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Abstract

This paper describes a method that success-
fully exploits simple syntactic features for
n-best translation candidate reranking using
perceptrons. Our approach uses discrimi-
native language modelling to rerank the n-
best translations generated by a statistical ma-
chine translation system. The performance
is evaluated for Arabic-to-English translation
using NIST’s MT-Eval benchmarks. Whilst
parse trees do not consistently help, we show
how features extracted from a simple Part-of-
Speech annotation layer outperform two com-
petitive baselines, leading to significant BLEU
improvements on three different test sets.

1 Introduction

Common approaches Statistical Machine Transla-
tion (SMT) formulate the translation task as:

ê ≈ argmaxep(f |e)p(e), (1)

where the translation model is given by p(f |e), and
p(e) represents a language model. The most com-
monly used language models (LMs) are generative
word-based n-gram models, which use the Marko-
vian assumption that the probability of a word in a
string can be approximated by considering only the
limited history of the previous n− 1 words.

Whilst LMs remain fundamental to SMT systems,
they suffer from a number of flaws: first, given the
local nature of n-gram models, there is a strong mo-
tivation for the applicability of syntactic LMs that
can take into account long-range dependencies that

are difficult to model by the limited context of n-
gram models. However, attempts to integrate syn-
tactic information into language models used by
SMT systems have met with mixed success (Och et
al., 2004; Post and Gildea, 2008).

Secondly, language model performance is sensi-
tive to changes in genre and domain between train-
ing and test sets (Rosenfeld, 2000). Even when
training and testing on very similar domains such as
news, it has been shown that mundane differences
between two sources of news sets can lead to a no-
table decrease of performance (Rosenfeld, 1996).

Thirdly, the best choice according to the language
model can often be outvoted by other models (i.e
phrase table, re-ordering model) during the decoding
process. This leads to disfluent translations (Post
and Gildea, 2008).

Finally, standard generative LMs and full or
partial syntax-based models are almost exclusively
trained on well-formed English. Given the large fea-
ture space they operate in, the accurate assignment
of probabilities to unseen events is a difficult prob-
lem, and has been a major field of research for the
past sixty years (for a detailed overview on language
modelling and smoothing techniques, see (Chen and
Goodman, 1998)).

Applying models in a reranking phase to achieve
better results is a standard technique in SMT (Ku-
mar et al., 2004). In a reranking approach, an
SMT system outputs a list of the top n translations
(an n-best list). A discriminative language model
(DLM) (Roark et al., 2007) takes these n-best lists
and reranks them according to a weight vector and
a function φ(·) that maps a sentence into a feature



Perceptron
1: w ← 0
2: for t = 1 to T do
3: for i = 1 to N do
4: yi ← ORACLE(xi)
5: zi ← argmaxz∈GEN(xi)φ(z) · w
6: if zi 6= yi then
7: w ← w + φ(yi)− φ(zi)
8: end if
9: end for

10: end for
11: return w

Figure 1: The standard perceptron algorithm

space. The best hypothesis according to the DLM
is then returned as the selected translation. DLMs
are advantageous as they can make use of negative
examples and allow for a relatively easy inclusion
of syntactic features that go beyond simple word n-
grams.

As our DLM, we use the perceptron algorithm for
learning the weight vector. Building on the frame-
work of Roark et al. (2007), Li and Khudanpur
(2008) successfully applied the perceptron to SMT
using lexical, n-gram features. In this paper, we in-
vestigate the addition of syntactic features to an n-
gram based perceptron when applied to SMT rerank-
ing, taking as a starting point the work of Collins et
al. (2005). In particular, we show that:

• the use of full parse tree features do not provide
the improvements expected, however,

• improvements can be gained by using features
extracted from a novel, context-insensitive
Part-of-Speech (POS) tagger, and,

• these features lead to larger gains than using a
state of the art conditional random field (CRF)
POS tagger on two of the three test sets.

The remainder of this paper is organised as fol-
lows: Section 2 describes different parameter esti-
mation methods. Section 3 introduces the syntactic
features used for reranking. Section 4 describes the
experimental set up and results. Related work is dis-
cussed in Section 5.

2 Parameter Estimation

Different parameter estimation methods to estimate
the weight vectorw for a DLM have been previously
examined in the speech domain (Roark et al., 2004b;
Roark et al., 2007). These include optimising the
log-likelihood under a log-linear model, a batch al-
gorithm which requires processing all the data be-
fore outputting a weight vector as an answer, and
approximating a 0/1 loss through the perceptron up-
date rule, an online algorithm which examines and
updates the parameter vector sequentially.

The reader is referred to (Roark et al., 2004b;
Emami et al., 2007) for a discussion on the benefits
of the log-linear model and the perceptron. Given
this paper examines the use of a syntactic feature
space, which is larger than an already large n-gram
feature space, and that perceptrons perform feature
selection as a consequent of its learning procedure,
we opt to use the perceptron algorithm.

2.1 Perceptron

The perceptron, proposed by (Rosenblatt, 1958) is
an error minimisation learner that, assuming linearly
separable data, can be shown to converge to a so-
lution that perfectly classifies the data (Freund and
Schapire, 1999).

The standard perceptron algorithm is shown in
Figure 1. The algorithm takes as input a set of n-best
lists X , a function GEN(xi) that enumerates over
each sentence in a n-best list xi, and an oracle func-
tion ORACLE(xi) that determines the best trans-
lation (oracle best) for each of the n-best lists xi ac-
cording to the BLEU metric (Papineni et al., 2002).
As DLMs make comparisons on the sentence level,
we use sentence level BLEU with additive smooth-
ing (Lin and Och, 2004). There are discrepancies
between sentence and corpus-level BLEU, however
we find sentence-level BLEU sufficient for rerank-
ing SMT. T defines the number of iterations and N
defines the size of the test set, which in our case is
the number of n-best lists. The algorithm iterates
over the n-best lists in a sequential manner (lines 2
and 3). If the selected hypothesis and oracle best
sentence match, then the algorithm continues to the
next n-best list. Otherwise, the weight vector is up-
dated (line 7). At the end, it returns a weight vector
as its solution (line 11).



To use the weight vector returned by the percep-
tron algorithm, each sentence z in an n-best list is
scored by:

S(z) = βφ0(z) + w · φ(z) (2)

The SMT model score for each translation hypoth-
esis φ0(z) is weighted by β. Roark et al. (2007)
argue that, whilst possible to include φ0(z) as a fea-
ture of the perceptron model, this may lead to under-
training, so we adhere to the convention of using a
fixed value for β.

To score an n-best list xi we use the weight vector
returned by the perceptron to assign a score to each
sentence and select the best one:

z∗ = argmaxz∈GEN(xi)S(z) (3)

2.2 Perceptron Variants
A shortcoming of the perceptron is that it can be un-
stable if the training data is not linearly separable. A
number of solutions have been proposed in the liter-
ature. One solution proposed is to use an averaged
perceptron (Freund and Schapire, 1999), where the
parameter vector w output by the algorithm is av-
eraged over each instance wavg = ΣT

t=1ΣN
i=1

wi
t

N ·T .
Another solution is the pocket perceptron (Gallant,
1999; Collins and Duffy, 2002), where the weight
vector returned is the one that correctly classifies the
most training instances in a row, keeping an opti-
mal model in its ‘pocket’. A third solution, called
the committee or voting perceptron, keeps a cache
of optimal models, sorted by their success counts
(Roark et al., 2004a; Elsas et al., 2008). The cache
sizes differentiate the voting and committee percep-
tron.

3 Syntactic Features

The syntactic features used for reranking are ex-
tracted from either full parse trees (Section 3.1) or
POS sequences (Section 3.2). Using parsers allows
us to extract features that are global to the sentence
and relay deep structural information. Unfortunately
they are relatively slow and memory intensive, and
may fail to return a parse for large sentences.1 On
the other hand, POS taggers, whilst outputting no

1They have O(n3) complexity and have exponential growth
in memory usage, both in relation to sentence length.
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Figure 2: An example parse tree.

(a)

mr/NNP rubendall/NNP could/MD n’t/RB be/VB
reached/VBN

(b)

mr/NPb rubendall/NPc could/VPb n’t/VPc be/VPb

reached/VPb

(c)

mr/NNP-NPb rubendall/NNP-NPc could/MD-VPb

n’t/RB-VPc be/VB-VPb reached/VBN-VPb

Figure 3: Sequences extracted from full parse trees.

higher-level syntactic information, are more reliable,
efficient and robust as they always output a complete
POS sequence for a given input sentence.

3.1 Parsers
Three types of rules are extracted from full parse
trees; the first type is based on sequences, the second
is based on head information and lastly the raw con-
text free grammar rules are extracted. These feature
types are used as a starting point and are taken from
Collins et al. (2005), who used them for improving
ASR output.

Figure 2 shows an example sentence with its
parse, and Figure 3 shows the sequences from which
the first set of syntactic features are extracted. In
3(a), the sequences are the POS tags for each word.
3(b) captures chunk-based sequences by associating
with each word the first non-POS ancestor node. For
each word it is also indicated whether it starts or con-
tinues a shallow chunk. The features 3(c) are similar,



but also include the POS tag of each word.
The second set of syntactic features is based on

lexical heads within the tree. Heads are extracted
using the hand crafted rules defined in Appendix A
of (Collins, 1999). The simplest set of these features
models head-parent relationships, where for each
Non-Terminal (NT) in a tree, features of the form
NT/HNT and NT/HPNT are extracted, where HNT

represents the lexical head of the NT, and HPNT is
the POS tag of the corresponding lexical head of NT.
Head-to-head dependencies within the parse tree are
extracted to catch long range dependencies. For a
full description of these features, see (Collins et al.,
2005).

The last set of features examined from full parse
trees are context free rules. The take the form NT→
NT NT and NT→WORD. These are first order, lex-
ical and non-lexical rules. The use of raw parse tree
constituents have been unhelpful (Och et al., 2004).
However we include them in this context as we may
learn certain rule associations to be helpful in the
discriminative context.

3.2 POS Taggers

In addition to full syntactic parse information we
also consider shallow syntactic annotations obtained
by using Part-of-Speech taggers. Two tagging ap-
proaches are used: a Conditional Random Fields
tagger and a very simple tagger, using maximum
likelihood estimates to assign POS tags to words
without using any context. The simple model
does not use any smoothing, meaning that out-of-
vocabulary items are simply assigned <UNK> as
their tag.

3.3 Feature Types

From sequences, extracted from either full parse
trees or taggers, there are a number of features we
can extract. Potential feature types include:

1. (ti−2ti−1ti), (ti−1, ti), (ti), (tiwi)

2. (ti−2ti−1wi)

3. (ti−2wi−2ti−1wi−1tiwi), (ti−2ti−1wi−1tiwi),
(ti−1, wi−1, ti, wi), (ti−1, ti, wi)

Herewi refers to a word at position i, and ti refers
to a either a POS or NT tag, according to the se-

quence type. We will refer to these sequences sim-
ply as sequence 1, 2 or 3. Collins et al. (2005) show
that for ASR sequences 2 and 3 did not provide im-
provements over sequence 1. Given we are working
in SMT, where re-ordering problems are more preva-
lent, it will be interesting to see if they bring further
improvements.

It is also possible to extract features from the POS
layers that capture frequency based information. In
particular, we wish to model the frequency of POS
types for a given translation length. These include
features of the form:

length(x)/num(POS, x)

The length of a sentence is represented by
length(x), and the frequency a specific POS
tag occurs in the hypothesis translation x is
num(POS, x). These features tie the number of
POS tags to the length of a sentence. In this way we
hope to model the under-or-over production of cer-
tain POS types. In this paper we examine five such
types: verbs, nouns, adverbs, adjectives and deter-
miners. A similar feature is one that models a lack
of certain POS types, regardless of sentence length.
Here again we model a lack of either verbs, nouns,
adverbs, adjectives or determiners.

The last feature, verb agreement, is meant to
capture agreement between verb tenses that should
match. We learn this feature by starting with each
co-ordinating conjunction and comma in a sentence,
and examine a window 5 words large on either side
for verbs. If there are multiple verbs in this window,
we return the nearest one either side. Only if we find
a verb on both sides do we extract this feature.

For example, given the sentence “George/NNP
was/VBD shouting/VBG and/CC screaming/VBG”,
the verb agreement feature would be:

VBG CC VBG

This feature can hopefully discriminate between the
correct form “shouting and screaming ” and the in-
correct “shouting and screamed”. Note this is not
a tri-gram POS feature. The verbs do not have to
appear directly before or after the comma or co-
ordinating conjunction.



POS Accuracy
CM2 94.4%
CRF 97.0%

S-POS 86.8%

Table 1: POS Tagging accuracy of the different syntactic
tools we used.

4 Experimental Results

The effectiveness of the different syntactic features
discussed above is evaluated for Arabic-to-English
translation using NIST’s MT-Eval benchmarking
sets from 2002 through to 2006 (henceforth referred
to as MT02, MT03, MT04, MT05 and MT06).2

4.1 SMT System

Moses is used as a state-of-the-art baseline SMT
system for reporting experimental results (Koehn et
al., 2007). It is a phrase-based MT system using
stacks to organise partial translation candidates. The
parameters used for the experiments discussed here
are: stack size of 100, distortion limit of 6, and
phrase table limit of 20.

4.2 Training Data

To build the phrase table and language model, we
used various corpora distributed by the Linguistic
Data Consortium (LDC), totaling 300 thousand sen-
tence pairs.3 Alignments were extracted using the
GIZA++ toolkit (Och and Ney, 2000). The AFP
and Xinhua portions of the English Gigaword cor-
pus (LDC2003T05) and the English side of the
bitext were used to build the target tri-gram lan-
guage model using the SRILM toolkit with modified
Kneser-Ney smoothing (Stolcke, 2002).

4.3 Parameter Optimisation

The NIST Machine Translation MT02 and MT03
sets were used as a development set for optimis-
ing the parameters of the Moses baseline SMT sys-
tem using Minimum Error Rate Training (MERT)

2Statistics for each set (#source sentences/#refs): MT02
(1043/4), MT03 (663/4), MT04 (1353/5), MT05 (1056/5),
MT06(1796/4).

3The parallel text includes Arabic news LDC2004T18,
automatically extracted parallel text LDC2007T08, eTIRR
news LDC2004E72 and translated Arabic treebank data
LDC2005E46.

MT04 MT05 MT06
Moses 48.97 53.92 38.40
+ DLM n-gram 49.57 54.42 39.08
Oracle 61.09 66.34 50.11

Table 2: Baseline results on MT test sets. BLEU scores
reported are uncased. ‘DLM n-gram’ refers to the com-
petitive n-gram perceptron reranker we aim to outper-
form.

(Och, 2003). Since the parameters of the percep-
tron reranker need to be optimised as well, the de-
velopment set was split into K folds. MERT was
run on the union of the K − 1 folds to optimise the
parameters. The resulting setting was used to trans-
late the remaining fold and to generate the n-best
lists used for learning the parameter settings of the
perceptron reranker. Note, that the Moses baseline
was still trained on all development data at once.

To generate the parses from which the syntactic
features for our perceptron reranker are extracted,
the n-best lists of the development and test sets are
parsed by Dan Bikel’s implementation of Collins
Model 2 (CM2) (2002). The parser was optimised
on sections 02-21 of the Wall Street Journal of the
Penn Tree Bank (PTB) (Marcus et al., 1994), ap-
proximately 40,000 sentences, with section 23 re-
served for testing. As we parse SMT output, all sen-
tences were tokenised and lowercased in accordance
with the output of the SMT system prior to training
the parser. Whenever the parser failed to generate a
parse, the sentence was assigned the <NOPARSE>
feature.

The simple uni-gram tagger and Xuan-Hieu
Phan’s implementation of a CRF tagger (available at
http://crftagger.sourceforge.net) were trained analo-
gously. Table 1 shows the POS accuracy of all three
syntactic models on section 23 of the WSJ corpus.
We refer to our simple POS tagger as S-POS.

To find the optimal β value used in equation 2.1,
we did a grid search, with values at 0.1 intervals ex-
amined between 0 and 1, and values at 2x thereafter,
on the MT0203 training set.

The n-best lists contain the top 1000 most likely
and distinct translation candidates (different align-
ments can lead to sentences which are lexically iden-
tical but have different derivations). Untranslated
source words were not removed from translations.



MT04 MT05 MT06
Moses 48.97 53.92 38.40
+ DLM n-gram 49.57 54.42 39.08
+ n-gram + POS 49.47 54.48 39.07
+ n-gram + SEQ-B 49.09 54.11 39.47
+ n-gram + SEQ-C 49.46 54.19 39.07
+ n-gram + CFG 49.53 54.44 39.58
+ n-gram + H 49.44 54.09 33.45

Table 3: Results on MT test sets using syntactic features
from full parse trees.

4.4 Results on NIST MT Test Sets

Table 2 presents baseline results on MT04, MT05
and MT06 test sets. In addition to the Moses base-
line, we compare our results to a re-implementation
of the state-of-the-art perceptron re-ranker of (Li and
Khudanpur, 2008), which uses uni-gram, bi-gram
and tri-gram lexical features.

In Table 3 we present the results of using our per-
ceptron rerankers with features extracted from full
parse trees. All results are reported using sequence
1 type features, as we did not find further informa-
tion to be helpful. SEQ-B refers to features extracted
from shallow parse tag sequences shown in Figure
3(b). SEQ-C refers to the sequence shown in Figure
3(c). H refers to the head based features and CFG
refers to the context-free rule based features. The
models built include lexical n-grams features. The
use of features from full parse trees did not help at
all for MT04. For MT05, the CFG and POS feature
sets show small improvements. For the MT06 test
set, all syntactic models apart from H achieve im-
provements. These improvements against the lexi-
cal only reranker do not hold for MT04 and MT05.
Given unseen test data, we do not know if the inclu-
sion of syntactic features from full parse trees will
improve or harm the translation quality of the sys-
tem.

A further explanation for this under-performance
is a lack of parses generated for our n-best lists.
Adding syntactic features to our model increases the
feature space considerably. Yet as we do not apply
sentence-level thresholding to our data sets, we are
unable to generate a parse for all sentences in the n-
best lists. Table 4 shows the percentage of sentences
in the training and test sets that we were able to re-

#sentences p.p.s%
MT0203 1282287 87.3%
MT04 1075563 81.9%
MT05 744049 82.6%
MT06 1526170 80.7%

Table 4: Percentage of sentences (p.p.s) that have a parse.

MT04 MT05 MT06
DLM n-gram 49.57 54.42 39.08
DLM n-gram + POS 49.47 54.48 39.07
Improvement -0.10 0.06 -0.01
DLM n-gram + CRF 49.74 54.51 39.45
Improvement 0.17 0.09 0.37
DLM n-gram + S-POS 49.59 54.60 39.48
Improvement 0.02 0.18 0.40

Table 5: BLEU scores and improvements when using
features from our two POS taggers and POS annotations
from the full tree parser. POS features extracted from a
simple uni-gram, maximum likelihood tagger give largest
improvements on two of three sets.

trieve a parse for (p.p.s). Every nbest list contained
at least one parse. While we are able to parse over
80% of the sentences in each of the test sets, we still
lack syntactic information for under 20%.

Experiments with features extracted from the POS
taggers can help determine if the lack of parse an-
notations is a cause of the under-performance. The
POS taggers provide a POS sequence for all hypoth-
esis translations, giving us full syntactic ‘coverage’
of our training and test data. The results are dis-
played in Table 5.

The CRF DLM outperforms the n-gram only
DLM model on all three test sets. The S-POS DLM
yields gains over the DLM n-gram model on all three
of the test sets also. Even though our S-POS tagger
uses no back-off model or context, for two of the
three test sets, it provides larger gains than the CRF
tagger. Because the S-POS tagger results in higher
scores than the CRF tagger for two of the three test
sets, we only use the simple POS annotation layer
for the following experiments.

Table 6 summarizes the results of using the POS
tag frequency by sentence length features, the lack
of syntactic POS type features, and the verb agree-
ment features. We refer to the features that capture



MT04 MT05 MT06
+ DLM n-gram 49.57 54.42 39.08
+ S-POS+vn+dn 49.65† 54.60‡ 39.67‡
+ S-POS+allnum 49.65 54.60 39.67‡
+ S-POS+noall 49.70‡ 54.46 39.69‡
+ S-POS+verbagr 49.44 54.56 39.55‡

Table 6: Model results using POS tag frequency (vn, dn
and allnum), lack of POS type (noall) and verb agreement
(verbagr) features. Significance at p < 0.01: ‡. Signifi-
cance at p < 0.05: †.

the number of determiners per translation sentence
length as ‘dn’. Similarly, we refer to the verb based
equivalent features as ‘vn’. The features which to-
gether capture the number of all five POS types per
sentence length is called ‘allnum’. We refer to the
features that together model a lack of all five POS
types as ‘noall’. Verb agreements features are rep-
resented by ‘verbagr’. For MT04, the best per-
forming model is S-POS+noall, with a significant
improvement at p < 0.01 over the DLM n-gram
model of 0.13 corpus level BP. 4 For MT05, the best
performing model is S-POS+vn+dn with a signifi-
cant improvement of 0.18BP at p < 0.01. The S-
POS+allnum model gives the same absolute BP im-
provement for MT05, but is insignificant. For MT06
we have a larger improvement of 0.41BP, again at
p < 0.01, using S-POS+noall. The S-POS+vn+dn
model is not the best performing model on MT04
or MT06, but consistently gives significant improve-
ments.

Table 7 presents the individual n-gram precisions
for our best syntactic models in comparison to the n-
gram only DLM. There is a degrade in relative uni-
gram precision on MT04, MT05 and MT06, but we
see an increase in bi-gram, tri-gram and four-gram
precisions, indicating our syntactic features resolve
some of the word re-ordering problems.

To see how the S-POS features help, Table 8
presents the different POS sequences assigned by
the three different syntactic tools to the translation:
he reiterated ” full support of the islamic repub-
lic for islamic government interim ” in afghanistan.
This sentence is chosen by the perceptron reranker

4Statistical significance is calculated using the paired boot-
strap resampling method (Koehn, 2004).

Task System
n-gram precision (%)

1 2 3 4

MT04
n-gram 81.86 58.36 41.72 30.28
+syntax 81.76 58.48 41.92 30.43

improvement (%) −0.1% 0.2% 0.5% 0.5%

MT05
n-gram 83.31 62.74 47.20 35.54
+syntax 83.28 62.96 47.43 35.74

improvement (%) −0.04 0.3% 0.5% 0.6%

MT06
n-gram 74.43 47.84 31.75 21.50
+syntax 74.31 47.92 31.87 21.58

improvement (%) −0.2% 0.2% 0.4% 0.4%

Table 7: N-gram precisions and relative improvements on
MT test sets.

using POS features from the CM2 parser. The bi-
gram “government interim” is tagged as “NN NN”
by CM2 and the CRF tagger. This feature has a pos-
itive weight, and therefore is not penalised. Only
S-POS tags “interim” as an adjective. In the last
row of Table 8 we show the translation chosen by
the perceptron reranker using features from the S-
POS tagger. This leads to an improvement of 17.5
sentence-level BLEU, and is an example of the sig-
nificant gains we make using our S-POS tagger. It
appears that ‘better’ taggers try to apply a more En-
glish like tag sequence to ill-formed sentences. In
doing so, we potentially lose information that can
lead to a better discriminative model.

5 Related Work

Perceptrons have been successfully applied to parse
reranking (Collins and Duffy, 2002), document
reranking for IR (Crammer and Singer, 2001; El-
sas et al., 2008; Chen et al., 2009), ASR reranking
(Roark et al., 2004b; Collins et al., 2005; Singh-
Miller and Collins, 2007), and finally to SMT trans-
lation reranking, where significant improvements
have been achieved for Chinese-English translation
systems (Shen et al., 2004; Li and Khudanpur,
2008).

The work most closely related to ours is the dis-
criminative syntactic LM proposed in (Collins et al.,
2005). The work presented in this paper differs in
two important aspects: first, we focus on the use of
syntactic features in SMT. Second, we propose the
use of a simple POS tagger, which speeds up the data



System POS Sequence BLEU
CM2 PRP/he VBD/reiterated ”/” JJ/full NN/support IN/of DT/the NNP/islamic

NNP/republic IN/for JJ/islamic NN/government NN/interim IN/in ”/”
NNP/afghanistan ./.

50.30

CRF PRP/he VBD/reiterated ”/” JJ/full NN/support IN/of DT/the JJ/islamic
NN/republic IN/for JJ/islamic NN/government NN/interim ”/” IN/in
JJ/afghanistan ./.

50.30

S-POS PRP/he VBD/reiterated ”/” JJ/full NN/support IN/of DT/the NNP/islamic
NNP/republic IN/for NNP/islamic NN/government JJ/interim ”/” IN/in
NNP/afghanistan ./.

50.30

S-POS PRP/he VBD/reiterated ”/” JJ/full NN/support IN/of DT/the NNP/islamic
NNP/republic IN/for NNP/islamic JJ/interim NN/government IN/in
NNP/afghanistan ./. ”/”

67.64

Table 8: POS assignments made by the three syntactic tools for the sentence he reiterated ” full support of the
islamic republic for islamic government interim ” in afghanistan. We present sentence-level BLEU scores for both
translations.

annotation phase considerably, and gives us signifi-
cant improvements over the state-of-the-art.

Shen et al. (Shen et al., 2004) are the first to use
a perceptron like algorithm in a small scale applica-
tion of reranking SMT n-best lists. They used the
algorithm to optimise weights for a small number of
features (tens instead of millions). The use of per-
ceptron type algorithms with millions of features for
SMT has been explored by (Arun and Koehn, 2007).
They examine the use of online algorithms for the
discriminative training of a phrase based SMT sys-
tem. In this paper we focus on the use of perceptrons
for reranking using only target side syntactic infor-
mation.

The first application of a large scale discrimina-
tive language model to SMT reranking is undertaken
by Li and Khudanpur (2008). Using a standard n-
gram feature set they outperformed the 1-best out-
put of their baseline SMT system. They focus on
the application of n-gram only models to SMT and
the use of data filtering thresholds. We concentrate
on the efficient syntactic annotation of large amounts
of data and its successful exploitation.

A study in the use of a range of generative syn-
tactic models was undertaken by Och et al. (2004),
who did n-best reranking as we have done. Syntactic
features were not successful. More recently, the use
of Collins parser, similar to the parser used in this
paper, during the hypothesis generation phrase was
reported to be unsuccessful (Post and Gildea, 2008).

6 Conclusions

In this paper, we successfully applied a large scale,
discriminative LM to SMT. We report experiments
using a feature set only previously used in ASR.
We have shown that use of features extracted from
a simple POS tagger outperforms those from a state-
of-the-art parser as well as a CRF POS tagger.

As future work, we believe there is potential for
the use of partial and shallow parsers. Whilst pro-
viding less information than a full parser, they would
generate deeper information than a POS tagger, and
supply features for all sentences in the sets used.

Further, we believe there is potential for the use
of ensemble techniques. If we train our perceptron
models on different subsets of the data, we get large
differences in BLEU results, indicating the potential
for more improvements.

Finally, work needs to be done to answer the ques-
tion of why it is a simple POS tagger outperformed
state-of-the-art syntactic tools. A detailed examina-
tion, outside the scope of this paper, needs to be un-
dertaken.
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