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Abstract. This paper describes the experiments of our team for CLEF 2001,
which includes both official and post-submission runs. We took part in the mono-
lingual task, for Dutch, German, and Italian. The focus of our experiments was on
the effects of morphological analyses such as stemming and compound splitting
on retrieval effectiveness. Confirming earlier reports on retrieval in compound
splitting languages such as Dutch and German, we found improvements to be
around 25% for German and as much as 69% for Dutch. For Italian, lexicon-
based stemming resulted in gains of up to 25%.

1 Introduction

This is the first year that the University of Amsterdam is participating in the CLEF
conference and retrieval comparison. We took part in three monolingual tracks: Dutch,
German, and Italian. Each of these languages is morphologically richer than English,
and we were particularly interested in the effects of shallow morphological analyses
for these languages: stemming or lemmatization, and compound splitting. In languages
such as Dutch and German, compound building is a very common issue. For instance,
the Dutch nounzonnecel(English:solar cel) is a compound built fromzon(English:
sun) andcel (English:cel). Previous work has indicated that it may help to enhance
retrieval effectiveness for Dutch and German if compounds in queries or documents are
split, and their parts added to the query or document. Below, we report on monolingual
experiments for Dutch and German that confirm and refine these results using the CLEF
data collection. All our experiments were performed using theFlexIR system.

The paper is organized as follows. In Section 2 we describe theFlexIR system as
well as our basic retrieval approach. Section 3 is devoted to a detailed description of
our techniques for compound splitting, for both Dutch and German. Section 4 describes
our official runs for CLEF 2001 and the results we obtained. In Section 5 we discuss the
results we have obtained for a small number of post-submission experiments, mainly
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concerning the interaction between blind feedback and compound splitting. Finally, in
Section 6 we offer some conclusions and outline plans regarding research within our
group in the area of document retrieval.

2 System Description

All our runs usedFlexIR, an information retrieval system developed by the first author.
The main goal underlyingFlexIR’s design is to facilitate flexible experimentation with
a wide variety of retrieval components and techniques.FlexIR is implemented in Perl;
it is built around the standard UNIX pipeline architecture, and supports many types of
preprocessing, scoring, indexing, and retrieval tools.

2.1 Approach

The retrieval model underlyingFlexIR is the standard vector space model. All our of-
ficial (and post-hoc) runs for CLEF 2001 used the Lnu.ltc weighting scheme [3] to
compute the similarity between a query (q) and a document (d):

sim(q,d) = ∑
i∈q∩d

1+log(freqi,d)
1+log(avgj∈dfreqj,d) ·

freqi,q
maxj∈qfreqj,q

· log
(

N
ni

)
((1−sl) ·pv+sl ·uwd) ·

√
∑i∈q

(
freqi,q

maxj∈qfreqj,q
· log

(
N
ni

))2

For the experiments on which we report in this paper, we fixedslopeat 0.2; the pivot
was set to the average number of unique words per document.

In addition, blind feedback was applied to expand the original query with related
terms. Term weights were recomputed by using the standard Rocchio method [15],
where we considered the top 10 documents to be relevant and the bottom 250 doc-
uments to be non-relevant. We allowed at most 20 terms to be added to the original
query. We did not carry out any filtering [11] before applying Rocchio, since some ex-
periments that we carried out on the CLEF 2000 data set indicated a decrease in retrieval
effectiveness.

2.2 Inflectional Morphology

Previous retrieval experimentation [6] in English did not show consistent significant
improvements by applying morphological normalization such as rule-based stemming
[14] or lexical stemming [8].

As to the effect of stemming on retrieval performance for languages that are mor-
phologically richer than English, such as Dutch, German, Italian or Spanish, we have a
similar mixed picture from CLEF 2000 and other experiments. Kraaij and Pohlmann [9]
report that for Dutch the effect of stemming is limited; it tends to help as many queries
as it hurts. Likewise, for German and French, reports seem to indicate results similar to
those for English [12].



In our participation in this year’s edition of CLEF, we focused on Dutch, German
and Italian. Although versions of Porter’s stemmer are available for each of these lan-
guages, we decided to use a lexical-based stemmer, or lemmatizer, where available,
because it tends to be less aggressive than rule-based stemmers, and we conjectured
that this might benefit further morphological analyses such as compound splitting (see
below). For Dutch we used a Porter stemmer developed within the Uplift project [20].
The lemmatizer that we used for German and Italian is part of the TreeTagger part-of-
speech tagger [16]. Each word is assigned its syntactic root by lexical look-up. Mainly
number, case, and tense information is removed, leaving other morphological processes
such as nominalization intact. As an example in German,Vereinbarung(English: agree-
ment) and German:vereinbaren(English: agree) are not conflated.

3 Compound Splitting

Compound splitting (sometimes referred to as decompounding) is not an issue in En-
glish since almost all compounds, such asComputer Science, peace agreement, etc. are
separated by a white space, disregarding some exceptions such asdatabaseor book-
shelf. In Dutch and German, compounds are not separated and compound building is
a very common phenomenon. Kraaij and Pohlmann [10] show that compound splitting
leads to significant improvement of retrieval performance for Dutch, and Moulinier et
al. [12] obtain similar results for German.

In some of our official runs for Dutch and German we used a compound splitter. Our
compound splitter for Dutch was built using the Dutch lexicon provided by Celex [2],
while our German compound splitter used the part-of-speech information provided by
TreeTagger. There are several forms of compounds, based on different parts-of-speech,
including noun-noun (e.g., German:Straßenbahn, English:tram), verb-noun (e.g., Ger-
man:Tankstelle, English:gas station), verb-verb (e.g., German:spazierengehen, En-
glish: taking a walk), noun-adjective (e.g., German:arbeitslos, English:unemployed),
adjective-verb (e.g., German:sicherstellen, English:to secure); etc., see [4] for a more
detailed overview. We decided to limit our compound splitter to noun-noun compounds,
since this is the most frequent form of compounding.

To estimate the impact of compound splitting, we first analyzed how frequent the
compounding phenomenon is in Dutch and German. We compiled a list of arbitrarily
chosen nouns and annotated each noun with its compound parts; Table 1 provides some
details on the distribution of compounds.

# distinct words# compound parts
Dutch German

1 410 (76.6%) 2156 (75.5%)
2 118 (22.1%) 635 (22.3%)
3 7 (1.3%) 60 (2.1%)
4 0 (0.0%) 2 (0.1%)
Total 535 (100%) 2853 (100%)

Table 1.Distribution of compounds.



Nouns that cannot be further split up, i.e., having one compound part, form the vast
majority of nouns, approximately 75% in both languages. On the other hand, approxi-
mately 25% of all nouns are complex and can be decompounded into two or more parts.
The differences between Dutch and German are relatively small. The most notable dif-
ference is that German contains more compounds of higher complexity, i.e., having
more than two compound parts. Of course, the samples we investigated here are far too
small to make a strong claim about the distribution of compounds in both languages,
nevertheless, we think that they reveal a reasonable approximation of the distribution of
compounds.

Since nouns are valuable information carriers, and assuming that, indeed, around
25% of the nouns are more complex, decompounding seems to be an essential compo-
nent of any information retrieval system for Dutch or German.

3.1 Implementation of a Compound Splitter

Our compound splitter works by recursively analyzing each noun to see whether it can
be split into a sequence of concatenated nouns. We do allow for a glueing-s; e.g., the
German compoundFriedensvertrag(English:peace agreement) is split intoFrieden+s
Vertrag. Figure 1 shows the pseudo-code for the recursive compound splitting function
split.

1 string split(string s)
2 {
3 int length = strlen(s);
4 string r;
5 for(int char_pos=1; char_pos<=length; char_pos++)
6 {
7 if(substr(1,char_pos,s)∈noun_lex
8 && !strcmp(split(substr(char_pos+1,length,s)),’’))
9 {

10 r = split(substr(char_pos+1,length,s));
11 return concat(substr(1,char_pos,s),+,r);
12 } else if(substr(1,char_pos,s)∈noun_lex
13 && strcmp(substr(char_pos+1,char_pos+1,s),’s’)
14 && !strcmp(split(substr(char_pos+2,length,s)),’’))
15 {
16 r = split(substr(char_pos+2,length,s));
17 return concat(substr(1,char_pos,s),+,r);
18 };
19 };
20 if(s∈noun_lex)
21 return s;
22 else
23 return ’’;
24 }

Fig. 1.The algorithm underlying the compound splitter.



The functionsplit takes a string, i.e., a potentially complex noun, as argument and
it returns a string where the compound boundaries are indicated by a plus sign. For
instance,split(bahnhof) returnsbahn+hof. If it cannot split up a string into smaller
components it returns the same string, and if it fails to analyze a string at all, it returns
the empty string.

A number of things within the pseudo-code in Figure 1 might require further expla-
nation, and we will now discuss the basic components of the function. Thefor-loop in
lines 5–19 tries to split the input string at every character position proceeding from left
to right. If a noun has been identified as the prefix of the string (line 7),split is called
again, with the remaining part to the right of the prefix (line 8). Ifsplit did not fail to
analyze this remaining string, the prefix and the analysis of the right part as it was re-
turned by the nested call tosplit is returned as the value of the first call tosplit (line
11). Theelse if block in lines 12–18 is similar to the firstif-condition, but allows
for a glueing-s to separate the prefix from the remaining string (line 13). If no further
split up was found during thefor-loop, the input string itself is returned if it could be
looked up in a noun lexicon (line 20–21), otherwise, the empty string is returned.

Note thatsplit works from left to right, implying that the resulting analysis will be
strictly right-branching (or left-branching, depending on how you look at it). For many
compounds this is inappropriate from a linguistic point of view. For instance, consider
the nounAutobahnrastsẗatte (English: highway restaurant), among the theoretically
possible analyses are (a) and (b) in Figure 2.

Autobahnrastsẗatte

Autobahn rastsẗatte

Auto bahn rast stätte

(a)

Autobahnrastsẗatte

Auto bahnrastsẗatte

bahn rastsẗatte

rast stätte

(b)

Fig. 2.Morphological analyses for the compoundAutobahnrastsẗatte.

From a linguistic point of view, (a) is clearly preferred over (b), since the intermedi-
ate ompoundbahnrastsẗatte in (b), although syntactically correct, is semantically very
awkward. However, since we focus on the leaves of a tree for retrieval purposes, and
therefore do not exploit intermediate levels, the difference between (a) and (b) disap-
pears, as both trees have the same set of leaves.

3.2 Evaluating the Compound Splitter

Before evaluating the effect of compound splitting in the context of retrieval, in Sec-
tions 4 and 5, we consider the quality of the compound splitter itself. To this end we



compiled a set of nouns taken from the document collection, and annotated the com-
pound parts of each compound. For each noun, there is a setSc containing pairs of the
form (pb, pe), indicating the character position at which a compound part begins and
ends. If a noun cannot be further split up,pb is 1 andpe is the length of the noun. This
set of annotated nouns constitutes our gold standard or reference corpus. In addition to
the set of correct compound parts, there is a setSg of compound parts produced by the
compound splitter.

The bracketed matchB is the number of pairs thatSc and Sg have in common,
i.e., B = #(Sc∩Sg). Analogous to the evaluation of syntactic parsers [7] and retrieval
systems, the quality of the compound splitter is measured in terms of precision and
recall. Both measures are further divided into micro-average precision/recall and macro-
average precision/recall, depending on the way the average is computed, see Figure 3,
whereNc andNg are the size ofSc andSg, respectively.

micro-avg. precision=
∑

Nouns
B/Nc

#Nouns
micro-avg. recall =

∑
Nouns

B/Ng

#Nouns

macro-avg. precision=
∑

Nouns
B

∑
Nouns

Nc
macro-avg. recall =

∑
Nouns

B

∑
Nouns

Ng

Fig. 3.Evaluation measures for compound splitting.

Precision is the percentage of compound parts returned by the compound splitter that
are correct, and recall is the percentage of correct compound parts which have been
identified by the compound splitter. For micro averaging, precision and recall are com-
puted for each noun and then they are averaged over the number of nouns. For macro-
averaging, precision and recall are computed with respect to the union of all brackets
of all nouns. For example, consider two nounsA andB with compound parts(a1) and
(b1)(b2)(b3), where the compound splitter returns(a1) and(b1)(b2b3). Precision and
recall for A are 1, precision forB is 0.5, and recall forB is 0.3. Then, micro-average
precision is(1+ 0.5)/2 = .75, and micro-average recall is(1+ 0.3)/2 = 0.6. Macro-
average precision is 2/3 = 0.6, since 3 brackets have been assigned in total, of which
two were correct, and macro-average recall is 2/4 = 0.5, because 4 brackets were to be
found in total, of which 2 were actually found by the compound splitter.

We decided to use macro-averaging in addition to the more commonly used micro-
averaging, because it is more susceptible to small differences in precision and recall.

Table 2 shows the results of the compound splitter for Dutch and German.

Dutch German
micro-avg. macro-avg. micro-avg. macro-avg.

precision 79.7% 77.4% 86.1% 84.9%# all nouns
recall 79.7% 70.2% 86.0% 79.1%
precision 27.1% 37.6% 49.3% 60.5%# complex nouns
recall 27.3% 29.3% 49.0% 50.6%

Table 2.Evaluation of the compound splitter.



The compound splitter was evaluated with respect to two kinds of sets, first all
nouns, i.e., 553 Dutch nouns and 2853 German nouns, cf. Table 1, and second, only
nouns which were classified as complex during manual annotation or by the compound
splitter. The second set is used to deemphasize the effect of simple nouns and to focus
on the complex cases, where compound splitting actually matters. It is worth noting
that there is basically no difference between precision and recall when using micro-
averaging. This is mainly due to the small number of partially correct decompoundings.
In most cases a noun is either correctly or incorrectly split up, which is again due to
the small number of nouns with a higher number of compound parts; only 1.3% of
the Dutch nouns and 2.2% of the German nouns can be split into more than two com-
ponents, cf. Table 1. Since macro-averaging averages over the total number of brackets
instead of the number of nouns, it is more susceptible to smaller differences, and indeed
reveals a better distinction between precision and recall. In both languages, precision
is considerably higher than recall, which can be explained by the conservative splitting
strategy used. For instance, nouns havingesas a gluing infix, such asLandesregierung
(English:state government) are not identified by the splitting algorithm as it was de-
scribed in Figure 1, but it should be trivial to enhance the current algorithm to do so.
Of course, there are also non-trivial cases such asAugapfel(English:eyeball) whoes
correct splitting isAuge+Apfel, where the lettere has been removed during compound
building and during decompounding has to be added again in order to recognizeAuge
as an existing noun; see [1] for more heuristics in German decompounding. Since these
rules for compound splitting are not considered in the algorithm, recall decreases.

Another noteworthy thing in Table 2 is the difference in precision and recall for
Dutch and German. The compound splitter performs much worse for Dutch than for
German. Although we do not have a clear explanation for this, it could be the different
lexicons used for recognizing simple nouns. As mentioned above, the lexicon for Ger-
man is compiled by tagging the input text and simply storing all lemmas of words which
have been tagged as noun. Since we did not have access to a part-of-speech tagger for
Dutch, we used Celex as a lexicon, which is somewhat smaller than the tagger-based
lexicon used for German, and it is also not based on the terminology used in the actual
document collection. The major problem for Dutch decompounding is that the lexicon
does not contain plurals, e.g.klantenservice(English:customers service) is to be split
into klanten+service, whereklantenis the plural ofklant. Unfortunately, plurals are not
mentioned in Celex, and therefore not recognized as nouns. One solution is to apply
stemming to the potential compound parts, but again, stemming is often too aggres-
sive, resulting in non-words. What is needed is either a lexicon containing plurals, or a
lemmatizer which returns the morphological stem of a word.

3.3 Exploiting Decompounding during Retrieval

For retrieval purposes, each document in the collection is analyzed and if a compound is
identified, all of its parts are added to the document. In some cases, compound splitting
can give rather awkward results, e.g., German:Bahnhof(English: train station) is split
into Bahn (rail) andHof (court/yard). Whereas ‘rail’ is semantically related to ‘train
station,’ this is less obvious for ‘court’ or ‘yard.’ Hence, it can happen that compound
splitting adds some rather unrelated words to a document causing a slight topic drift.



The current versions of our compound splitters are not tuned for retrieval purposes; for
instance, we made no attempt to avoid the addition of unrelated compound parts.

Compounds occurring in a query are analyzed in a similar way: the parts are simply
added to the query. Since we also expand the documents with compound parts, there is
no need for compound formation [13].

Currently, as mentioned above, only the minimal parts of a compound (i.e., the
leaves in a tree, as shown in Figure 2) and the compound itself are considered. If a
compound is more complex, containing more than two compound parts, intermediate
compound parts could also be considered. Although less specific than the compound
itself, they are more specific than the minimal compounds. In the current setting we
refrained from using intermediate compound parts, because it raises the issue of ambi-
guity, as explained above, but we think that, given a well-performing compound splitter,
it might also be worth adding intermediate compound parts to increase precision.

The approach of adding compound parts to the document itself has some side effects
whose impact is not clear yet. For example, what is an appropriate matching strategy
for compounds? In our implementation, compounds and their parts are treated inde-
pendently of each other, i.e., the term weight (tf.idf score) is computed independently
for the compound and its parts. If a query contains a compoundA, split into (a1)(a2),
and a document also contains compoundA, computing the similarity score considers all
three matches:A, a1, anda2. This seems to be inappropriate as the compound parts are
conceptually not independent of the compound itself. However, this approach rewards
compound matching in contrast to simple term matching, which again seems appropri-
ate since compounds are more specific their compound parts. This issue of compound
matching and assigning weights to compounds is very similar to the problem of phrase
matching and phrase weighting in English [5, 19].

Another problem with simply adding the compound parts to the document itself
concerns document length. Table 3 shows the differences in average document length
before and after adding compound parts to the documents in the collection that was
used for the CLEF 2001 evaluation exercise.

Dutch Germandocument length/weight
orig. + comp. parts orig. + comp. parts

avg. length in byte 1587 2116 (+33.3%) 1567 1420 (+10.4%)
avg. no. unique words 171 203 (+18.7%) 142 156 (+9.9%)
avg. cosine document weight11.01 11.74 (+6.6%) 10.73 11.25 (+4.8%)

Table 3.Effect of adding compounds on document length and weight.

The three measures listed above are the most commonly used measures for pivoted
document normalization, cf. [17]. Adding compound parts has a significant effect on
the document length, but it is unclear to what extent this affects retrieval effectiveness.

Finally, some figures about the topics that were used in the CLEF 2001 evaluation
exercise. For Dutch 50 topics were used, for German 49. The average number of (non-
unique) nouns in the (combined) title and description fields was 6.62 for Dutch and
6.42 for German, with an average of 1.3 (non-unique) compounds for Dutch and 1.46
for German. The average number of (non-unique) parts added per topic by a human
compound splitter was 2.66 for Dutch and 3.22 for German.



4 Official Runs

At CLEF 2001, the University of Amsterdam participated in the monolingual task only,
covering retrieval in Dutch, German, and Italian. For each language we submitted three
types of runs:

Type M (Morphological) The title and the description field of the topic are used to
generate the retrieval query (this was a mandatory requirement to be met by at least
one of the runs). Words are morphologically normalized and compounds are split
(Dutch and German). Blind feedback is applied to the top 10 documents adding at
most 20 terms to the original query. This includes the runsAmsNlM, AmsDeM, and
AmsItM.

Type Nv (Näıve) The title and the description field of the topic are used to generate the
retrieval query. Blind feedback is applied to the top 10 documents adding at most
20 terms to the original query. In contrast to runs of type M, no morphological
normalization or compound splitting are applied. This includes the runsAmsNlNv,
AmsDeNv, andAmsItNv.

Type T (Title only) The same retrieval and document processing techniques are used
as for runs of type M, but query formulation is restricted to the title field of the
topic. This includes the runsAmsNlT, AmsDeT, andAmsItT.

Our motivations for these runs were as follows. Type M runs were intended to be the
most effective runs, using techniques which are considered to improve retrieval effec-
tiveness, such as blind feedback. Type T runs use the same techniques, but queries are
much shorter and, therefore, more closely resemble queries posed by non-experts. In
contrast to type M runs, type Nv runs apply no language specific techniques such as
stemming/lemmatization or compound splitting.

After our submissions had been eveluated and our scores returned, we discovered
that the compound splitter malfunctioned for a large number of Dutch nouns due to
a bug in the interface between the stemmer and the compound splitter. This affected
our type M and type T runs for Dutch submitted to CLEF 2001. Below we report on
both the official (submitted) runs and the corrected ones. To start, Figure 4 displays the
interpolated precision-recall curves for the three languages, with two plots for Dutch
(not corrected and corrected).

Next, considering the non-interpolated avg. precisions for type M and type Nv runs
in Table 4, one can see that morphological normalization does result in significant im-
provements1 in effectiveness:≈ 25% for German and Italian and even≈ 54% (≈ 69%)
for Dutch (Dutch corrected).

The improvements were consistent across all topics, as is witnessed by the his-
tograms in Figure 5, where we have plotted the improvements in average precision of
type M runs over type Nv runs for each of the individual topics.

It is not obvious why the improvement for Dutch (whether corrected or not) is so
much bigger than for the other two languages. One reason could be that our precision

1 Note that significant improvement here refers to the definition in [18], where changes of more
than 5% are considered significant.
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Fig. 4.11pt interpolated avg. precision for all submitted runs.

scores for Dutch are, in general, considerably lower than the precision scores for Ger-
man and Italian. Our results seem to suggest that the improvements brought about by
compound splitting (plus stemming) are independent from the underlying retrieval en-
gine. Observe that there are some topics for which the type M run performs worse than
the type Nv run. A closer inspection of the topics showed that this was due to topic drift
resulting from blind feedback.

Dutch Dutch (corrected) German Italian

Näıve (Nv) 0.1833 0.1833 0.3342 0.3580
+ Morph. Anal. (M) 0.2833 0.3114 0.4172 0.4485

+54.6% +69.9% +24.8% +25.3%

Table 4.Non-interpolated avg. precisions of type M runs vs. type Nv runs.

Dutch Dutch (corrected) German Italian

Morph. Analysis (M) 0.2833 0.3114 0.4172 0.4485
Title only (T) 0.2418 0.2582 0.3342 0.1895

-14.6% -17.1% -19.9% -57.7%

Table 5.Non-interpolated avg. precisions of TD-queries vs. T-queries.



Dutch Dutch (corrected)

German Italian

Fig. 5.Average precision (individual queries) of type M vs. type Nv runs, Topics 41–90.

Another interesting question is to compare queries that were formulated by using
the title and the description field of the topic to queries that were formulated by using
the title of the topic only. Queries based on title information only are much shorter
and more closely resemble queries a non-expert would formulate. Table 5 shows that
for Dutch and German the decrease in effectiveness is certainly significant but not too
dramatic. On the other hand, for Italian, using the title field only has a drastic impact on
effectiveness, decreasing it by≈ 57%. What causes this dramatic decrease, particularly
in comparison to Dutch and German, is not obvious at this stage.

Finally, Table 6 shows the average precisions at a set of fixed ranks. This is again
interesting from a regular user’s point of view, who will hardly ever consider more than
the top 20 documents returned by a retrieval system.

5 Post-Submission Experiments

Following the release of the results of our submitted runs and of the evaluation scripts,
we conducted a number of post-submission experiments. These were aimed at explor-
ing the interaction between compound splitting and the various other techniques that
we used to enhance retrieval effectiveness. In particular, we wanted to understand the



Dutch (corrected) German Italian
PAmsNlM AmsNlNv PAmsNlT AmsDeM AmsDeNv AmsDeT AmsItM AmsItNv AmsItT

p@5 0.4160 0.2760 0.35100.5102 0.4490 0.42860.5660 0.4255 0.2426
p@10 0.3480 0.2280 0.27140.5102 0.4163 0.40820.5170 0.4000 0.2106
p@15 0.3067 0.2027 0.24080.4721 0.4122 0.38780.4638 0.3645 0.1957
p@20 0.2840 0.1840 0.23060.4582 0.3878 0.35820.4330 0.3340 0.1766
p@30 0.2520 0.1667 0.20270.4102 0.3503 0.32180.3695 0.3007 0.1539
p@100 0.1412 0.0890 0.12310.2504 0.2143 0.19800.1970 0.1572 0.0898
p@200 0.0884 0.0552 0.08150.1669 0.1441 0.12880.1147 0.0951 0.0618
p@500 0.0402 0.0264 0.03930.0793 0.0715 0.06690.0502 0.0457 0.0338
p@1000 0.0211 0.0140 0.02090.0410 0.0380 0.03810.0255 0.0240 0.0202

Table 6.Avg. precision at rankn.

interaction between blind feedback and compound splitting. As compound splitting is
not an issue for Italian, we restricted ourselves to Dutch and German.

For both Dutch and German, we considered four types of runs: with or without
blind feedback (F/NoF) and with or without compound splitting (C/NoC); all runs used
stemming. Observe that runs of type FC coincide with the earlier type M runs; the
difference between type Nv runs and type FNoC runs is that the latter use stemming.
We use the suffix ‘Nl’ to indicate Dutch runs, and ‘D’ to indicate German runs.

5.1 Dutch

For Dutch, adding compound splitting in the absence of feeedback leads to an improve-
ment in average precision of slightly more than 6%; in the presence of feedback it gives
a slightly bigger improvement of 8.5%. As to adding relevance feedback in the presence
or absence of decompounding, we couldn’t observe any significant changes: with com-
pound splitting switched off, feedback gave a 1.5% improvement, and otherwise it gave
a 3.8% improvement. The combination of feedback and compound splitting resulted
in an improvement of 10.1% in average precision over no feedback and no compound
splitting; see Table 7 for a summary.

Dutch No feedback (NoF) + Feedback (F)

No compound splitting (NoC) 0.2828 0.2871 +1.5%
+ Compound splitting (C) 0.3001 0.3114 +3.8%

+6.1% +8.5% +10.1%

Table 7. Non-interpolated avg. precision for Dutch without/with relevance feedback and with-
out/with compound splitting.

It’s instructive to look at the histograms comparing the various runs on a topic-by-topic
basis; see Figure 6. The top row illustrates the impact of adding blind feedback. As was
to be expected (based on reports in the literature), in some cases the addition of feedback
hurts precision; this is largely independent of compound splitting being switched on, see
e.g., Topics 84 and 85.

As to the addition of compound splitting, this leads to some decrease in precision
for some topics (e.g., Topic 56), while it leads to more substantial improvements in



FNoCNl/NoFNoCNl FCNl/NoFCNl

NoFCNl/NoFNoCNl FCNl/FNoCNl

Fig. 6. Comparisons of avg. precision (individual queries) for four Dutch runs. (Top): Adding
relevance feedback. (Bottom): Adding compound splitting.

others (e.g., Topics 76 and 80), even on top of blind feedback (seeFCNl/FNoCNl). Note
that there is no topic-by-topic correlation between the effects of compound splitting
and the effects of blind feedback, but one can observe similarkindsof improvements
(degredations) across all topics.

5.2 German

The phenomena that we observed for German were similar to those observed for Dutch,
with the main differences being that the overall improvements — whether caused by
blind feedback or by compound splitting — tend to be more significant (as witnessed
by Table 8), while some local changes were more dramatic than for Dutch (as witnessed
by Figure 7).

To make matters more concrete, let’s take a closer look at one of the topics. In
particular, feedback caused a serious drop in precision for topic 64:

<DE-title>Computermäuse und RSI </DE-title>
<DE-desc>Suche Dokumente, die über Erkrankungen an RSI berichten.
</DE-desc>

One of the examples in which splitting worked particularly well on top of blind feed-
back was topic 57:



German No feedback (NoF) + Feedback (F)

No compound splitting (NoC) 0.3551 0.3961 +11.5%
+ Compound splitting (C) 0.3892 0.4172 +7.2%

+9.6% +5.3% +17.5%

Table 8.Non-interpolated avg. precision without/with relevance feedback and without/with com-
pound splitting.

<DE-title>Strafprozess über verseuchte Blutkonserven</DE-title>
<DE-desc>Suche alle Informationen über Gerichtsverfahren zu
verseuchten Blutkonserven in Frankreich, einschließlich der
Gerichtsurteile und der Namen der Verurteilten.</DE-desc>

The splitted (and stopped and lemmatized) reformulation of this topic was

strafprozess verseucht blutkonserve alle en gerichtsverfahren
gericht verfahren verseucht blutkonserve frankreich
einschliesslich gerichtsurteil gericht urteil name verurteilte

Note, by the way, thatBlutkonservenwas not recognized as a compound.

FNoCD/NoFNoCD FCD/NoFCD

NoFCD/NoFNoCD FCD/FNoCD

Fig. 7. Comparisons of avg. precision (individual queries) for four German runs. (Top): Adding
relevance feedback. (Bottom): Adding compound splitting.



6 Conclusions

The experiments carried out here strongly confirm the believe that morphological nor-
malization does indeed improve retrieval effectiveness for languages such as Dutch,
German and Italian that are morphologically richer than English. In particular, com-
pound splitting was shown to have a positive impact over and above blind feedback for
compounding languages such as Dutch and German.

Since the morphological analyses carried out in this paper were still rather restricted,
it would be interesting to see what impact additional analyses, e.g., stripping off prefixes
and recognizing nominalizations, would have. Another line of interesting questions con-
cerns the relation between the topic drift and the addition of parts of compounds. Fi-
nally, we think that a systematic study of the use of compound splitting as mechanism
for feedback enhancement (across a variety of compound forming languages) would be
very interesting.
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