[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

5.8.2 Derivatives

3DC006 ^PDer ( {} → der )
19F006 ^ssSYMDER
Algebraic derivative.
1A0006 ^SYMDER
1A1006 ^DERIVext ( ob id → ob' )
( ob sym → ob' )
( ob V → V' )
Calculates the derivative of the object. For a list argument calculates the gradient with respect to the variables in the list. If the variable is a symbolic, the first variable in it is used. Note that the gradient is a vector quantity, thus the result is returned as a list.
1A2006 ^siSYMDER
1A3006 ^DERIVIDNT ( ob id → ob' )
Main entry point for derivative with respect to a identifier.
1A4006 ^DERIVIDNT1 ( ob → ob' )
Main entry point for derivative with respect to the identifier stored in LAM1.
1A5006 ^DERIV ( symb → symb' )
Derivative of symb with respect to the variable stored in LAM1.
1A6006 ^METADERIV ( Meta → Meta' )
Derivative of Meta object.
1BD006 ^METADER&NEG ( Meta → Meta' )
Meta derivative and negate.
1A8006 ^METADEROP
Table of derivable functions and the respective derivative calculation subroutines.
1A9006 ^METADER+ ( Meta&+ → Meta' )
Meta derivative of addition.
1AA006 ^METADER- ( Meta&- → Meta' )
Meta derivative of subtraction.
1AB006 ^METADER* ( Meta&* → Meta' )
Meta derivative of multiplication.
1AC006 ^METADER/ ( Meta&/ → Meta' )
Meta derivative of division.
1AD006 ^METADER^ ( Meta&^ → Meta' )
Meta derivative of power.
1AE006 ^METADERFCN ( Meta → Meta' )
Meta derivative of a function.
1AF006 ^METADERDER ( symb_id_; sym_fcn_; xDER #3 → Meta' )
Meta derivative of a derivative of a function.
1B0006 ^METADERI4 ( Meta → Meta' )
Meta derivative of a defined integral.
1B1006 ^METADERI3 ( Meta → Meta' )
Meta derivative of an undefined integral.
1B2006 ^METADERIFTE ( Meta → Meta' )
Meta derivative of IFTE.
1B4006 ^METADEREXP ( Meta → Meta' )
Meta derivative of EXP.
1B5006 ^METADERLN ( Meta → Meta' )
Meta derivative of LN.
1B6006 ^METADERLNP1 ( Meta → Meta' )
Meta derivative of LNP1.
1B7006 ^METADERLOG ( Meta → Meta' )
Meta derivative of LOG.
1B8006 ^METADERALOG ( Meta → Meta' )
Meta derivative of ALOG.
1B9006 ^METADERABS ( Meta → Meta' )
Meta derivative of ABS.
1BA006 ^METADERINV ( Meta → Meta' )
Meta derivative of INV.
1BB006 ^METADERNEG ( Meta → Meta' )
Meta derivative of NEG.
1BC006 ^METADERSQRT ( Meta → Meta' )
Meta derivative of SQRT.
1BE006 ^METADERSQ ( Meta → Meta' )
Meta derivative of SQ.
1BF006 ^METADERSIN ( Meta → Meta' )
Meta derivative of SIN.
1C0006 ^METADERCOS ( Meta → Meta' )
Meta derivative of COS.
1C1006 ^METADERTAN ( Meta → Meta' )
Meta derivative of TAN.
1C2006 ^METADERSINH ( Meta → Meta' )
Meta derivative of SINH.
1C3006 ^METADERCOSH ( Meta → Meta' )
Meta derivative of COSH.
1C4006 ^METADERTANH ( Meta → Meta' )
Meta derivative of TANH.
1C5006 ^METADERASIN ( Meta → Meta' )
Meta derivative of ASIN.
1C6006 ^METADERACOS ( Meta → Meta' )
Meta derivative of ACOS.
1C7006 ^METADERATAN ( Meta → Meta' )
Meta derivative of ATAN.
1C8006 ^METADERASH ( Meta → Meta' )
Meta derivative of ASINH.
1C9006 ^METADERACH ( Meta → Meta' )
Meta derivative of ACOSH.
1CA006 ^METADERATH ( Meta → Meta' )
Meta derivative of ATANH.
1B3006 ^DERARG ( meta-symb → arg1 ... argk der1 ... derk #k op )
Finds derivative of arguments.
1CB006 ^pshder* ( Meta1 Meta2 → Meta2&Meta1'&* )
Meta derivative utility.
1CC006 ^SQRTINVpshd* ( Meta1 Meta2 → Meta2&SQRT&INV&Meta1'&* )
Meta derivative utility.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

This document was generated by Carsten Dominik on May, 30 2005 using texi2html