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Abstract. It is becoming increasingly common in information retrieval
to combine evidence from multiple resources to compute the retrieval
status value of documents. Although this has led to considerable im-
provements in several retrieval tasks, one of the outstanding issues is
estimation of the respective weights that should be associated with the
different sources of evidence. In this paper we propose to use maximum
entropy in combination with the limited memory LBFG algorithm to
estimate feature weights. Examining the effectiveness of our approach
with respect to the known-item finding task of enterprise track of TREC
shows that it significantly outperforms a standard retrieval baseline and
leads to competitive performance.

1 Introduction

In several information retrieval tasks, such as web retrieval [15], structured doc-
ument retrieval [7] and email retrieval [3], a number of approaches combine
evidence from multiple resources to compute the retrieval status values.

Typically the different sources of evidence include term frequencies within
different fields of a document (e.g., body and anchor text), different ways to
compute within-document and collection term frequencies or the combination of
different document similarity functions as a whole. Zobel and Moffat [16] show
that it is very difficult to find a similarity measure which is best in all cases, but
at the same time they show that there is still a lot of room for improvement by
varying retrieval strategies.

Unfortunately, most of the evidence formulas and combining functions that
have been developed were tuned by heuristic approaches. Thus, an approach
which combines evidence from different representations of the documents and
automatically estimates the importance of each component in the retrieval rank-
ing function can be very useful. For this purpose, we have adapted maximum
entropy, a statistical machine learning method, to perform the retrieval task.
This paper contains a description of the method and a number of experiments
to verify its effectiveness.

The remainder of this paper is organized as follows: In the next section the
problem of combining evidence and document representations is introduced. The



maximum entropy method and its adaptation to IR are provided in sections 3 and
4. Related work is discussed in section 5. In section 6 we discuss the experimental
set-up and results. Section 7 concludes the paper.

2 Combining Evidence

The problem of evidence combination can be re-formulated as the problem of
finding a ranking function W (d, q,C), where collection C contains a set of doc-
uments d with k fields {f1, f2, ..., fk}. As mentioned, most of the work in this
area is in the form of combining scores, particularly, linear combination of scores.
However, Ogilvie and Callan [11] have shown that their mixture language model
approach outperforms various meta-search methods in almost all cases. More-
over, Robertson et al. [14] have discussed the dangers of linear combination of
entire document similarity scores and criticized it in detail.

To deal with the problem of combining evidence, we propose a method that
addresses most of the issues in previous approaches. This method, was designed
to have following features:

1. Automatically learn different features from different sources of evidence
2. Learn complex features such as term proximity or user preferences in a man-

ner similar to simple features
3. Do not make assumptions which are not realistic, for example, term inde-

pendence assumption due to mathematical convenience by many methods
4. Deal with documents with both single and multiple representations in a

unified manner

3 Maximum Entropy Modeling

Statistical modeling is used to build a model to predict the behavior of a process.
A labeled training set is employed to learn a model predict future behavior of
the process [1]. The first modeling task is feature selection and the second one is
model selection. Firstly, a set of statistics is determined and then these statistics
will be employed to construct an accurate model of the desired process.

One of the approaches to build that model is through maximum entropy
modeling. The idea behind maximum entropy method is very simple: model all
that is known and assume nothing about that which is unknown [1]. It means,
choose a model consistent with all the facts, but otherwise as uniform as possible.

The probability distribution for the process based on maximum entropy has
two characteristics: Firstly, it is in accordance with the constraints, secondly it
is as uniform as possible.

It can be shown that there is a unique distribution that satisfies these con-
straints and it is always of the exponential form. Berger et al. [1] have shown
that the solution has the following parametric form:

pλ(y|x) =
1

Zλ(x)
exp

n∑
i=1

λifi(x, y) (1)



Zλ(x) =
∑
y

exp
n∑
i=1

λifi(x, y) (2)

where Zλ(x) is a constraint to satisfy the requirement that
∑
y pλ(y|x) = 1 for

all x, because it is a probability distribution.
Except for simple problems, equation 1 cannot be solved analytically and

numerical methods have to be used to find the optimal weights of the features.
We decided to use Nocedal’s limited-memory BFGS optimization algorithm [10]
which is a very efficient and robust method to solve large scale optimization
problems and significantly outperforms the other two optimization approaches
we experimented with.

4 Maximum Entropy in IR

By viewing the IR problem as a classification task, it is possible to apply discrim-
inative classifiers to it, such as a classifier based on maximum entropy modeling.
The retrieval process output values are r ∈ R = {R, R̄} which are affected by the
contextual information from the collection, documents, and queries. The para-
metric form of the distribution, which is mentioned in section 3, can be expressed
as the conditional probability p(r|d, q) as follows:

p(r|d, q) =
1

Zλ(d, q)
exp

n∑
i=1

λifi(d, q, r) (3)

Zλ(d, q) =
∑

r∈{R,R̄}

exp
n∑
i=1

λifi(d, q, r) (4)

There are two classes of features: Firstly, atomic features for documents with
a single representation, which are functions of different term frequency statistics
in the collection, documents and queries. Secondly, statistics for various repre-
sentations of documents which in our case amounts to the different sections of
the text. Representations are combined with atomic functions to have real-valued
numbers as value. Table 1 shows some of the atomic and complex features. As
we evaluate our approach in the context of email retrieval, our documents are
e-mail message and each of the features is applied to the different fields of an
e-mail: the subject, body and the body of the replied messages.

For training the maximum entropy model we normally use a set of queries
for each of which we take a number of relevant and non-relevant documents.
However, in the known-item finding task, there is exactly one relevant document
for each query and the remainder of the collection is considered non-relevant
with respect to this query. Therefore, we have to repeat the relevant constraints
as much as non-relevant examples or choose a small portion of non-relevant
examples. Due to the large number of documents we decided to under-sample a
set of non-relevant documents, also repeating the relevant examples to balance
out the training set.



Table 1. Functions used as features in our maximum-entropy retrieval approach.

Name Atomic Feature Description

NTF
∑

t∈Q∩D
log (1 + tf(D,t)

|D| ) Normalized term frequency

IDF
∑

t∈Q∩D
log N

df(t)
Inverse document frequency

CT |qi ∈ Q ∩D| Number of common terms

ICF
∑

t∈Q∩D
log |C|

tf(C,t)
Inverse collection frequency

Name Complex Feature Description

NTF-ICF
∑

t∈Q∩D
log (1 + tf(D,t)

|D|
C

tf(C,t)
) Normalized tf × icf

NTF-IDF
∑

t∈Q∩D
log (1 + tf(D,t)

|D|
N

df(t)
) Normalized tf × idf

BM25

∑
t∈Q∩D

(k1+1)·tf(D,t)

tf(D,t)+k1·(1−b+b· |D|
avgdl(C) )

· log N−df(t)+0.5
df(t)+0.5

Okapi BM25

TP

∑
ti,tj∈P

log(1+ (min {distance(ti, tj)})−2

· |C|
tf(C,ti)tf(C,tj)

)
Term proximity

FO
∑

t∈Q∩D
log (1 + |D|

firstOccurrencePos(t)
|C|

tf(C,t)
) First occurrence position

TD log (1 + 4
td(D)

) Depth in thread

5 Related Work

Ogilvie and Callan [11] compare the effectiveness of meta-search methods for
combining document representations with their language modeling retrieval ap-
proach. In particular, they compared rank-based and score-based meta-searching
with a mixture language model approach, showing that the latter slightly out-
performs the best meta-search algorithms.

Their mixture method uses a unigram language model where the language
model θD is specified by p(w|θ). During retrieval, documents are ranked by
p(Q|θD) =

∏i=1
|Q| p(qi|θD), where θD is the language model estimated for docu-

ment D, |.| is the length function and qi is the ith term in the query Q.
Their approach is very similar to ours, except that we use an exponential

model. Moreover, Ogilvie and Callan’s mixture language model is based on uni-
gram language modeling assuming term independence.

Robertson et al. [14] use BM25 as scoring function, but they have mentioned
that this is a general method that can be used for many other scoring functions.
The linear combination of frequencies method, similar to mixture language model
by Ogilvie and Callan, uses a linear combination of a single scoring function
over the representations. However, we have shown that our proposed maximum
entropy method can combine any scoring function in a unified manner. On the
other hand, using advanced features in a linear combination of frequencies will
not be as easy as integrating them into a maximum entropy approach.

Another difference between maximum entropy and the above approaches is
the estimation of the optimal weights or parameters of the ranking functions.
Ogilvie and Callan [12] did not mention any optimization algorithms for finding
the appropriate feature weights. Robertson et al. [14] used grid search for finding



the parameters of their function. On the other hand, there are a number of well-
studied optimization algorithms such as IIS, and L-BFGS for maximum entropy.

There have been a few attempts to explore maximum entropy in IR. Cooper
[2] applied maximum entropy to information retrieval. Kantor and Lee [5] ex-
plored the application of maximum entropy, but more recently ([6]) they reported
low performance on large document collections.

Greiff and Ponte [4] showed that ranking formulas of the Binary Indepen-
dence Model (BIR) and Combination Match Model (CMM) can be derived from
the maximum entropy principle with suitable features. Nallapati [9] explored
discriminative models for IR and applied maximum entropy and support vector
machines to several ad-hoc retrieval test sets. However, because of the rather
discouraging results in these tasks, he did not examine maximum entropy in
other tasks such as web or email retrieval.

6 Experiments

As mentioned before, one of the benefits of using maximum entropy is its ability
to automatically learn arbitrary features. Thus to demonstrate the effectiveness
of our approach in the context of information retrieval, we evaluate it with
respect to email retrieval as defined in the Known-Item Finding Task of TREC
2005’s Enterprise Track [3]. As emails are structured documents containing a
number of fields (subject line, body, quoted text, etc.) this task is well-suited to
evaluate the effectiveness of retrieval approaches that combine different sources
of evidence. The collection is the W3C corpus which contains 174,311 documents.
25 queries are provided for training purposes and 125 additional queries are set
aside for testing only. In our experiment, only the 25 training queries are used
to generate the training data and learn the weights of the features.

There are three official measures for evaluating TREC’s known-item finding
task. The primary measure is the Mean Reciprocal Rank (MRR) and the other
two are success at 10 (S@10), indicating whether a relevant document is ranked
among the top 10 retrieved documents, and success at infinity (S@inf) indicat-
ing whether a relevant document had been retrieved at any rank [3]. The Okapi
BM25 ranking function has been used as one of the baselines for this experi-
ment. The best results for the parameters after several attempts were b = 0.25
and k1 = 1.2. For this baseline, documents are treated as they have only one
representation, i.e. all fields are merged and documents are indexed with one
field which contains the whole text of the e-mail message.

6.1 Features

Three categories of features are used in this experiment: Firstly, features based on
term frequencies of different representation of e-mail messages such as NTF-ICF-
S=

∑
t∈Q∩Ds

log (1 + tf(Ds,t)
|Ds|

Cs

tf(Cs,t)
). Secondly, we use position based features

such as term proximity, phrase match and first occurrence position features.
Lastly, we use query independent features such as message depth in the thread.



There are many different methods to calculate term proximities [13, 8]. Our
term proximity feature computes the sum of minimum distances between term
pairs. We chose this method of calculating proximity to avoid using features
which carry similar information. For example, this term proximity metrics does
not contain information about term frequency in the document.∑

ti,tj∈P
log(1 + (min {distance(ti, tj)})−2 |C|

tf(C, ti)tf(C, tj)
) (5)

where, distance(ti, tj) returns the set of distances between terms ti and tj ,
tf(C, ti) is the collection frequency of term i and P is the set of all possible
pairs of query terms.

Similar to term proximity, the phrase match feature computes the maximum
length of an exact match between the query and the document. Thus, a phrase
match of 3 terms has a greater value than three matches of length 2.

The position of the first query term in the document is another feature that
is used in the experiment:∑

t∈Q∩D
log (1 +

|D|
firstOccurrencePos(t)

|C|
tf(C, t)

) (6)

Thread depth feature is a query independent feature that is computed as follows:

log 1 +
4

td(D)
(7)

where, td(D) is the depth of document D in the thread. The depth of emails is
capped at level 4.

6.2 Results

Table 2 shows the best runs of the maximum entropy system, compared to
the baseline systems. For statistical significance testing we used the two-sided
Wilcoxon signed-rank test. All the fields are stemmed by the first two steps
of Porter stemmer after stop-word removal. We use three baselines: a standard
BM25 run, where all fields are merged (run 1), a maximum entropy run with a
BM25 feature applied separately to the body and subject (run 2), and a maxi-
mum entropy run, using term frequency statistics only (run 3).

As the results show, the best maximum entropy based system significantly
outperforms all baselines. Although the first occurrence position feature is some-
what unstable, it improved overall performance. In accordance with earlier ap-
proaches, our experiments show the importance of the subject field. Runs using
only the subject field outperform runs using only the body and thread fields.

In general, the results show that our maximum entropy approach leads to
strong results, substantially outperforming competitive baselines. Comparing
runs 5 and 3 shows that the new, term-position based features, such as the
term proximity and first occurrence features described above, lead to the best
results.



Table 2. E-mail search results. ·∗ indicates whether the improvement with respect to
each of the three baselines (runs 1–3) statistically significant at level α = 0.05. S, B
and T indicate the field that the function is applied to, which are subject, body and
replies of the message in the thread, respectively.

Run Features MRR S@10 S@inf

1 Baseline BM25 on S+B+T, b=0.25, k1=1.2 0.483−,∗,− 0.696 0.976
2 Baseline BM25-S, BM25-B 0.557∗,−,∗ 0.728 0.968
3 Baseline NTF-ICF-S, NTF-ICF-B, NTF-ICF-T 0.520−,∗,− 0.68 0.968

4 MaxEnt NTF-ICF-S, NTF-ICF-B, FO-B, PM-B,
TP-S, TP-B, TD

0.603∗,−,∗ 0.816 0.944

5 MaxEnt NTF-ICF-S, NTF-ICF-B, FO-B, PM-B,
TP-S, TP-B

0.609∗,∗,∗ 0.800 0.976

6 MaxEnt BM25-S, BM25-B, BM25-T, FO-B, PM-B,
TP-S, TP-B

0.587∗,−,∗ 0.76 0.960

7 MaxEnt BM25-S, BM25-B, FO-B, PM-B, TP-S,
TP-B

0.603∗,−,∗ 0.808 0.976

8 MaxEnt NTF-ICF-S, NTF-ICF-B, PM-B, TP-S,
TP-B

0.565−,−,∗ 0.768 0.976

9 MaxEnt NTF-S, NTF-B, IDF-S, IDF-B, FO-B,
PM-B, TP-S, TP-B

0.554−,−,− 0.736 0.952

7 Conclusions

We have shown that maximum entropy can be applied successfully to known-
item email retrieval leading to statistically significant improvements over various
baselines.

The advantages of using maximum entropy are twofold: Firstly, it is easy to
integrate and experiment with additional features that are more tailored towards
the retrieval task at hand. Here, we used three additional term-position based
feature functions, term proximity, first term occurrence, and phrase matching.
Using these additional features resulted in the highest performance, and led to
statistically significant improvements over a maximum entropy based retrieval
system that did not use these features.

The second advantage of maximum entropy over a number of related evidence
combination approaches concerns the problem of estimating the appropriate fea-
ture weights. Earlier work often estimated the feature ways in a rather ad-hoc
way by just experimenting with a number of weight combinations or by applying
grid search. Both approaches are likely to miss the optimal weights and there-
fore leading to sub-optimal performance. On the other hand, there are a number
of well-established and well-studied feature weight optimization algorithms for
maximum entropy.
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