimization[Joachims, 1999]. In addition, a number of ideas related
to the maximal marginal relevance criterion known from document summariza-
tion [Carbonell and Goldstein, 1998] seem relevant.

Evaluation. To improve the quality of our evaluation, we have extended the size
of our collection to 30 topics, and we are in the process of extending the current
judgments to include the new topics, while a second human judge is currently
working on scoring the extended collection. Using these additional judgments, we
aim to characterize the distribution of results within and across topics.
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