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Abstract
Neural machine translation is a recently proposed approach which has shown competitive

results to traditional MT approaches. Standard neural MT is an end-to-end neural network
where the source sentence is encoded by a recurrent neural network (RNN) called encoder
and the target words are predicted using another RNN known as decoder. Recently, various
models have been proposed which replace the RNN encoder with a convolutional neural net-
work (CNN). In this paper, we propose to augment the standard RNN encoder in NMT with
additional convolutional layers in order to capture wider context in the encoder output. Exper-
iments on English to German translation demonstrate that our approach can achieve significant
improvements over a standard RNN-based baseline.

1. Introduction

Recently proposed neural machine translation (NMT) has shown competitive re-
sults over traditional MT approaches such as Phrase-based MT. The most successful
of these neural network approaches is the encoder-decoder framework of Bahdanau
et al. (2015) in which the source sentence is converted into a vector representation by
a recurrent neural network (RNN) called encoder, then another RNN called decoder
generates a target sentence word by word based on the source representation and
target history. Besides Machine translation, RNNs have shown promising results in
modelling various other NLP tasks such as language modelling (Mikolov et al., 2010)
and text similarity (Mueller and Thyagarajan, 2016). The strength of using RNNs for
language processing lies in their ability to recurrently maintain a history for large in-
put sequences, thus capturing the long distance dependencies which is an important
occurrence in natural language texts.
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Although, modelling sequences using the recurrence property is important for
most NLP tasks, there is a critical limitation in relying solely on the strengths of the
RNN. In an RNN, at each timestep the encoder output is a global representation in
which the information about the current word and the previous history are repre-
sented compositely. Although RNNs effectively model interdependence of words,
they cannot capture phrases without prefix context and often capture too much of
last words in the final vector.

To overcome the problem of compact fixed length vectors in neural MT, Bahdanau
et al. (2015) and Luong et al. (2015) proposed an attention mechanism which is a
very effective approach to solve this problem by representing the source sentence as
a weighted average of the encoder outputs corresponding to each source word.

In this paper, we propose to modify the RNN encoder-decoder framework by
adding multiple convolutional layers on top of the RNN output. Since the convo-
lutional neural networks (CNNs) apply to a fixed-size window of the input sentence,
at each layer, each output represents a relatively uniform composition of information
from multiple words. This provides effective guidance to the network to focus on the
relevant parts of the source sentence. At the same time, sequence to sequence mod-
elling as in RNNs is necessary to capture the long-distance dependencies between the
segments of the source sentence itself. Thus, in our model, a convolutional encoder
complements the standard RNN encoder. Such a combination of RNN and CNN has
successfully been used in various tasks such as saliency detection for image recogni-
tion (Tang et al., 2016), document modeling (Tang et al., 2015) and music classification
(Choi et al., 2016).

We first briefly discuss properties of RNNs, the neural MT framework of Bahdanau
et al. (2015) and convolutional neural networks in Section 2 and subsequently discuss
the related work on Convolutional neural networks in machine translation in Section
3. We introduce our model in Section 4 and discuss the its details. Experiments and
results are discussed in Sections 5 and 6 respectively.

2. Background

2.1. Recurrent Neural Network

Given a sequence [(x1, x2, ...., xn)] of length ‘n’, at any timestep ‘i’, an RNN rep-
resents the hidden state output as function of the previous hidden state hi−1 output
and the current input xi

hi = f(hi−1, xi) (1)
f is commonly a nonlinear function. Thus RNNs represent a sequence as a vector

by a function of previous history and current input. It is this recurrence property
of RNNs that makes them capable to capture larger context such as long distance
dependencies commonly observed in variable length texts.

38



P. Dakwale, C.Monz Convolutional over Recurrent Encoder for NMT (37–48)

A common problem observed while training RNN is the decay of gradient over
long distance dependencies. To resolve this problem, Hochreiter and Schmidhuber
(1997) proposed long-short term memory networks (LSTM) which use input, output,
and forget gates to control the amount of information that can pass through a cell unit
in the RNN.

2.2. Neural Machine Translation

We employ an NMT system based on Luong et al. (2015) which is a simple encoder-
decoder network. The encoder is a multi-layer recurrent network (we use LSTMs)
which converts an input sentence [(x1, x2, ...., xn)] into a sequence of hidden states
[(h1, h2, ...., hn)].

hi = fenc(xi, hi−1) (2)

Here, fenc is an LSTM unit. The decoder is another multi-layer recurrent network
which predicts a target sequence y = (y1, y2, ....ym). Each word in the sequence is
predicted based on the last target word yi−1, the current hidden state of the decoder
sj and the context vector cj. The probability of the sentence is modelled as product of
the probability of each target word.

p(y) =
m∏
j

p(yj|y1, ...yj−1, x) =
m∏
j

g(yj, sj, cj) (3)

where g is a multi-layer feed forward neural network with nonlinear transformation
and a softmax layer which generates the probability of each word in the target vo-
cabulary. The end-to-end network is trained by maximizing log-likelihood over the
training data. In Equation 3, sj is the decoder hidden state generated by LSTM units
similar to the encoder.

sj = fdec(sj−1, yj−1, cj) (4)

The context vector cj in turn is calculated using an attention mechanism (Luong et al.,
2015) as weighted sum of annotations of the encoder states hi’s.

cj =

n∑
i=1

αjihi (5)

where αji are attention weights corresponding to each encoder hidden state output
hi calculated as follows :

αji =
exp(zi)∑n

k=1 exp(zk)
(6)

Activations zk = a(sj−1, hk) are calculated by using a context function such as the
dot product between the current decoder state sj−1 and each of the hidden states
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of the encoder hk’s. Figure 1 shows the NMT framework with the encoder-decoder
architecture and attention modeling.

In order to reduce the memory requirement for softmax operation on large num-
ber of words, source and target vocabulary are usually clipped to a fixed number of
most frequent words.Translation is performed by a simple left-to-right beam search
algorithm which maintains a small set of ‘b’ best hypotheses for each target word. A
hypothesis is complete as soon as end of sentence (“< EOS >”) symbol is produced.
A more detailed description of the decoding algorithm can be found in Sutskever et al.
(2014).

2.3. Convolutional Neural Networks

Unlike recurrent neural networks, which are applied to a sequence of inputs, feed-
ing the hidden layer from one timestep to the next, convolutional neural networks
apply filters of fixed length over a window of inputs and generate outputs of fixed
size. As discussed in (Kim, 2014), a narrow convolution operation involves applying
a filter θ over a window of ‘w’ inputs in order to generate a new feature. ‘w’ is known
as the width of the filter. The new feature CNi applied to input window xi to xi+w is
then defined as :

CNi = σ(θ · xi−[(w−1)/2]:i+[(w−1)/2] + b) (7)
This feature extraction capability of CNNs makes them suitable for image processing.
In NLP, CNNs have been used for tasks such as sentence classification which require
computation of all possible phrases or segments of the input sentence regardless of
their grammaticality.

3. Related Work

Although recurrent neural networks are very popular for NLP tasks, CNNs have
also been used to model tasks such as text or sentence classification (Kim, 2014), sen-
timent analysis (dos Santos and Gatti, 2014), document modeling (Tang et al., 2015)
and sentence modeling (Kalchbrenner et al., 2014) where specific features such as n-
grams and phrases are more important than location specific or grammatical features
of the sentence.

Similarly, the standard approach to neural Machine translation is the RNN based
encoder-decoder network. However, there have been various attempts recently to-
wards using convolutional networks in neural MT as well as additional models in
Phrase-based MT. The first attempt to use convolutional networks in an end-to-end
NMT framework is Cho et al. (2014). They fully replace the recurrent encoder with a
gated recursive convolutional network whose weights are recursively applied to the
input sequence until it outputs a single fixed-length vector. However, their exper-
iments demonstrate that translation performance of such a network cannot surpass
that of fully recurrent encoder.
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Recently, Gehring et al. (2016) also proposed a similar architecture where the recur-
rent encoder is again fully replaced by a deep convolutional neural network. An im-
portant feature in their architecture is the use of a position embedding which encodes
the relative position of each word in the source sentence. Their experiments demon-
strate that while translation performance of the network is improved by using a very
deep convolutional network, without the position embeddings, it drops substantially
below the standard RNN/LSTM encoder baseline. This implies that a CNN encoder
by itself with simple word embeddings alone cannot encode position-dependent fea-
tures which are otherwise efficiently captured by an RNN encoder. Another recent
approach using convolutional networks in neural MT is the ByteNet system by Kalch-
brenner et al. (2016). They attempt to replace both the encoder and decoder with
dilated convolutional networks stacked on each other.

All of the above approaches either aim to fully replace the recurrent encoders with
convolutional encoders with which they aim to reduce the complexity of the network
and the training speed, or to address the variable lengths of input sequences. In or-
der to achieve performance comparable to RNN encoders, these approaches have to
employ different mechanisms such as position embeddings to effectively capture the
long distance dependencies and position-dependent features.

A related line of research is the character-level approach to NMT (Lee et al., 2016)
where the main idea is to model the words as a combination of characters using con-
volutions and then feed the output as word embeddings to the RNN encoder. Their
aim is to avoid the constraint on limited vocabulary by character modeling.

An approach which has shown the strength of convolutional network as an addi-
tional feature for Phrase-based MT is Meng et al. (2015). They show improvements
over a standard Phrase-based MT by encoding the source sentence with a convolu-
tional network and using it as a neural language model as an additional feature. To
the best of our knowledge ours is the first attempt to combine recurrent and convolu-
tional networks to model an encoder for neural machine translation.

4. Convolutional over Recurrent model (CoveR):

As discussed in Section 2, using the standard RNN framework, the context vector
is a weighted sum of encoder hidden states hi. The attention weights as in Equa-
tion (6), are also calculated by a similarity function between the decoder state sj and
encoder states his. The attention weights mainly score how well the inputs around
position j and the output at position i match (Bahdanau et al., 2015). Since each of
these vectors hi is compact summary of the source sentence up to word i, the previ-
ous or future context available to the alignment function is only given by these com-
pact global representations. We propose that instead of relying only on these single
recurrent outputs, a composition of multiple hidden state outputs of the encoder can
provide the attention function with additional context about the relevant features of
the source sentence.
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Figure 1. NMT encoder-decoder framework
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Figure 2. Convolution over Recurrent model

In order to do this, we apply multiple layers of fixed size convolution filters over
the output of the RNN encoder at each time step. As shown in Figure 2, for our model
the input to the first convolution layer is the hidden state output of the RNN encoder.
Thus CN1

i is defined as:

CN1
i = σ(θ · hi−[(w−1)/2]:i+[(w−1)/2] + b) (8)

At each layer, we apply a number of filters equal to the original input sentence length.
Each filter is of width 3. Note that the length of the output of the convolution fil-
ters reduces depending on the input length and the kernel width. In order to re-
tain the original sequence length of the source sentence we apply padding at each
layer. That is, for each convolutional layer, the input is zero-padded so that the output
length remains the same. The output of the final convolution layer is a set of vectors
[CN1, CN2, .....CNn] generated by multiple convolution operations. The modified
context vectors c ′

i are then calculated similar to ci using an attention mechanism by
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calculating the context function between CNis and sj.

αji =
exp(a(sj−1, CNi))∑n

k=1 exp(a(sj−1, CNk))
(9)

c ′
j =

n∑
i=1

αjiCNi (10)

Finally, the decoder is provided with the context vectors c ′
i as follows:

p(yi|y1, ...yi−1, x) = g(yi, si, c
′
i) (11)

Note that each of the vectors CNi now represents a feature produced by multiple
kernels over hi. Thus each CNi represents a wider context as compared to hi.

It is common practice to use pooling along with convolutional filters in order to
down-sample the features. However, since in the proposed model, we want to widen
the context of the encoder output while still retaining the information represented in
the RNN output hi, and also retaining the original sequence length, we do not apply
pooling in our model.

With the increasing depth of the network, the training of the network becomes un-
stable. In order to ease and stabilize the training with multiple layers, we use residual
connections (He et al., 2015) between the input and output of each convolutional layer.

5. Experimental Set-Up

5.1. Data

We conduct experiments on English-German translation. We use the translation
data provided for WMT-2015 (Bojar et al., 2015). The training data provided for the
task is approximately 4.2 million sentence pairs. We keep source sentences with a
maximum sequence length of 80 words. After filtering out sentences longer than this
limit and also removing duplicate sentence pairs, we are left with a parallel text of
approximately 4 million sentence pairs. We reserve 5000 sentence from this bitext
for perplexity validation and use the rest for training. We use wmt-newstest2013 as
development set and wmt-newstest2014 and wmt-newstest2015 as test-sets. Results
are reported in terms of case-insensitive BLEU-4 (Papineni et al., 2002). Approximate
randomization (Noreen., 1989; Riezler and Maxwell, 2005) is used to detect statistically
significant differences.

5.2. Baselines

We train a baseline NMT system based on Luong et al. (2015) using the Torch deep
learning framework. It is a two layer unidirectional LSTM encoder-decoder with an
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newstest’13 (dev) newstest’14 newstest’15
Baseline 17.9 15.8 18.5
Deep RNN encoder 18.3 16.2 18.7
CoveR 18.47△ 16.9△ 19.00

Table 1. BLEU scores over dev and test sets for Baseline, Deep RNN and CoveR (proposed
model). Results marked with △ are statistically significant at p < 0.05 over baseline

attention (dot product) mechanism. Both the encoder and decoder have input embed-
ding and hidden layer of size 1000. As it is common practice, we limit the vocabulary
sizes to 60k for the source and 40k for the target side. Parameters are optimized using
stochastic gradient descent. We set the initial learning rate as 1 with a decay rate of 0.5
for each epoch after 5th epoch. Model weights are initialized uniformly within [-0.02,
0.02]. A dropout value of 0.2 is applied for each layer. We train for maximum of 20
epochs and decode with standard beam search with beam size of 10. All models are
trained on NVIDIA Titan-X (Pascal) devices.

5.3. CoveR model

As discussed in Section 3, our model is a simple extension of the standard NMT
model in which the RNN encoder is extended with additional convolution layers.
We add three convolution layers on top of the output of the second RNN layer of
the encoder. Note that similar to the baseline system, the RNN decoder has the same
number of layers as the RNN encoder i.e., 2. For all layers we apply convolution filters
of fixed width 3. The number of filters at each layer is same as the input sequence
length. Each filter operates on a window of 3 consecutive inputs and generates a single
output with a dimension equal to the input. Thus at each layer the output sequence
length is reduced by 2 as compared to input as shown in Figure 2. In order to retain
the full sequence length, we apply one zero-padding on both sides of the input. All
other optimization parameters are the same as for the baseline.

5.4. Deep RNN encoder

In order to verify that the improvements achieved by the proposed model are due
to the convolutions and not just because of the increased number of parameters, we
also compare our model to another RNN baseline with an increased number of re-
current layers for encoder. Since we added three convolution layers to the encoder
in our proposed CoveR model resulting in a total of 5 layers (2 recurrent + 3 convo-
lution), for a fair comparison, we train a deep encoder with five recurrent layers. For
this deep NMT system, the number of layers in decoder remains the same as for the
baseline i.e., 2. The initial states of the decoder layers are initialized through a nonlin-
ear transformation of all layers of the encoder RNN. This is done by concatenation of

44



P. Dakwale, C.Monz Convolutional over Recurrent Encoder for NMT (37–48)

Example 1:
Source : as the reverend martin luther king jr. said fifty years ago
Reference : wie pastor martin luther king jr. vor fünfzig jahren sagte :
Baseline : wie der martin luther king jr. sagte
Cover : wie der martin luther king jr. sagte vor fünfzig jahren :
Example 2:
Source : he said the itinerary is still being worked out .
Reference : er sagte , das genaue reiseroute werde noch ausgearbeitet .
Baseline : er sagte , dass die strecke noch <unk> ist .
Cover : er sagte , die reiseroute wird noch ausgearbeitet .

Table 2. Translation examples. Words in bold show correct translations produced by our
model as compared to the baseline.

the final states of all the five layers of the encoder resulting in a vector of size 5xD (‘D’
is the dimension of the hidden layer) and then downgrading it to size 2xD by a simple
non-linear transformation and finally splitting it in two vectors of size ‘D’ which are
used to initialize each of the layers of the decoder.

6. Results
Table 1 shows the results for our English-German translations experiments. The

first column indicates the best BLEU scores on the development set newstest’13 for all
three models after 20 epochs. Results are reported on the newstest’14 and newstest‘15
test sets. Our CoveR model shows improvements of 1.1 and 0.5 BLEU points respec-
tively over the two test sets. Although the deep RNN encoder performs better than
the baseline, the improvements achieved are lower than that of the CoveR model.

6.1. Qualitative analysis and discussion

Table 2 provides some of the translation examples produced by the baseline system
and our CoveR model. A general observation is the improved translations by our
model over the baseline with regard to the reference translation which is also reflected
by the improved BLEU scores.

More specifically, Example 1 shows instances where the baseline suffers in some
cases from incomplete coverage of the source sentence. One reason for such incom-
plete translations is the lack of coverage modeling which has been handled using cov-
erage embeddings (Tu et al., 2016). We observe this problem frequently in instances
where a specific word might signal completion of a sentence despite more words in
the sequence remain to be be translated. These words can cause the generation of next
target word as the end-of-sentence ‘EOS’ symbol. Since the beam search decoding al-
gorithm considers a hypothesis complete when the end of sentence is generated, in
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such instances search stops, aborting further expansions, while ignoring the remain-
ing words. For instance in Example 1 in Table 2, by relying on the attention mecha-
nism, the baseline system generates the translation of ‘said’ as ‘sagte’, the model might
give a preference to the generation of an end-of-sentence ‘EOS’ symbol immediately
following the verb. On the other hand, for our CoveR model, at target position 8, a
wider context is available to the model through convolutional layers from both direc-
tions signalling the presence of other words remaining in the input sentence, thus pro-
ducing a more complete translation. Another difference between the baseline model

he said the itinerary is still being worked out .
er

sagte
,

dass
die

strecke
noch

“unk”
ist

Figure 3. Attention distribution for Baseline

he said the itinerary is still being worked out .
er

sagte
,

dass
die

reiseroute
noch

immer
ausgearbeitet

wird

Figure 4. Attention distribution for CoveR model

and our CoveR model that can be observed in Example 2 is that attention weights are
distributed more uniformly among the source words. Specifically, for target position
6, as shown in Figure 3 the baseline model pays attention mainly to ‘itinerary’ and
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‘is’ resulting in the generation of target word ‘strecke’ which is a more common trans-
lation for the English word ‘route’. On the other hand as shown in Figure 4, for the
same position, the CoveR model pays attention to ‘itinerary’ as well as the last three
words ‘being worked out’. This allows for the generation of the more specific and cor-
rect target word ‘reiseroute’. Note that the <unk> symbols produced are a result of
the vocabulary restriction.

7. Conclusion

In this paper, we proposed a convolutional over recurrent network encoder model
for neural machine translation. The model involves feeding outputs of the RNN en-
coder to multiple convolutional layers of fixed kernel size. Our experiments on English-
German translation demonstrate that the proposed model improves translation as
compared to a standard RNN encoder. An improvement of 0.5 to 1 BLEU points is
observed on different test sets. A qualitative analysis of the translations of our model
shows that CNNs capture the smaller context corresponding to each word more effec-
tively while RNNs model the global information thus capturing grammaticality and
dependencies with the source sentence.
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