03188 |
DUP
|
( ob → ob ob )
|
35CE0 |
DUPDUP
|
( ob → ob ob ob )
|
2D5006 |
^3DUP
|
( 3 2 1 → 3 2 1 3 2 1 )
|
28143 |
NDUPN
|
( ob #n → ob..ob #n )
( ob #0 → #0 )
|
35FF3 |
DUPROT
|
( 1 2 → 2 2 1 )
|
3457F |
DUPUNROT
|
( 1 2 → 2 1 2 )
aka: SWAPOVER
|
36133 |
DUPROLL
|
( 1..n #n → 1 3..n #n 2 )
|
281FD |
(DUPROLLSWAP)
|
( 1..n #n → 1 3..n 2 #n )
|
3432C |
DUP4UNROLL
|
( 1 2 3 → 3 1 2 3 )
|
3611F |
DUPPICK
|
( n..1 #n → n..1 #n n-1 )
|
35D30 |
DUP3PICK
|
( 1 2 → 1 2 2 1 )
aka: 2DUPSWAP
|
34431 |
DUP#1+PICK
|
( n..1 #n → n..1 #n n )
|
29362 |
(DUP#2+PICK)
|
( n..1 #n → n..1 #n n+1 )
|
031AC |
2DUP
|
( 1 2 → 1 2 1 2 )
|
35D30 |
2DUPSWAP
|
( 1 2 → 1 2 2 1 )
aka: DUP3PICK
|
36CA4 |
2DUP5ROLL
|
( 1 2 3 → 2 3 2 3 1 )
|
031D9 |
NDUP
|
( 1..n #n → 1..n 1..n )
|
03244 |
DROP
|
( 1 → )
|
357CE |
DROPDUP
|
( 1 2 → 1 1 )
|
37032 |
DROPNDROP
|
( 1..n #n ob → )
|
35733 |
DROPSWAP
|
( 1 2 3 → 2 1 )
|
3574D |
DROPSWAPDROP
|
( 1 2 3 → 2 )
aka: ROT2DROP , XYZ>Y
|
36007 |
DROPROT
|
( 1 2 3 4 → 2 3 1 )
|
3606B |
DROPOVER
|
( 1 2 3 → 1 2 1 )
|
03258 |
2DROP
|
( 1 2 → )
|
341D2 |
3DROP
|
( 1 2 3 → )
aka: XYZ>
|
341D7 |
4DROP
|
( 1..4 → )
aka: XYZW>
|
341DC |
5DROP
|
( 1..5 → )
|
341E8 |
6DROP
|
( 1..6 → )
|
341F4 |
7DROP
|
( 1..7 → )
|
0326E |
NDROP
|
( 1..n #n → )
|
35FB0 |
#1+NDROP
|
( ob 1..n #n → )
aka: N+1DROP
|
2F0A1 |
RESETDEPTH
|
( ob1..obn obn+1..obx #n → ob1..obn )
Drops all but #n levels of the stack.
|
28335 |
(KEEP)
|
( ob1..obn ob1'..obm' #m → ob1'..obm' )
Drops all stack levels above #m.
|
0314C |
DEPTH
|
( 1..n → 1..n #n )
|
371F9 |
UStackDepth
|
( → # )
The depth of the stack, similar to DEPTH .
|
28187 |
reversym
|
( 1..n #n → n..1 #n )
|
03223 |
SWAP
|
( 1 2 → 2 1 )
|
3576E |
SWAPDUP
|
( 1 2 → 2 1 1 )
|
368B5 |
SWAP2DUP
|
( 1 2 → 2 1 2 1 )
|
3421A |
SWAPDROP
|
( 1 2 → 2 )
aka: XY>Y
|
35857 |
SWAPDROPDUP
|
( 1 2 → 2 2 )
|
35872 |
SWAPDROPSWAP
|
( 1 2 3 → 3 1 )
aka: UNROTDROP , XYZ>ZX
|
29808 |
('Rswapop)
|
( 1 2 → nop 2 )
Replaces level two with the next object in
the runstream.
|
341BA |
SWAPROT
|
( 1 2 3 → 3 2 1 )
aka: UNROTSWAP , XYZ>ZYX
|
36C90 |
SWAP4ROLL
|
( 1 2 3 4 → 2 4 3 1 )
aka: XYZW>YWZX
|
3457F |
SWAPOVER
|
( 1 2 → 2 1 2 )
aka: DUPUNROT
|
36CB8 |
SWAP3PICK
|
( 1 2 3 → 1 3 2 1 )
|
35018 |
2SWAP
|
( 1 2 3 4 → 3 4 1 2 )
|
03295 |
ROT
|
( 1 2 3 → 2 3 1 )
|
3579C |
ROTDUP
|
( 1 2 3 → 2 3 1 1 )
|
35CA4 |
ROT2DUP
|
( 1 2 3 → 2 3 1 3 1 )
|
341A8 |
ROTDROP
|
( 1 2 3 → 2 3 )
aka: XYZ>YZ
|
3574D |
ROT2DROP
|
( 1 2 3 → 2 )
aka: DROPSWAPDROP , XYZ>Y
|
34195 |
ROTDROPSWAP
|
( 1 2 3 → 3 2 )
aka: XYZ>ZY
|
3416E |
ROTSWAP
|
( 1 2 3 → 2 1 3 )
aka: XYZ>YXZ
|
343BD |
ROTROT2DROP
|
( 1 2 3 → 3 )
aka: UNROT2DROP , XYZ>Z
|
35CCC |
ROTOVER
|
( 1 2 3 → 2 3 1 3 )
|
3423A |
4ROLL
|
( 1 2 3 4 → 2 3 4 1 )
aka: FOURROLL , XYZW>YZWX
|
3588B |
4ROLLDROP
|
( 1 2 3 4 → 2 3 4 )
|
35F06 |
4ROLLSWAP
|
( 1 2 3 4 → 2 3 1 4 )
|
36043 |
4ROLLROT
|
( 1 2 3 4 → 2 4 1 3 )
aka: FOURROLLROT
|
360E3 |
4ROLLOVER
|
( 1 2 3 4 → 2 3 4 1 4 )
|
34257 |
5ROLL
|
( 1 2 3 4 5 → 2 3 4 5 1 )
aka: FIVEROLL
|
358A7 |
5ROLLDROP
|
( 1 2 3 4 5 → 2 3 4 5 )
|
34281 |
6ROLL
|
( 1..6 → 2..6 1 )
aka: SIXROLL
|
342EA |
7ROLL
|
( 1..7 → 2..7 1 )
aka: SEVENROLL
|
342BB |
8ROLL
|
( 1..8 → 2..8 1 )
aka: EIGHTROLL
|
34318 |
(9ROLL)
|
( 1..9 → 2..9 1 )
|
03325 |
ROLL
|
( 1..n #n → 2..n 1 )
|
35FC4 |
ROLLDROP
|
( 1..n #n → 2..n )
|
35D80 |
ROLLSWAP
|
( 1..n #n → 2..n-1 1 n )
|
344F2 |
#1+ROLL
|
( ob 1..n #n → 1..n ob )
|
34517 |
#2+ROLL
|
( a b 1..n #n → b 1..n a )
|
2D6006 |
^#3+ROLL
|
( obn+3...obn...ob1 #n → obn+2...ob1 obn+3 )
|
344DD |
#+ROLL
|
( 1..n+m #n #m → 2..n+m 1 )
|
344CB |
#-ROLL
|
( 1..n-m #n #m → 2..n-m 1 )
|
3422B |
UNROT
|
( 1 2 3 → 3 1 2 )
aka: 3UNROLL , XYZ>ZXY
|
35D1C |
UNROTDUP
|
( 1 2 3 → 3 1 2 1 )
|
35872 |
UNROTDROP
|
( 1 2 3 → 3 1 )
aka: SWAPDROPSWAP , XYZ>ZX
|
343BD |
UNROT2DROP
|
( 1 2 3 → 3 )
aka: ROTROT2DROP , XYZ>Z
|
341BA |
UNROTSWAP
|
( 1 2 3 → 3 2 1 )
aka: SWAPROT , XYZ>ZYX
|
360CF |
UNROTOVER
|
( 1 2 3 → 3 1 2 1 )
|
3422B |
3UNROLL
|
( 1 2 3 → 3 1 2 )
aka: UNROT , XYZ>ZXY
|
34331 |
4UNROLL
|
( 1 2 3 4 → 4 1 2 3 )
aka: FOURUNROLL , XYZW>WXYZ
|
35D44 |
4UNROLLDUP
|
( 1 2 3 4 → 4 1 2 3 3 )
|
343CF |
4UNROLL3DROP
|
( 1 2 3 4 → 4 )
aka: XYZW>W
|
36057 |
4UNROLLROT
|
( 1 2 3 4 → 4 3 2 1 )
|
34357 |
5UNROLL
|
( 1 2 3 4 5 → 5 1 2 3 4 )
aka: FIVEUNROLL
|
3438D |
6UNROLL
|
( 1..6 → 6 1..5 )
aka: SIXUNROLL
|
35BEB |
7UNROLL
|
( 1..7 → 7 1..6 )
|
3615B |
8UNROLL
|
( 1..8 → 8 1..7 )
|
28225 |
(9UNROLL)
|
( 1..9 → 9 1..8 )
|
3616F |
10UNROLL
|
( 1..10 → 10 1..9 )
|
0339E |
UNROLL
|
( 1..n #n → n 1..n-1 )
|
34552 |
#1+UNROLL
|
( ob 1..n #n → n ob 1..n-1 )
|
34564 |
#2+UNROLL
|
( a b 1..n #n → n a b 1..n-1 )
|
3453D |
#+UNROLL
|
( 1..n+m #n #m → n+m 1..n+m-1 )
|
3452B |
#-UNROLL
|
( 1..n-m #n #m → n-m 1..n+m-1 )
|
032C2 |
OVER
|
( 1 2 → 1 2 1 )
|
35CF4 |
OVERDUP
|
( 1 2 → 1 2 1 1 )
|
35D6C |
OVERSWAP
|
( 1 2 → 1 1 2 )
aka: OVERUNROT
|
35D6C |
OVERUNROT
|
( 1 2 → 1 1 2 )
aka: OVERSWAP
|
36CF4 |
OVER5PICK
|
( 1 2 3 4 → 1 2 3 4 3 1 )
|
37046 |
2OVER
|
( 1 2 3 4 → 1 2 3 4 1 2 )
|
34485 |
3PICK
|
( 1 2 3 → 1 2 3 1 )
|
35F1A |
3PICKSWAP
|
( 1 2 3 → 1 2 1 3 )
|
360F7 |
3PICKOVER
|
( 1 2 3 → 1 2 3 1 3 )
|
36CCC |
3PICK3PICK
|
( 1 2 3 → 1 2 3 1 2 )
|
2F1C6 |
DROP3PICK
|
( 1 2 3 4 → 1 2 3 1 )
|
3448A |
4PICK
|
( 1 2 3 4 → 1 2 3 4 1 )
|
35F2E |
4PICKSWAP
|
( 1 2 3 4 → 1 2 3 1 4 )
|
36CE0 |
SWAP4PICK
|
( 1 2 3 4 → 1 2 4 3 1 )
|
3610B |
4PICKOVER
|
( 1 2 3 4 → 1 2 3 4 1 4 )
|
3448F |
5PICK
|
( 1 2 3 4 5 → 1 2 3 4 5 1 )
|
34494 |
6PICK
|
( 1..6 → 1..6 1 )
|
34499 |
7PICK
|
( 1..7 → 1..7 1 )
|
3449E |
8PICK
|
( 1..8 → 1..8 1 )
|
344A3 |
(9PICK)
|
( 1..9 → 1..9 1 )
|
344A8 |
(10PICK)
|
( 1..10 → 1..10 1 )
|
032E2 |
PICK
|
( 1..n #n → 1..n 1 )
|
373D0 |
(UNPICK)
|
( 1..n ob #n → ob 2..n )
|
37408 |
(#1+UNPICK)
|
( 1..n ob #n-1 → ob 2..n )
|
3741A |
(#+UNPICK)
|
( 1..n ob #n-#m #m → ob 2..n )
|
3742B |
(#1-UNPICK)
|
( 1..n ob #n+1 → ob 2..n )
|
34436 |
#1+PICK
|
( 1..n #n-1 → 1..n 1 )
|
34451 |
#2+PICK
|
( 1..n #n-2 → 1..n 1 )
|
34465 |
#3+PICK
|
( 1..n #n-3 → 1..n 1 )
|
34474 |
#4+PICK
|
( 1..n #n-4 → 1..n 1 )
|
34417 |
#+PICK
|
( 1..n+m #n #m → 1..n+m 1 )
|
34405 |
#-PICK
|
( 1..n-m #n #m → 1..n-m 1 )
|