[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

7.5 Non A-Z

3A097 x^ ( y x → y^x )
Power Analytic Func
--
Returns the value of the level 2 object raised to the power of the level 1 object.
w z → w^z
z 'sym' → 'z^sym'
'sym' z → '(sym)^z'
'sym1' 'sym2' → 'sym1^(sym2)'
x_u y → xy_uy
x_u 'sym' → '(x_u)^(sym)'
--
Flags: -1 -3
Principal soln -1
Numeric results -3
--
Related: EXP,ISOL,LN,XROOT
3D56B x| ( symb {var val ...}x' )
Where Func
--
Substitutes values for names in an expression.
--
2: 'symold' 1: { name1 'sym1' name2
'sym2' ... }
↓ ; 1: 'symnew'
--
2: x 1: { name1 'sym1' name2
'sym2' ... }
↓ ; 1: x
--
2: (x, y) 1: { name1 'sym1' name2
'sym2' ... }
↓ ; 1: (x, y)
--
Flags: -3
Numeric results -3
--
Related: APPLY,QUOTE
3A442 xSQRT ( x → x' )
Square Root Analytic Func
--
Returns the (+ve) square root of the argument.
--
z → √z
x_u → √(x)_u
'sym' → 'SQRT(sym)'
--
Flags: -1 -3
--
Related: SQ,^,ISOL UserRPL: x√
3D434 x∫ ( x1 x2 symb var → symb' )
Integral Func
--
Integrates symb from lower limit x1 to upper limit x2 respect to a variable var of integration.
--
Flags: -3 -45 -46 -47 -48 -49 -50
--
Related: TAYLR,∂,Σ
3DDC4 xSIGMA+ ( x → )
( x1...xn → )
( []/[[]] → )
Sigma Plus Cmd
--
Adds one or more data points to the current stat matrix (reserved variable ΣDAT).
--
<REF>TEXT:Reserved|ΣDAT
--
Related: CLΣ,RCLΣ,STOΣ,Σ- UserRPL: xΣ+
3DDEE xSIGMA- ( → x )
( → [] )
Sigma Minus Cmd
--
Returns a vector of m real numbers (or one number x if m = 1) corresponding to the coordinate values of the last data point entered by Σ+ into the current stat matrix (reserved variable ΣDAT).
--
<REF>TEXT:Reserved|ΣDAT
--
Related: CLΣ,RCLΣ,STOΣ,Σ+ UserRPL: xΣ-
39AC7 xPI ( → π )
PI Func
--
Returns the symbolic constant 'π' or its numerical representation, 3.14159265359.
→ 'π'
→ 3.14159265359
--
Flags: -2 -3
--
Related: e,i,MAXR,MINR,→Qπ UserRPL:
3D202 x∂ ( symb var → symb' )
Derivative Func
--
Takes the derivative of an expression, number, or unit object with respect to a specified variable of differentiation.
--
'sym1' 'name' → 'sym2'
z 'name' → 0
x_unit 'name' → 0
--
Flags: -3
--
Related: TAYLR,∫,Σ
3CF80 x<=? ( x y → 1 )
( x y → 0 )
Less Than or Equal Func
--
Tests whether one object is less than or equal to another object.
--
x y → 0/1
#n1 #n2 → 0/1
"str1" "str2" → 0/1
x 'sym' → 'x<=sym'
'sym' z → 'sym<=z'
'sym1' 'sym2' → 'sym1<=sym2'
x_u1 y_u2 → 0/1
x_u 'sym' → 'x_unit<=sym'
'sym' x_u → 'sym<=x_unit'
--
Flags: -3
--
Related: <,>,≥,==,≠ UserRPL: x≤
3D01F x>=? ( x y → 1 )
( x y → 0 )
Greater Than or Equal Func
--
x y → 0/1
#n1 #n2 → 0/1
"str1" "str2" → 0/1
x 'sym' → 'x≥sym'
'sym' z → 'sym≥z'
'sym1' 'sym2' → 'sym1≥sym2'
x_u1 y_u2 → 0/1
x_u 'sym' → 'x_u≥sym'
'sym' x_u → 'sym≥x_u'
--
Flags: -3
--
Related: <,≤,>,==,≠ UserRPL: x≥
3CD21 x#? ( x y → 1 )
( x y → 0 )
Not Equal Func
--
Tests if two objects are equal.
obj1 obj2 → 0/1
(x,0) x → 0/1
x (x,0) → 0/1
z 'sym' → 'z≠sym'
'sym' z → 'sym≠z'
'sym1' 'sym2' → 'sym1≠sym2'
--
Flags: -3
--
Related: SAME,TYPE,<,≤,>,≥, == UserRPL: x≠
3885C xRPN-> ( ob1 .. obn → )
Create Local Variables Cmd
--
Creates local variables.
obj1 ... objn →
--
Syntax:
→ name1 name2 ... nameN « prog »
→ name1 name2 ... nameN 'Expr'
--
Related: DEFINE,STO UserRPL: x→
38093 xALG->
Create local variable comand. <REF>xRPN-> UserRPL: x→
3ABAF xFACT ( x → x' )
Factorial (Gamma) Func
--
Returns the factorial n! of a positive integer argument n, or the gamma function ˘(x+1) of a non-integer argument x.
n → n!
x → ˘(x+1)
'sym' → '(sym!)'
--
Flags: -3 -20 -21
Numerical Results -3
Underflow exception -20
Overflow exception -21
--
Related: COMB,PERM UserRPL: x!
3B251 x% ( x y → xy/100 )
Percent Func
--
Returns x (level 2) percent of y (level 1).
x y → xy/100
x 'sym' → '%(x,sym)'
'sym' x → '%(sym,x)'
'sym1' 'sym2' → '%(sym1,sym2)'
x y_unit → (xy/100)_unit
x_unit y → (xy/100)_unit
'sym' x_unit → '%(sym,x_unit)'
x_unit 'sym' → '%(x_unit,sym)'
--
Flags:
Numerical Results -3
--
Related: %CH,%T
39DE8 x* ( x y → x*y )
Multiply Analytic Func
--
Returns the product of the args.
z1 z2 → z1ˇz2
[[ mat ]] [ arr ] → [[ mat×arr ]]
z [ arr ][ z × array ]
[ arr ] z → [ arr × z ]
z 'sym' → 'z * sym'
'sym' z → 'sym * z'
'sym1' 'sym2' → 'sym1 * sym2'
#n1 n2 → #n'
n1 #n2 → #n'
#n1 #n2 → #n'
x_u y_u → xy_ux × unity
x y_u → xy_u
x_u y → xy_u
'sym' x_u → 'sym * x_u'
x_u 'sym' → 'x_u * sym'
--
Flags: -3 -5 -6 -7 -8 -9 -10
Numeric results -3
bint wordsize -5 → -10
--
Related: +,-,/,=
39B58 x+ ( x y → x+y )
Add Analytic Func
--
Returns the sum of the arguments. Addition. If one arg is list, insert element in list or concatenate lists. <REF>xADD
z1 z2 → z1+z2
[ arr ]1 [ arr ]2 → [ arr ]1+2
z 'sym' → 'z+(sym)'
'symb' z → 'sym+z'
'sym1' 'sym2' → 'sym1 + sym2'
{ lst1 } { lst2 }{ lst1 lst2 }
obj { o... }{ obj o... }
{ o... } o → { o... obj }
"str1" "str2" → "str1str2"
obj "str" → "obj str"
"str" obj → "str obj"
#n1 n2 → #n'
n1 #n2 → #n'
#n1 #n2 → #n'
x1_u1 y_u2 → (x2+y)_u2
'sym' x_u → 'sym+x_u'
x_u 'sym' → 'x_u+sym'
grob1 grob2 → grob'
--
Flags: -3 -4 -5 -6 -7 -8 -9 -10
Numeric results -3
Bint wordsize -5 → -10
--
Related: -,*,/,=
39CFC x- ( x y → x-y )
Subtract Analytic Func
--
Returns the difference of the arguments: the object in level 1 is subtracted from the object in level 2.
z1 z2 → z1-z2
[ arr ]1 [ arr ]2 → [ arr ]1_2
z 'sym' → 'z-sym'
'sym' z → 'sym-z'
'sym1' 'sym2' → 'sym1 - sym2'
#n1 n2 → #n'
n1 #n2 → #n'
#n1 #n2 → #n'
x1_u1 y_u2 → (x2-y)_u2
'sym' x_u → 'sym-x_u'
x_u 'sym' → 'x_u-sym'
--
Flags: -3
Numeric results -3
--
Related: +,*,/,=
39F49 x/ ( x y → x/y )
Divide Analytic Func
--
Returns the quotient of the arguments: the level 2 object divided by the level 1 object. (Abbrev. _u = _unit)
z1 z2 → z1 / z2
[ arr ] [[ mat ]] → [[mat^-1×arr]]
[ arr ] z → [ arr / z ]
z 'sym' → 'z / sym'
'sym' z → 'sym / z'
'sym1' 'sym2' → 'sym1 / sym2'
#n1 n2 → #n'
n1 #n2 → #n'
#n1 #n2 → #n'
x_u1 y_u2 → (x/y)_u1/u2
x y_u → (x/y)_1/u
x_u y → (x/y)_u
'sym' x_u → 'sym/x_u'
x_u 'sym' → 'x_u/sym'
--
Related: +,-,*,=,RATIO
3CE42 x< ( x y → 1 )
( x y → 0 )
Less Than Func
--
Tests whether one object is less than another object.
x y → 0/1
#n1 #n2 → 0/1
"str1" "str2" → 0/1
x 'sym' → 'x<sym'
'sym' x → 'sym<z'
'sym1' 'sym2' → 'sym1<sym2'
x_u1 y_u2 → 0/1
x_u 'sym' → 'x_u<sym'
'sym' x_u → 'sym<x_u'
--
Flags: -3
Numeric results -3
398B9 x= ( x y → x=y )
Makes equation out of two expressions. Equals Analytic Func
--
Returns an equation formed from the two arguments.
z1 z2 → 'z1=z2'
z 'sym' → 'z=sym'
'sym' z → 'sym=z'
'sym1' 'sym2' → 'sym1=sym2'
y x_u → 'y=x_u'
y_u x → 'y_u=x'
y_u x_u → 'y_u=x_u'
'sym' x_u → 'sym=x_u'
x_u 'sym' → 'x_u=sym'
--
Flags: -3
Numeric results -3
--
Related: DEFINE,EVAL,-
3CBF6 x== ( x y → 1 )
( x y → 0 )
Logical Equality Func
--
Tests if two objects are equal.
obj1 obj2 → 0/1
(x,0) x → 0/1
x (x,0) → 0/1
z 'sym' → 'z==sym'
'sym' z → 'sym==z'
'sym1' 'sym2' → 'sym1==sym2'
--
Flags: -3
Numeric results -3
--
Related: SAME,TYPE,<,≤,>,≥,≠
3CEE1 x> ( x y → 1 )
( x y → 0 )
Greater Than Func
--
Tests whether one object is greater than another object.
x y → 0/1
#n1 #n2 → 0/1
"str1" "str2" → 0/1
x 'sym' → 'x>sym'
'sym' z → 'sym>z'
'sym1' 'sym2' → 'sym1>sym2'
x_u1 y_u2 → 0/1
x_u 'sym' → 'x_u>sym'
'sym' x_u → 'sym>x_u'
--
Flags: -3
Numeric results -3
--
Related: <,≤,≥,==,≠ ;


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

This document was generated by Carsten Dominik on May, 30 2005 using texi2html