3DC006 |
^PDer
|
( {} → der )
|
19F006 |
^ssSYMDER
|
Algebraic derivative.
|
1A0006 |
^SYMDER
|
|
1A1006 |
^DERIVext
|
( ob id → ob' )
( ob sym → ob' )
( ob V → V' )
Calculates the derivative of the object. For
a list argument calculates the gradient with
respect to the variables in the list. If the
variable is a symbolic, the first variable in
it is used. Note that the gradient is a
vector quantity, thus the result is returned
as a list.
|
1A2006 |
^siSYMDER
|
|
1A3006 |
^DERIVIDNT
|
( ob id → ob' )
Main entry point for derivative with respect
to a identifier.
|
1A4006 |
^DERIVIDNT1
|
( ob → ob' )
Main entry point for derivative with respect
to the identifier stored in LAM1.
|
1A5006 |
^DERIV
|
( symb → symb' )
Derivative of symb with respect to the
variable stored in LAM1.
|
1A6006 |
^METADERIV
|
( Meta → Meta' )
Derivative of Meta object.
|
1BD006 |
^METADER&NEG
|
( Meta → Meta' )
Meta derivative and negate.
|
1A8006 |
^METADEROP
|
Table of derivable functions and the
respective derivative calculation
subroutines.
|
1A9006 |
^METADER+
|
( Meta&+ → Meta' )
Meta derivative of addition.
|
1AA006 |
^METADER-
|
( Meta&- → Meta' )
Meta derivative of subtraction.
|
1AB006 |
^METADER*
|
( Meta&* → Meta' )
Meta derivative of multiplication.
|
1AC006 |
^METADER/
|
( Meta&/ → Meta' )
Meta derivative of division.
|
1AD006 |
^METADER^
|
( Meta&^ → Meta' )
Meta derivative of power.
|
1AE006 |
^METADERFCN
|
( Meta → Meta' )
Meta derivative of a function.
|
1AF006 |
^METADERDER
|
( symb_id_; sym_fcn_; xDER #3 → Meta' )
Meta derivative of a derivative of a
function.
|
1B0006 |
^METADERI4
|
( Meta → Meta' )
Meta derivative of a defined integral.
|
1B1006 |
^METADERI3
|
( Meta → Meta' )
Meta derivative of an undefined integral.
|
1B2006 |
^METADERIFTE
|
( Meta → Meta' )
Meta derivative of IFTE.
|
1B4006 |
^METADEREXP
|
( Meta → Meta' )
Meta derivative of EXP.
|
1B5006 |
^METADERLN
|
( Meta → Meta' )
Meta derivative of LN.
|
1B6006 |
^METADERLNP1
|
( Meta → Meta' )
Meta derivative of LNP1.
|
1B7006 |
^METADERLOG
|
( Meta → Meta' )
Meta derivative of LOG.
|
1B8006 |
^METADERALOG
|
( Meta → Meta' )
Meta derivative of ALOG.
|
1B9006 |
^METADERABS
|
( Meta → Meta' )
Meta derivative of ABS.
|
1BA006 |
^METADERINV
|
( Meta → Meta' )
Meta derivative of INV.
|
1BB006 |
^METADERNEG
|
( Meta → Meta' )
Meta derivative of NEG.
|
1BC006 |
^METADERSQRT
|
( Meta → Meta' )
Meta derivative of SQRT.
|
1BE006 |
^METADERSQ
|
( Meta → Meta' )
Meta derivative of SQ.
|
1BF006 |
^METADERSIN
|
( Meta → Meta' )
Meta derivative of SIN.
|
1C0006 |
^METADERCOS
|
( Meta → Meta' )
Meta derivative of COS.
|
1C1006 |
^METADERTAN
|
( Meta → Meta' )
Meta derivative of TAN.
|
1C2006 |
^METADERSINH
|
( Meta → Meta' )
Meta derivative of SINH.
|
1C3006 |
^METADERCOSH
|
( Meta → Meta' )
Meta derivative of COSH.
|
1C4006 |
^METADERTANH
|
( Meta → Meta' )
Meta derivative of TANH.
|
1C5006 |
^METADERASIN
|
( Meta → Meta' )
Meta derivative of ASIN.
|
1C6006 |
^METADERACOS
|
( Meta → Meta' )
Meta derivative of ACOS.
|
1C7006 |
^METADERATAN
|
( Meta → Meta' )
Meta derivative of ATAN.
|
1C8006 |
^METADERASH
|
( Meta → Meta' )
Meta derivative of ASINH.
|
1C9006 |
^METADERACH
|
( Meta → Meta' )
Meta derivative of ACOSH.
|
1CA006 |
^METADERATH
|
( Meta → Meta' )
Meta derivative of ATANH.
|
1B3006 |
^DERARG
|
( meta-symb → arg1 ... argk der1 ... derk #k op )
Finds derivative of arguments.
|
1CB006 |
^pshder*
|
( Meta1 Meta2 → Meta2&Meta1'&* )
Meta derivative utility.
|
1CC006 |
^SQRTINVpshd*
|
( Meta1 Meta2 → Meta2&SQRT&INV&Meta1'&* )
Meta derivative utility.
|